Line 176: |
Line 176: |
| | | |
| \section{Formal development} | | \section{Formal development} |
| + | |
| + | Table 4 |
| | | |
| \begin{center}\begin{tabular}{|l|l|l|l|} | | \begin{center}\begin{tabular}{|l|l|l|l|} |
Line 184: |
Line 186: |
| $\mathcal{A}$ & $\{ a_1, \ldots, a_n \}$ & Alphabet & $[n] = \mathbf{n}$ \\ | | $\mathcal{A}$ & $\{ a_1, \ldots, a_n \}$ & Alphabet & $[n] = \mathbf{n}$ \\ |
| \hline | | \hline |
− | $A_i$ & $\{ (a_i), a_i \}$ & Dimension $i$ & $\mathbb{B}$ \\ | + | $A_i$ & $\{ \overline{a_i}, a_i \}$ & Dimension $i$ & $\mathbb{B}$ \\ |
| \hline | | \hline |
| $A$ & $\langle \mathcal{A} \rangle$ & Set of cells, & $\mathbb{B}^n$ \\ | | $A$ & $\langle \mathcal{A} \rangle$ & Set of cells, & $\mathbb{B}^n$ \\ |
Line 206: |
Line 208: |
| & $(A, (A \to \mathbb{B}))$ & & \\ | | & $(A, (A \to \mathbb{B}))$ & & \\ |
| & $[ a_1, \ldots, a_n ]$ & & \\ | | & $[ a_1, \ldots, a_n ]$ & & \\ |
| + | \hline |
| + | \end{tabular}\end{center} |
| + | |
| + | Table 5 |
| + | |
| + | \begin{center}\begin{tabular}{|l|l|l|l|} |
| + | \multicolumn{4}{c}{\textbf{Table 5. Differential Extension : Basic Notation}} \\ |
| + | \hline |
| + | |
| + | \textbf{Symbol} & |
| + | \textbf{Notation} & |
| + | \textbf{Description} & |
| + | \textbf{Type} \\ |
| + | \hline |
| + | |
| + | $\operatorname{d}\mathcal{A}$ & |
| + | $\{ \operatorname{d}a_1, \ldots, \operatorname{d}a_n \}$ & |
| + | Alphabet of differential features & |
| + | $[n] = \mathbf{n}$ \\ |
| + | \hline |
| + | |
| + | $\operatorname{d}A_i$ & |
| + | $\{ \overline{\operatorname{d}a_i}, \operatorname{d}a_i \}$ & |
| + | Differential dimension $i$ & |
| + | $\mathbb{D}$ \\ |
| + | \hline |
| + | |
| + | $\operatorname{d}A$ & |
| + | $\langle \operatorname{d}\mathcal{A} \rangle$ & |
| + | Tangent space at a point: & |
| + | $\mathbb{D}^n$ |
| + | \\ |
| + | & |
| + | $\langle \operatorname{d}a_1, \ldots, \operatorname{d}a_n \rangle$ & |
| + | Set of changes, & |
| + | \\ |
| + | & |
| + | $\{ (\operatorname{d}a_1, \ldots, \operatorname{d}a_n) \}$ & |
| + | motions, steps, & |
| + | \\ |
| + | & |
| + | $\operatorname{d}A_1 \times \ldots \times \operatorname{d}A_n$ & |
| + | tangent vectors & |
| + | \\ |
| + | & |
| + | $\textstyle \prod_{i=1}^n \operatorname{d}A_i$ & |
| + | at a point & |
| + | \\ |
| + | \hline |
| + | |
| + | $\operatorname{d}A^*$ & |
| + | $(\operatorname{hom} : \operatorname{d}A \to \mathbb{B})$ & |
| + | Linear functions on $\operatorname{d}A$ & |
| + | $(\mathbb{D}^n)^* \cong \mathbb{D}^n$ \\ |
| + | \hline |
| + | |
| + | $\operatorname{d}A^\uparrow$ & |
| + | $(\operatorname{d}A \to \mathbb{B})$ & |
| + | Boolean functions on $\operatorname{d}A$ & |
| + | $\mathbb{D}^n \to \mathbb{B}$ \\ |
| + | \hline |
| + | |
| + | $\operatorname{d}A^\circ$ & |
| + | $[ \operatorname{d}\mathcal{A} ]$ & |
| + | Tangent universe & |
| + | $(\mathbb{D}^n, (\mathbb{D}^n \to \mathbb{B}))$ |
| + | \\ |
| + | & |
| + | $(\operatorname{d}A, \operatorname{d}A^\uparrow)$ & |
| + | at a point of $A^\circ,$ & |
| + | $(\mathbb{D}^n\ +\!\to \mathbb{B})$ |
| + | \\ |
| + | & |
| + | $(\operatorname{d}A\ +\!\to \mathbb{B})$ & |
| + | based on the & |
| + | $[\mathbb{D}^n]$ |
| + | \\ |
| + | & |
| + | $(\operatorname{d}A, (\operatorname{d}A \to \mathbb{B}))$ & |
| + | tangent features & |
| + | \\ |
| + | & |
| + | $[ \operatorname{d}a_1, \ldots, \operatorname{d}a_n ]$ & |
| + | $\{ \operatorname{d}a_1, \ldots, \operatorname{d}a_n \}$ & |
| + | \\ |
| \hline | | \hline |
| \end{tabular}\end{center} | | \end{tabular}\end{center} |