| Line 429: |
Line 429: |
| | ==Functional Quantifiers== | | ==Functional Quantifiers== |
| | | | |
| − | The ''umpire measure'' of type <math>\Upsilon : (\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}</math> takes a single proposition of type <math>\mathbb{B}^2 \to \mathbb{B}</math> as argument, giving the constant proposition <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> a value of 1 and everything else a value of 0. Expressed in symbolic form: | + | The '''umpire measure''' of type <math>\Upsilon : (\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}</math> takes a single proposition of type <math>\mathbb{B}^2 \to \mathbb{B}</math> as argument, giving the constant proposition <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> a value of 1 and everything else a value of 0. Expressed in symbolic form: |
| | | | |
| | {| align="center" cellpadding="8" | | {| align="center" cellpadding="8" |
| Line 435: |
Line 435: |
| | |} | | |} |
| | | | |
| − | The ''umpire operator'' of type <math>\Upsilon : (\mathbb{B}^2 \to \mathbb{B})^2 \to \mathbb{B}</math> takes two propositions of type <math>\mathbb{B}^2 \to \mathbb{B}</math> as arguments, giving pairs in which the first implies the second a value of 1 and everything else a value of 0. Expressed in symbolic form: | + | The '''umpire operator''' of type <math>\Upsilon : (\mathbb{B}^2 \to \mathbb{B})^2 \to \mathbb{B}</math> takes two propositions of type <math>\mathbb{B}^2 \to \mathbb{B}</math> as arguments, giving pairs in which the first implies the second a value of 1 and everything else a value of 0. Expressed in symbolic form: |
| | | | |
| | {| align="center" cellpadding="8" | | {| align="center" cellpadding="8" |
| Line 443: |
Line 443: |
| | ===Tables=== | | ===Tables=== |
| | | | |
| − | The auxiliary notations:
| + | Define two families of measures: |
| | | | |
| − | : <math>\alpha_i f = \Upsilon \langle f_i, f \rangle = \Upsilon \langle f_i \Rightarrow f \rangle</math>
| + | {| align="center" cellpadding="8" |
| | + | | <math>\alpha_i, \beta_i : (\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}, i = 1 \ldots 15,</math> |
| | + | |} |
| | | | |
| − | : <math>\beta_i f = \Upsilon \langle f, f_i \rangle = \Upsilon \langle f \Rightarrow f_i \rangle</math> | + | by means of the following formulas: |
| | | | |
| − | define two series of measures:
| + | {| align="center" cellpadding="8" |
| | + | | <math>\alpha_i f = \Upsilon \langle f_i, f \rangle = \Upsilon \langle f_i \Rightarrow f \rangle,</math> |
| | + | |- |
| | + | | <math>\beta_i f = \Upsilon \langle f, f_i \rangle = \Upsilon \langle f \Rightarrow f_i \rangle.</math> |
| | + | |} |
| | | | |
| − | : <math>\alpha_i, \beta_i : (\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B},</math>
| + | The values of the sixteen <math>\alpha_i\!</math> on each of the sixteen boolean functions <math>f : \mathbb{B}^2 \to \mathbb{B}</math> are shown in Table 1. |
| − | | |
| − | incidentally providing compact names for the column headings of the next two Tables.
| |
| | | | |
| | {| align="center" border="1" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | | {| align="center" border="1" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| Line 542: |
Line 546: |
| | | 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 | | | 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 |
| | |}<br> | | |}<br> |
| | + | |
| | + | The values of the sixteen <math>\beta_i\!</math> on each of the sixteen boolean functions <math>f : \mathbb{B}^2 \to \mathbb{B}</math> are shown in Table 2. |
| | | | |
| | {| align="center" border="1" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | | {| align="center" border="1" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |