Changes

→‎Measure for Measure: explain tables, reset formula display
Line 567: Line 567:  
===Measure for Measure===
 
===Measure for Measure===
   −
An acquaintance with the functions of the umpire operator can be gained from Tables 4 and 5, where the 2-dimensional case is worked out in full.
+
Define two families of measures:
   −
The auxiliary notations:
+
{| align="center" cellpadding="8"
 +
| <math>\alpha_i, \beta_i : (\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}, i = 0 \ldots 15,</math>
 +
|}
   −
: <math>\alpha_i f = \Upsilon (f_i, f),\!</math>
+
by means of the following formulas:
   −
: <math>\beta_i f = \Upsilon (f, f_i),\!</math>
+
{| align="center" cellpadding="8"
 
+
| <math>\alpha_i f = \Upsilon \langle f_i, f \rangle = \Upsilon \langle f_i \Rightarrow f \rangle,</math>
define two series of measures:
+
|-
 
+
| <math>\beta_i f = \Upsilon \langle f, f_i \rangle = \Upsilon \langle f \Rightarrow f_i \rangle.</math>
: <math>\alpha_i, \beta_i : (\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B},</math>
+
|}
   −
incidentally providing compact names for the column headings of the next two Tables.
+
The values of the sixteen <math>\alpha_i\!</math> on each of the sixteen boolean functions <math>f : \mathbb{B}^2 \to \mathbb{B}</math> are shown in Table&nbsp;13.  Expressed in terms of the implication ordering on the sixteen functions, <math>\alpha_i f = 1\!</math> says that <math>f\!</math> is ''above or identical to'' <math>f_i\!</math> in the implication lattice, that is, <math>\ge f_i\!</math> in the implication ordering.
    
{| align="center" border="1" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
{| align="center" border="1" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
Line 924: Line 926:  
| style="background:black; color:white" | 1
 
| style="background:black; color:white" | 1
 
|}<br>
 
|}<br>
 +
 +
The values of the sixteen <math>\beta_i\!</math> on each of the sixteen boolean functions <math>f : \mathbb{B}^2 \to \mathbb{B}</math> are shown in Table&nbsp;14.  Expressed in terms of the implication ordering on the sixteen functions, <math>\beta_i f = 1\!</math> says that <math>f\!</math> is ''below or identical to'' <math>f_i\!</math> in the implication lattice, that is, <math>\le f_i\!</math> in the implication ordering.
    
{| align="center" border="1" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
{| align="center" border="1" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
Line 1,305: Line 1,309:  
\operatorname{for~all}\ f. \\
 
\operatorname{for~all}\ f. \\
 
\end{matrix}</math></center>
 
\end{matrix}</math></center>
 +
<br>
    
Thus, <math>\alpha_0 = \beta_{15}\!</math> is a totally indiscriminate measure, one that accepts all propositions <math>f : \mathbb{B}^2 \to \mathbb{B},</math> whereas <math>\alpha_{15}\!</math> and <math>\beta_0\!</math> are measures that value the constant propositions <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> and <math>0 : \mathbb{B}^2 \to \mathbb{B},</math> respectively, above all others.
 
Thus, <math>\alpha_0 = \beta_{15}\!</math> is a totally indiscriminate measure, one that accepts all propositions <math>f : \mathbb{B}^2 \to \mathbb{B},</math> whereas <math>\alpha_{15}\!</math> and <math>\beta_0\!</math> are measures that value the constant propositions <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> and <math>0 : \mathbb{B}^2 \to \mathbb{B},</math> respectively, above all others.
Line 1,310: Line 1,315:  
Finally, in conformity with the use of the fiber notation to indicate sets of models, it is natural to use notations like:
 
Finally, in conformity with the use of the fiber notation to indicate sets of models, it is natural to use notations like:
   −
: <math>[| \alpha_i |] = (\alpha_i)^{-1}(1),\!</math>
+
{| align="center" cellpadding="8"
 
+
| <math>[| \alpha_i |]\!</math>
: <math>[| \beta_i |] = (\beta_i)^{-1}(1),\!</math>
+
| <math>=\!</math>
 
+
| <math>(\alpha_i)^{-1}(1),\!</math>
: <math>[| \Upsilon_p |] = (\Upsilon_p)^{-1}(1),\!</math>
+
|-
 +
| <math>[| \beta_i |]\!</math>
 +
| <math>=\!</math>
 +
| <math>(\beta_i)^{-1}(1),\!</math>
 +
|-
 +
| <math>[| \Upsilon_p |]\!</math>
 +
| <math>=\!</math>
 +
| <math>(\Upsilon_p)^{-1}(1),\!</math>
 +
|}
    
to denote sets of propositions that satisfy the umpires in question.
 
to denote sets of propositions that satisfy the umpires in question.
12,080

edits