| Line 1,290: |
Line 1,290: |
| | Here are the 2-adic relative terms again, followed by their representation as coefficient matrices, in this case bordered by row and column labels to remind us what the coefficient values are meant t|o signify. | | Here are the 2-adic relative terms again, followed by their representation as coefficient matrices, in this case bordered by row and column labels to remind us what the coefficient values are meant t|o signify. |
| | | | |
| − | : 'l' = B:C +, C:B +, D:O +, E:I +, I:E +, O:D =
| + | {| align="center" cellspacing="6" width="90%" |
| | + | | |
| | + | <math>\begin{array}{*{13}{c}} |
| | + | \mathit{l} |
| | + | & = & \mathrm{B}:\mathrm{C} |
| | + | & +\!\!, & \mathrm{C}:\mathrm{B} |
| | + | & +\!\!, & \mathrm{D}:\mathrm{O} |
| | + | & +\!\!, & \mathrm{E}:\mathrm{I} |
| | + | & +\!\!, & \mathrm{I}:\mathrm{E} |
| | + | & +\!\!, & \mathrm{O}:\mathrm{D} |
| | + | \end{array}</math> |
| | + | |} |
| | | | |
| − | <pre> | + | {| align="center" cellspacing="6" width="90%" |
| − | 'l'| B C D E I J O
| + | | |
| − | ---o--------------- | + | <math>\begin{array}{c|ccccccc} |
| − | B | 0 1 0 0 0 0 0
| + | \mathit{l} & |
| − | C | 1 0 0 0 0 0 0
| + | \mathrm{B} & |
| − | D | 0 0 0 0 0 0 1
| + | \mathrm{C} & |
| − | E | 0 0 0 0 1 0 0
| + | \mathrm{D} & |
| − | I | 0 0 0 1 0 0 0
| + | \mathrm{E} & |
| − | J | 0 0 0 0 0 0 0
| + | \mathrm{I} & |
| − | O | 0 0 1 0 0 0 0
| + | \mathrm{J} & |
| − | </pre> | + | \mathrm{O} |
| | + | \\ |
| | + | \text{---} & |
| | + | \text{---} & |
| | + | \text{---} & |
| | + | \text{---} & |
| | + | \text{---} & |
| | + | \text{---} & |
| | + | \text{---} & |
| | + | \text{---} |
| | + | \\ |
| | + | \mathrm{B} & 0 & 1 & 0 & 0 & 0 & 0 & 0 |
| | + | \\ |
| | + | \mathrm{C} & 1 & 0 & 0 & 0 & 0 & 0 & 0 |
| | + | \\ |
| | + | \mathrm{D} & 0 & 0 & 0 & 0 & 0 & 0 & 1 |
| | + | \\ |
| | + | \mathrm{E} & 0 & 0 & 0 & 0 & 1 & 0 & 0 |
| | + | \\ |
| | + | \mathrm{I} & 0 & 0 & 0 & 1 & 0 & 0 & 0 |
| | + | \\ |
| | + | \mathrm{J} & 0 & 0 & 0 & 0 & 0 & 0 & 0 |
| | + | \\ |
| | + | \mathrm{O} & 0 & 0 & 1 & 0 & 0 & 0 & 0 |
| | + | \end{array}</math> |
| | + | |} |
| | + | |
| | + | Here are the 2-adic relative terms again, followed by their representation as coefficient |
| | | | |
| | : 's' = C:O +, E:D +, I:O +, J:D +, J:O = | | : 's' = C:O +, E:D +, I:O +, J:D +, J:O = |