Difference between revisions of "Directory talk:Jon Awbrey/Papers/Inquiry Driven Systems : Part 6"

MyWikiBiz, Author Your Legacy — Thursday November 28, 2024
Jump to navigationJump to search
(→‎6.33. Sign Relational Complexes: move fragments to talk page)
Line 6,617: Line 6,617:
  
 
==Current Work==
 
==Current Work==
 +
 +
<br>
 +
 +
<pre>
 +
Table 69.1  Sign Relation of Interpreter A
 +
Object Sign Interpretant
 +
A "A" "A"
 +
A "A" "i"
 +
A "i" "A"
 +
A "i" "i"
 +
B "B" "B"
 +
B "B" "u"
 +
B "u" "B"
 +
B "u" "u"
 +
</pre>
 +
 +
<br>
 +
 +
<pre>
 +
Table 69.2  Dyadic Projection AOS
 +
Object Sign
 +
A "A"
 +
A "i"
 +
B "B"
 +
B "u"
 +
</pre>
 +
 +
<br>
 +
 +
<pre>
 +
Table 69.3  Dyadic Projection AOI
 +
Object Interpretant
 +
A "A"
 +
A "i"
 +
B "B"
 +
B "u"
 +
</pre>
 +
 +
<br>
 +
 +
<pre>
 +
Table 69.4  Dyadic Projection ASI
 +
Sign Interpretant
 +
"A" "A"
 +
"A" "i"
 +
"i" "A"
 +
"i" "i"
 +
"B" "B"
 +
"B" "u"
 +
"u" "B"
 +
"u" "u"
 +
</pre>
 +
 +
<br>
 +
 +
<pre>
 +
Table 70.1  Sign Relation of Interpreter B
 +
Object Sign Interpretant
 +
A "A" "A"
 +
A "A" "u"
 +
A "u" "A"
 +
A "u" "u"
 +
B "B" "B"
 +
B "B" "i"
 +
B "i" "B"
 +
B "i" "i"
 +
</pre>
 +
 +
<br>
 +
 +
<pre>
 +
Table 70.2  Dyadic Projection BOS
 +
Object Sign
 +
A "A"
 +
A "u"
 +
B "B"
 +
B "i"
 +
</pre>
 +
 +
<br>
 +
 +
<pre>
 +
Table 70.3  Dyadic Projection BOI
 +
Object Interpretant
 +
A "A"
 +
A "u"
 +
B "B"
 +
B "i"
 +
</pre>
 +
 +
<br>
 +
 +
<pre>
 +
Table 70.4  Dyadic Projection BSI
 +
Sign Interpretant
 +
"A" "A"
 +
"A" "u"
 +
"u" "A"
 +
"u" "u"
 +
"B" "B"
 +
"B" "i"
 +
"i" "B"
 +
"i" "i"
 +
</pre>
  
 
<br>
 
<br>

Revision as of 22:33, 20 November 2012

Discussion

Fragments

6.19. Examples of Self-Reference

In previous work I developed a version of propositional calculus based on C.S. Peirce's existential graphs and implemented this calculus in computational form as a sentential calculus interpreter. Taking this calculus as a point of departure, I devised a theory of differential extensions for propositional domains that can be used, figuratively speaking, to put universes of discourse “in motion”, in other words, to provide qualitative descriptions of processes taking place in logical spaces. See (Awbrey, 1989 and 1994) for an account of this calculus, documentation of its computer program, and a detailed treatment of differential extensions.

In previous work (Awbrey, 1989) I described a system of notation for propositional calculus based on C.S. Peirce's existential graphs, documented a computer implementation of this formalism, and showed how to provide this calculus with a differential extension that can be used to describe changing universes of discourse. In subsequent work (Awbrey, 1994) the resulting system of differential logic was applied to give qualitative descriptions of change in discrete dynamical systems. This section draws on that earlier work, summarizing the conceptions that are needed to give logical representations of sign relations and recording a few changes of a minor nature in the typographical conventions used.

Abstractly, a domain of propositions is known by the axioms it satisfies. Concretely, one thinks of a proposition as applying to the objects it is true of.

Logically, a domain of properties or propositions is known by the axioms it is subject to. Concretely, a property or proposition is known by the things or situations it is true of. Typically, the signs of properties and propositions are called terms and sentences, respectively.

6.23. Intensional Representations of Sign Relations

In the formalized examples of IRs to be presented in this work, I will keep to the level of logical reasoning that is usually referred to as propositional calculus or sentential logic.

The contrast between ERs and IRs is strongly correlated with another dimension of interest in the study of inquiry, namely, the tension between empirical and rational modes of inquiry.

This section begins the explicit discussion of ERs by taking a second look at the sign relations \(L(\text{A})\!\) and \(L(\text{B}).\!\) Since the form of these examples no longer presents any novelty, this second presentation of \(L(\text{A})\!\) and \(L(\text{B})\!\) provides a first opportunity to introduce some new material. In the process of reviewing this material, it is useful to anticipate a number of incidental issues that are on the point of becoming critical, and to begin introducing the generic types of technical devices that are needed to deal with them.

Therefore, the easiest way to begin an explicit treatment of ERs is by recollecting the Tables of the sign relations \(L(\text{A})\!\) and \(L(\text{B})\!\) and by finishing the corresponding Tables of their dyadic components. Since the form of the sign relations \(L(\text{A})\!\) and \(L(\text{B})\!\) no longer presents any novelty, I can use the second presentation of these examples as a first opportunity to examine a selection of their finer points, previously overlooked.

Starting from this standpoint, the easiest way to begin developing an explicit treatment of ERs is to gather the relevant materials in the forms already presented, to fill out their missing details and expand the abbreviated contents of these forms, and to review their full structures in a more formal light.

Because of the perfect parallelism that the literal coding contrives between individual signs and grammatical categories, this arrangement illustrates not so much a code transformation as a re-interpretation of the original signs under different headings.

6.33. Sign Relational Complexes

I would like to record here, in what is topically the appropriate place, notice of a number of open questions that will have to be addressed if anyone desires to make a consistent calculus out of this link notation. Perhaps it is only because the franker forms of liaison involved in the couple \(a \widehat{~} b\!\) are more subject to the vagaries of syntactic elision than the corresponding bindings of the anglish ligature \((a, b),\!\) but for some reason or other the circumflex character of these diacritical notices are much more liable to suggest various forms of elaboration, including higher order generalizations and information-theoretic partializations of the very idea of \(n\!\)-tuples and sequences.

One way to deal with the problems of partial information …

Relational Complex?

\(L ~=~ L^{(1)} \cup \ldots \cup L^{(k)}\!\)

Sign Relational Complex?

\(L ~=~ L^{(1)} \cup L^{(2)} \cup L^{(3)}\!\)

Linkages can be chained together to form sequences of indications or \(n\!\)-tuples, without worrying too much about the order of collecting terms in the corresponding angle brackets.

\(\begin{matrix} a \widehat{~} b \widehat{~} c & = & (a, b, c) & = & (a, (b, c)) & = & ((a, b), c). \end{matrix}\)

These equivalences depend on the existence of natural isomorphisms between different ways of constructing \(n\!\)-place product spaces, that is, on the associativity of pairwise products, a not altogether trivial result (Mac Lane, CatWorkMath, ch. 7).

Higher Order Indications (HOIs)?

\(\begin{matrix} \widehat{~} x & = & (~, x) & ? \\[4pt] x \widehat{~} & = & (x, ~) & ? \\[4pt] \widehat{~}~\widehat{~} x & = & (~, (~, x)) & ? \\[4pt] x \widehat{~}~\widehat{~} & = & ((x, ~), ~) & ? \end{matrix}\)

In talking about properties and classes of relations, one would like to refer to all relations as forming a topic of potential discussion, and then take it as a background for contemplating …

In talking and thinking, often in just that order, about properties and classes of relations, one is always invoking, explicitly or implicitly, a particular background, a limited field of experience, actual or potential, against which each object of discussion and thought figures. Expressing the matter in the idiom of logical inquiry, one brings to mind a preconceived universe of discourse \(U\!\) or a restricted domain of discussion \(X,\!\) and then contemplates …

This direction of generalization expands the scope of PIRs by means of an analogical extension, and can be charted in the following manner. If the name of a relation can be taken as a PIR to elementary relations, that is, if the formula of an \(n\!\)-place relation can be interpreted as a proposition about \(n\!\)-tuples, then a PIR to relations themselves can be formulated as a proposition about relations and thus as a HOPE about elementary relations or \(n\!\)-tuples.

One way to extend the generic brand of partiality among relations in a non-trivial direction can be charted as follows. If the name or formula of a relation is a PIR to elementary relations, that is, if a sign or expression of an \(n\!\)-place relation is interpreted as a proposition about \(n\!\)-tuples, then a PIR to relations …

Scrap Area

Edit Buffer

When it comes to the subject of systems theory, a particular POV is so widely propagated that it might as well be regarded as the established, received, or traditional POV. The POV in question says that there are dynamic systems and symbolic systems, and never the twain shall meet. I naturally intend to challenge this assumption, preferring to suggest that dynamic …

Table Scraps

Table 37.1  Sign Relational Schema C
	Object	Sign	Interpretant
	x	"x"	"x"
	"x"	"x"	"x"
Table 37.2  Sign Relational Schema D
	Object	Sign	Interpretant
	x	"x"	"x"
Table 37.3  Sign Relational Schema E
	Object	Sign	Interpretant
	"x"	"x"	"x"
Table 37.4  Sign Relational Schema D'
	Object	Sign	Interpretant
	x	"x"	"x"
	x	"x"	<x>
	x	<x>	"x"
	x	<x>	<x>

Work Area

Alternate Text

A semigroup consists of a nonempty set with an associative LOC on it. On formal occasions, a semigroup is introduced by means a formula like \(X = (X, *),\!\) interpreted to mean that a semigroup \(X\!\) is specified by giving two pieces of data, a nonempty set that conventionally, if somewhat ambiguously, goes under the same name \({}^{\backprime\backprime} X {}^{\prime\prime},\!\) plus an associative binary operation denoted by \({}^{\backprime\backprime} * {}^{\prime\prime}.\!\) In contexts where there is only one semigroup being discussed, or where the additional structure is otherwise understood, it is common practice to call the semigroup by the name of the underlying set. In contexts where more than one semigroup is formed on the same set, one may use notations like \(X_i = (X, *_i)\!\) to distinguish them.

Additive Presentation

Version 1

The \(n^\text{th}\!\) multiple of an element \(x\!\) in a semigroup \(\underline{X} = (X, +, 0),\!\) for integer \(n > 0,\!\) is notated as \(nx\!\) and defined as follows. Proceeding recursively, for \(n = 1,\!\) let \(1x = x,\!\) and for \(n > 1,\!\) let \(nx = (n-1)x + x.\!\)
The \(n^\text{th}\!\) multiple of \(x\!\) in a monoid \(\underline{X} = (X, +, 0),\!\) for integer \(n \ge 0,\!\) is defined the same way for \(n > 0,\!\) letting \(0x = 0\!\) when \(n = 0.\!\)
The \(n^\text{th}\!\) multiple of \(x\!\) in a group \(\underline{X} = (X, +, 0),\!\) for any integer \(n,\!\) is defined the same way for \(n \ge 0,\!\) letting \(nx = (-n)(-x)\!\) for \(n < 0.\!\)

Version 2

In a semigroup written additively, the \(n^\text{th}\!\) multiple of an element \(x\!\) is notated as \(nx\!\) and defined for every positive integer \(n\!\) in the following manner. Proceeding recursively, let \(1x = x\!\) and let \(nx = (n-1)x + x\!\) for all \(n > 1.\!\)
In a monoid written additively, the multiple \(nx\!\) is defined for every non-negative integer \(n\!\) by letting \(0x = 0\!\) and proceeding the same way for \(n > 0.\!\)
In a group written additively, the multiple \(nx\!\) is defined for every integer \(n\!\) by letting \(nx = (-n)(-x)\!\) for \(n < 0\!\) and proceeding the same way for \(n \ge 0.\!\)

Set Displays


\(\begin{smallmatrix} \text{A} & = & \{ & (\text{A}, {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{A} {}^{\prime\prime}), & \ldots, & (\text{A}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}) & , & (\text{B}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}), & \ldots, & (\text{B}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime}) & \} \\[10pt] \text{B} & = & \{ & (\text{A}, {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{A} {}^{\prime\prime}), & \ldots, & (\text{A}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime}) & , & (\text{B}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}), & \ldots, & (\text{B}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}) & \} \end{smallmatrix}\)


\(\begin{array}{lllllll} \text{A} & = & \{ & (\text{A}, {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{A} {}^{\prime\prime}), & \ldots, & (\text{A}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}), & \\ & & & (\text{B}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}), & \ldots, & (\text{B}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime}) & \} \\[10pt] \text{B} & = & \{ & (\text{A}, {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{A} {}^{\prime\prime}), & \ldots, & (\text{A}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime}), & \\ & & & (\text{B}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}), & \ldots, & (\text{B}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}) & \} \end{array}\)


\(\begin{array}{*{15}{c}} W & = & \{ & \text{A} & , & \text{B} & , & {}^{\backprime\backprime} \text{A} {}^{\prime\prime} & , & {}^{\backprime\backprime} \text{B} {}^{\prime\prime} & , & {}^{\backprime\backprime} \text{i} {}^{\prime\prime} & , & {}^{\backprime\backprime} \text{u} {}^{\prime\prime} & \} \\ & = & \{ & w_1 & , & w_2 & , & w_3 & , & w_4 & , & w_5 & , & w_6 & \} \end{array}\)


Relations In General

Next let's re-examine the numerical incidence properties of relations, concentrating on the definitions of the assorted regularity conditions.

For example, \(L\!\) is said to be \(^{\backprime\backprime} c\text{-regular at}~ j \, ^{\prime\prime}\) if and only if the cardinality of the local flag \(L_{x \,\text{at}\, j}\) is equal to \(c\!\) for all \(x \in X_j,\) coded in symbols, if and only if \(|L_{x \,\text{at}\, j}| = c\) for all \(x \in X_j.\)

In a similar fashion, it is possible to define the numerical incidence properties \(^{\backprime\backprime}(< c)\text{-regular at}~ j \, ^{\prime\prime},\) \(^{\backprime\backprime}(> c)\text{-regular at}~ j \, ^{\prime\prime},\) and so on. For ease of reference, a few of these definitions are recorded below.

\(\begin{array}{lll} L ~\text{is}~ c\text{-regular at}~ j & \iff & |L_{x \,\text{at}\, j}| = c ~\text{for all}~ x \in X_j. \\[6pt] L ~\text{is}~ (< c)\text{-regular at}~ j & \iff & |L_{x \,\text{at}\, j}| < c ~\text{for all}~ x \in X_j. \\[6pt] L ~\text{is}~ (> c)\text{-regular at}~ j & \iff & |L_{x \,\text{at}\, j}| > c ~\text{for all}~ x \in X_j. \\[6pt] L ~\text{is}~ (\le c)\text{-regular at}~ j & \iff & |L_{x \,\text{at}\, j}| \le c ~\text{for all}~ x \in X_j. \\[6pt] L ~\text{is}~ (\ge c)\text{-regular at}~ j & \iff & |L_{x \,\text{at}\, j}| \ge c ~\text{for all}~ x \in X_j. \end{array}\)

Clearly, if any relation is \((\le c)\text{-regular}\) on one of its domains \(X_j\!\) and also \((\ge c)\text{-regular}\) on the same domain, then it must be \((= c)\text{-regular}\!\) on that domain, in effect, \(c\text{-regular}\!\) at \(j.\!\)

Among the variety of conceivable regularities affecting 2-adic relations, we pay special attention to the \(c\!\)-regularity conditions where \(c\!\) is equal to 1.

Let \(L \subseteq X \times Y\!\) be an arbitrary 2-adic relation. The following properties of \(L\!\) can then be defined:

\(\begin{array}{lll} L ~\text{is total at}~ X & \iff & L ~\text{is}~ (\ge 1)\text{-regular}~ \text{at}~ X. \\[6pt] L ~\text{is total at}~ Y & \iff & L ~\text{is}~ (\ge 1)\text{-regular}~ \text{at}~ Y. \\[6pt] L ~\text{is tubular at}~ X & \iff & L ~\text{is}~ (\le 1)\text{-regular}~ \text{at}~ X. \\[6pt] L ~\text{is tubular at}~ Y & \iff & L ~\text{is}~ (\le 1)\text{-regular}~ \text{at}~ Y. \end{array}\)

We have already looked at 2-adic relations that separately exemplify each of these regularities. We also introduced a few bits of additional terminology and special-purpose notations for working with tubular relations.

If \(L\!\) is tubular at \(X,\!\) then \(L\!\) is known as a partial function or a prefunction from \(X\!\) to \(Y,\!\) indicated by writing \(L : X \rightharpoonup Y.\!\) We have the following definitions and notations.

\(\begin{array}{lll} L ~\text{is a prefunction}~ L : X \rightharpoonup Y & \iff & L ~\text{is tubular at}~ X. \\[6pt] L ~\text{is a prefunction}~ L : X \leftharpoonup Y & \iff & L ~\text{is tubular at}~ Y. \end{array}\)

We arrive by way of this winding stair at the special stamps of 2-adic relations \(L \subseteq X \times Y\!\) that are variously described as 1-regular, total and tubular, or total prefunctions on specified domains, either \(X\!\) or \(Y\!\) or both, and that are more often celebrated as functions on those domains.

If \(L\!\) is a prefunction \(L : X \rightharpoonup Y\!\) that happens to be total at \(X,\!\) then \(L\!\) is known as a function from \(X\!\) to \(Y,\!\) indicated by writing \(L : X \to Y.\!\) To say that a relation \(L \subseteq X \times Y\!\) is totally tubular at \(X\!\) is to say that \(L\!\) is 1-regular at \(X.\!\) Thus, we may formalize the following definitions.

\(\begin{array}{lll} L ~\text{is a function}~ L : X \to Y & \iff & L ~\text{is}~ 1\text{-regular at}~ X. \\[6pt] L ~\text{is a function}~ L : X \leftarrow Y & \iff & L ~\text{is}~ 1\text{-regular at}~ Y. \end{array}\)

In the case of a 2-adic relation \(L \subseteq X \times Y\!\) that has the qualifications of a function \(f : X \to Y,\!\) there are a number of further differentia that arise.

\(\begin{array}{lll} f ~\text{is surjective} & \iff & f ~\text{is total at}~ Y. \\[6pt] f ~\text{is injective} & \iff & f ~\text{is tubular at}~ Y. \\[6pt] f ~\text{is bijective} & \iff & f ~\text{is}~ 1\text{-regular at}~ Y. \end{array}\)

Table Work

Group Operations


\(\text{Table 32.1}~~\text{Scheme of a Group Operation Table}\)
\(*\!\) \(x_0\!\) \(\cdots\!\) \(x_j\!\) \(\cdots\!\)
\(x_0\!\) \(x_0 * x_0\!\) \(\cdots\!\) \(x_0 * x_j\!\) \(\cdots\!\)
\(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\)
\(x_i\!\) \(x_i * x_0\!\) \(\cdots\!\) \(x_i * x_j\!\) \(\cdots\!\)
\(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\)


\(\text{Table 32.2}~~\text{Scheme of the Regular Ante-Representation}\)
\(\text{Element}\!\) \(\text{Function as Set of Ordered Pairs of Elements}\!\)
\(x_0\!\) \(\{\!\) \((x_0 ~,~ x_0 * x_0),\!\) \(\cdots\!\) \((x_j ~,~ x_0 * x_j),\!\) \(\cdots\!\) \(\}\!\)
\(\cdots\!\) \(\{\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\}\!\)
\(x_i\!\) \(\{\!\) \((x_0 ~,~ x_i * x_0),\!\) \(\cdots\!\) \((x_j ~,~ x_i * x_j),\!\) \(\cdots\!\) \(\}\!\)
\(\cdots\!\) \(\{\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\}\!\)


\(\text{Table 32.3}~~\text{Scheme of the Regular Post-Representation}\)
\(\text{Element}\!\) \(\text{Function as Set of Ordered Pairs of Elements}\!\)
\(x_0\!\) \(\{\!\) \((x_0 ~,~ x_0 * x_0),\!\) \(\cdots\!\) \((x_j ~,~ x_j * x_0),\!\) \(\cdots\!\) \(\}\!\)
\(\cdots\!\) \(\{\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\}\!\)
\(x_i\!\) \(\{\!\) \((x_0 ~,~ x_0 * x_i),\!\) \(\cdots\!\) \((x_j ~,~ x_j * x_i),\!\) \(\cdots\!\) \(\}\!\)
\(\cdots\!\) \(\{\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\}\!\)


\(\text{Table 33.1}~~\text{Multiplication Operation of the Group}~V_4\)
\(\cdot\!\) \(\operatorname{e}\) \(\operatorname{f}\) \(\operatorname{g}\) \(\operatorname{h}\)
\(\operatorname{e}\) \(\operatorname{e}\) \(\operatorname{f}\) \(\operatorname{g}\) \(\operatorname{h}\)
\(\operatorname{f}\) \(\operatorname{f}\) \(\operatorname{e}\) \(\operatorname{h}\) \(\operatorname{g}\)
\(\operatorname{g}\) \(\operatorname{g}\) \(\operatorname{h}\) \(\operatorname{e}\) \(\operatorname{f}\)
\(\operatorname{h}\) \(\operatorname{h}\) \(\operatorname{g}\) \(\operatorname{f}\) \(\operatorname{e}\)


\(\text{Table 33.2}~~\text{Regular Representation of the Group}~V_4\)
\(\text{Element}\!\) \(\text{Function as Set of Ordered Pairs of Elements}\!\)
\(\operatorname{e}\) \(\{\!\) \((\operatorname{e}, \operatorname{e}),\) \((\operatorname{f}, \operatorname{f}),\) \((\operatorname{g}, \operatorname{g}),\) \((\operatorname{h}, \operatorname{h})\) \(\}\!\)
\(\operatorname{f}\) \(\{\!\) \((\operatorname{e}, \operatorname{f}),\) \((\operatorname{f}, \operatorname{e}),\) \((\operatorname{g}, \operatorname{h}),\) \((\operatorname{h}, \operatorname{g})\) \(\}\!\)
\(\operatorname{g}\) \(\{\!\) \((\operatorname{e}, \operatorname{g}),\) \((\operatorname{f}, \operatorname{h}),\) \((\operatorname{g}, \operatorname{e}),\) \((\operatorname{h}, \operatorname{f})\) \(\}\!\)
\(\operatorname{h}\) \(\{\!\) \((\operatorname{e}, \operatorname{h}),\) \((\operatorname{f}, \operatorname{g}),\) \((\operatorname{g}, \operatorname{f}),\) \((\operatorname{h}, \operatorname{e})\) \(\}\!\)


\(\text{Table 33.3}~~\text{Regular Representation of the Group}~V_4\)
\(\text{Element}\!\) \(\text{Function as Set of Ordered Pairs of Symbols}\!\)
\(\operatorname{e}\) \(\{\!\) \(({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime})\) \(\}\!\)
\(\operatorname{f}\) \(\{\!\) \(({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime})\) \(\}\!\)
\(\operatorname{g}\) \(\{\!\) \(({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime})\) \(\}\!\)
\(\operatorname{h}\) \(\{\!\) \(({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime})\) \(\}\!\)


\(\text{Table 34.1}~~\text{Multiplicative Presentation of the Group}~Z_4(\cdot)\)
\(\cdot\!\) \(\operatorname{1}\) \(\operatorname{a}\) \(\operatorname{b}\) \(\operatorname{c}\)
\(\operatorname{1}\) \(\operatorname{1}\) \(\operatorname{a}\) \(\operatorname{b}\) \(\operatorname{c}\)
\(\operatorname{a}\) \(\operatorname{a}\) \(\operatorname{b}\) \(\operatorname{c}\) \(\operatorname{1}\)
\(\operatorname{b}\) \(\operatorname{b}\) \(\operatorname{c}\) \(\operatorname{1}\) \(\operatorname{a}\)
\(\operatorname{c}\) \(\operatorname{c}\) \(\operatorname{1}\) \(\operatorname{a}\) \(\operatorname{b}\)


\(\text{Table 34.2}~~\text{Regular Representation of the Group}~Z_4(\cdot)\)
\(\text{Element}\!\) \(\text{Function as Set of Ordered Pairs of Elements}\!\)
\(\operatorname{1}\) \(\{\!\) \((\operatorname{1}, \operatorname{1}),\) \((\operatorname{a}, \operatorname{a}),\) \((\operatorname{b}, \operatorname{b}),\) \((\operatorname{c}, \operatorname{c})\) \(\}\!\)
\(\operatorname{a}\) \(\{\!\) \((\operatorname{1}, \operatorname{a}),\) \((\operatorname{a}, \operatorname{b}),\) \((\operatorname{b}, \operatorname{c}),\) \((\operatorname{c}, \operatorname{1})\) \(\}\!\)
\(\operatorname{b}\) \(\{\!\) \((\operatorname{1}, \operatorname{b}),\) \((\operatorname{a}, \operatorname{c}),\) \((\operatorname{b}, \operatorname{1}),\) \((\operatorname{c}, \operatorname{a})\) \(\}\!\)
\(\operatorname{c}\) \(\{\!\) \((\operatorname{1}, \operatorname{c}),\) \((\operatorname{a}, \operatorname{1}),\) \((\operatorname{b}, \operatorname{a}),\) \((\operatorname{c}, \operatorname{b})\) \(\}\!\)


\(\text{Table 35.1}~~\text{Additive Presentation of the Group}~Z_4(+)\)
\(+\!\) \(\operatorname{0}\) \(\operatorname{1}\) \(\operatorname{2}\) \(\operatorname{3}\)
\(\operatorname{0}\) \(\operatorname{0}\) \(\operatorname{1}\) \(\operatorname{2}\) \(\operatorname{3}\)
\(\operatorname{1}\) \(\operatorname{1}\) \(\operatorname{2}\) \(\operatorname{3}\) \(\operatorname{0}\)
\(\operatorname{2}\) \(\operatorname{2}\) \(\operatorname{3}\) \(\operatorname{0}\) \(\operatorname{1}\)
\(\operatorname{3}\) \(\operatorname{3}\) \(\operatorname{0}\) \(\operatorname{1}\) \(\operatorname{2}\)


\(\text{Table 35.2}~~\text{Regular Representation of the Group}~Z_4(+)\)
\(\text{Element}\!\) \(\text{Function as Set of Ordered Pairs of Elements}\!\)
\(\operatorname{0}\) \(\{\!\) \((\operatorname{0}, \operatorname{0}),\) \((\operatorname{1}, \operatorname{1}),\) \((\operatorname{2}, \operatorname{2}),\) \((\operatorname{3}, \operatorname{3})\) \(\}\!\)
\(\operatorname{1}\) \(\{\!\) \((\operatorname{0}, \operatorname{1}),\) \((\operatorname{1}, \operatorname{2}),\) \((\operatorname{2}, \operatorname{3}),\) \((\operatorname{3}, \operatorname{0})\) \(\}\!\)
\(\operatorname{2}\) \(\{\!\) \((\operatorname{0}, \operatorname{2}),\) \((\operatorname{1}, \operatorname{3}),\) \((\operatorname{2}, \operatorname{0}),\) \((\operatorname{3}, \operatorname{1})\) \(\}\!\)
\(\operatorname{3}\) \(\{\!\) \((\operatorname{0}, \operatorname{3}),\) \((\operatorname{1}, \operatorname{0}),\) \((\operatorname{2}, \operatorname{1}),\) \((\operatorname{3}, \operatorname{2})\) \(\}\!\)


Sign Relations


\(\text{Table 1.} ~~ \text{Sign Relation of Interpreter A}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)


\(\text{Table 2.} ~~ \text{Sign Relation of Interpreter B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)


\(\text{Table 36.} ~~ \text{Semantics for Higher Order Signs}\!\)
\(\text{Object Denoted}\!\) \(\text{Equivalent Signs}\!\)

\(\begin{matrix} \text{A} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} & = & {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\langle} \text{B} {}^{\rangle} & = & {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\langle\langle} \text{A} {}^{\rangle\rangle} & = & {}^{\langle\backprime\backprime} \text{A} {}^{\prime\prime\rangle} & = & {}^{\backprime\backprime\langle} \text{A} {}^{\rangle\prime\prime} \\ {}^{\langle\langle} \text{B} {}^{\rangle\rangle} & = & {}^{\langle\backprime\backprime} \text{B} {}^{\prime\prime\rangle} & = & {}^{\backprime\backprime\langle} \text{B} {}^{\rangle\prime\prime} \\ {}^{\langle\langle} \text{i} {}^{\rangle\rangle} & = & {}^{\langle\backprime\backprime} \text{i} {}^{\prime\prime\rangle} & = & {}^{\backprime\backprime\langle} \text{i} {}^{\rangle\prime\prime} \\ {}^{\langle\langle} \text{u} {}^{\rangle\rangle} & = & {}^{\langle\backprime\backprime} \text{u} {}^{\prime\prime\rangle} & = & {}^{\backprime\backprime\langle} \text{u} {}^{\rangle\prime\prime} \end{matrix}\)


\(\text{Table 37.} ~~ \text{Sign Relation Containing a Higher Order Sign}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \ldots \\[2pt] \ldots \\[2pt] \text{s} \end{matrix}\)

\(\begin{matrix} \text{s} \\[2pt] \ldots \\[2pt] \text{t} \end{matrix}\)

\(\begin{matrix} \ldots \\[2pt] \ldots \\[2pt] \ldots \end{matrix}\)


\(\text{Table 38.} ~~ \text{Sign Relation for a Succession of Higher Order Signs (1)}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} x \\[2pt] {}^{\langle} x {}^{\rangle} \\[2pt] {}^{\langle\langle} x {}^{\rangle\rangle} \\[2pt] \ldots \end{matrix}\)

\(\begin{matrix} {}^{\langle} x {}^{\rangle} \\[2pt] {}^{\langle\langle} x {}^{\rangle\rangle} \\[2pt] {}^{\langle\langle\langle} x {}^{\rangle\rangle\rangle} \\[2pt] \ldots \end{matrix}\)

\(\begin{matrix} \ldots \\[2pt] \ldots \\[2pt] \ldots \\[2pt] \ldots \end{matrix}\)


\(\text{Table 39.} ~~ \text{Sign Relation for a Succession of Higher Order Signs (2)}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} x \\[2pt] s_1 \\[2pt] s_2 \\[2pt] \ldots \end{matrix}\)

\(\begin{matrix} s_1 \\[2pt] s_2 \\[2pt] s_3 \\[2pt] \ldots \end{matrix}\)

\(\begin{matrix} \ldots \\[2pt] \ldots \\[2pt] \ldots \\[2pt] \ldots \end{matrix}\)


\(\text{Table 40.} ~~ \text{Reflective Origin} ~ \operatorname{Ref}^0 L(\text{A})\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)


\(\text{Table 41.} ~~ \text{Reflective Origin} ~ \operatorname{Ref}^0 L(\text{B})\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)


\(\text{Table 42.} ~~ \text{Higher Ascent Sign Relation} ~ \operatorname{Ref}^1 L(\text{A})\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle\langle} \text{A} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{B} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{i} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{u} {}^{\rangle\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle\langle} \text{A} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{B} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{i} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{u} {}^{\rangle\rangle} \end{matrix}\)


\(\text{Table 43.} ~~ \text{Higher Ascent Sign Relation} ~ \operatorname{Ref}^1 L(\text{B})\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle\langle} \text{A} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{B} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{i} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{u} {}^{\rangle\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle\langle} \text{A} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{B} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{i} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{u} {}^{\rangle\rangle} \end{matrix}\)


\(\text{Table 44.} ~~ \text{Higher Import Sign Relation} ~ \operatorname{HI}^1 L(\text{A})\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)


\(\text{Table 45.} ~~ \text{Higher Import Sign Relation} ~ \operatorname{HI}^1 L(\text{B})\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)


\(\text{Table 46.} ~~ \text{Higher Order Sign Relation for} ~ Q(\text{A}, \text{B})\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} L {}^{\rangle} \\ {}^{\langle} L {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} L {}^{\rangle} \\ {}^{\langle} L {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} q {}^{\rangle} \\ {}^{\langle} q {}^{\rangle} \\ {}^{\langle} q {}^{\rangle} \\ {}^{\langle} q {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} q {}^{\rangle} \\ {}^{\langle} q {}^{\rangle} \\ {}^{\langle} q {}^{\rangle} \\ {}^{\langle} q {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} (( & {}^{\langle} \text{A} {}^{\rangle} & , & \text{A} & ), & \text{A} & ) \\ (( & {}^{\langle} \text{A} {}^{\rangle} & , & \text{B} & ), & \text{A} & ) \\ (( & {}^{\langle} \text{B} {}^{\rangle} & , & \text{A} & ), & \text{B} & ) \\ (( & {}^{\langle} \text{B} {}^{\rangle} & , & \text{B} & ), & \text{B} & ) \\ (( & {}^{\langle} \text{i} {}^{\rangle} & , & \text{A} & ), & \text{A} & ) \\ (( & {}^{\langle} \text{i} {}^{\rangle} & , & \text{B} & ), & \text{B} & ) \\ (( & {}^{\langle} \text{u} {}^{\rangle} & , & \text{A} & ), & \text{B} & ) \\ (( & {}^{\langle} \text{u} {}^{\rangle} & , & \text{B} & ), & \text{A} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \end{matrix}\)


\(\text{Table 48.1} ~~ \operatorname{ER}(L_\text{A}) : \text{Extensional Representation of} ~ L_\text{A}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)


\(\text{Table 48.2} ~~ \operatorname{ER}(\operatorname{Den}(L_\text{A})) : \text{Denotative Component of} ~ L_\text{A}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Transition}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ({}^{\langle} \text{A} {}^{\rangle}, \text{A}) \\ ({}^{\langle} \text{i} {}^{\rangle}, \text{A}) \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ({}^{\langle} \text{B} {}^{\rangle}, \text{B}) \\ ({}^{\langle} \text{u} {}^{\rangle}, \text{B}) \end{matrix}\)


\(\text{Table 48.3} ~~ \operatorname{ER}(\operatorname{Con}(L_\text{A})) : \text{Connotative Component of} ~ L_\text{A}\!\)
\(\text{Sign}\!\) \(\text{Interpretant}\!\) \(\text{Transition}\!\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ({}^{\langle} \text{A} {}^{\rangle}, {}^{\langle} \text{A} {}^{\rangle}) \\ ({}^{\langle} \text{A} {}^{\rangle}, {}^{\langle} \text{i} {}^{\rangle}) \\ ({}^{\langle} \text{i} {}^{\rangle}, {}^{\langle} \text{A} {}^{\rangle}) \\ ({}^{\langle} \text{i} {}^{\rangle}, {}^{\langle} \text{i} {}^{\rangle}) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ({}^{\langle} \text{B} {}^{\rangle}, {}^{\langle} \text{B} {}^{\rangle}) \\ ({}^{\langle} \text{B} {}^{\rangle}, {}^{\langle} \text{u} {}^{\rangle}) \\ ({}^{\langle} \text{u} {}^{\rangle}, {}^{\langle} \text{B} {}^{\rangle}) \\ ({}^{\langle} \text{u} {}^{\rangle}, {}^{\langle} \text{u} {}^{\rangle}) \end{matrix}\)


\(\text{Table 49.1} ~~ \operatorname{ER}(L_\text{B}) : \text{Extensional Representation of} ~ L_\text{B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)


\(\text{Table 49.2} ~~ \operatorname{ER}(\operatorname{Den}(L_\text{B})) : \text{Denotative Component of} ~ L_\text{B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Transition}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ({}^{\langle} \text{A} {}^{\rangle}, \text{A}) \\ ({}^{\langle} \text{u} {}^{\rangle}, \text{A}) \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ({}^{\langle} \text{B} {}^{\rangle}, \text{B}) \\ ({}^{\langle} \text{i} {}^{\rangle}, \text{B}) \end{matrix}\)


\(\text{Table 49.3} ~~ \operatorname{ER}(\operatorname{Con}(L_\text{B})) : \text{Connotative Component of} ~ L_\text{B}\!\)
\(\text{Sign}\!\) \(\text{Interpretant}\!\) \(\text{Transition}\!\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ({}^{\langle} \text{A} {}^{\rangle}, {}^{\langle} \text{A} {}^{\rangle}) \\ ({}^{\langle} \text{A} {}^{\rangle}, {}^{\langle} \text{u} {}^{\rangle}) \\ ({}^{\langle} \text{u} {}^{\rangle}, {}^{\langle} \text{A} {}^{\rangle}) \\ ({}^{\langle} \text{u} {}^{\rangle}, {}^{\langle} \text{u} {}^{\rangle}) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ({}^{\langle} \text{B} {}^{\rangle}, {}^{\langle} \text{B} {}^{\rangle}) \\ ({}^{\langle} \text{B} {}^{\rangle}, {}^{\langle} \text{i} {}^{\rangle}) \\ ({}^{\langle} \text{i} {}^{\rangle}, {}^{\langle} \text{B} {}^{\rangle}) \\ ({}^{\langle} \text{i} {}^{\rangle}, {}^{\langle} \text{i} {}^{\rangle}) \end{matrix}\)


Type Tables


\(\text{Table 47.1} ~~ \text{Basic Types for ERs and IRs of Sign Relations}\!\)
\(\text{Type}\!\) \(\text{Symbol}\!\)

\(\begin{array}{l} \text{Property} \\ \text{Sign} \\ \text{Set} \\ \text{Triple}\\ \text{Underlying Element} \end{array}\)

\(\begin{matrix} P \\ \underline{S} \\ S \\ T \\ U \end{matrix}\)


\(\text{Table 47.2} ~~ \text{Derived Types for ERs of Sign Relations}\!\)
\(\text{Type}\!\) \(\text{Symbol}\!\) \(\text{Construction}\!\)
\(\text{Relation}\!\) \(R\!\) \(S(T(U))\!\)


\(\text{Table 47.3} ~~ \text{Derived Types for IRs of Sign Relations}\!\)
\(\text{Type}\!\) \(\text{Symbol}\!\) \(\text{Construction}\!\)
\(\text{Relation}\!\) \(P(R)\!\) \(P(S(T(U)))\!\)


Completed Work


\(\text{Table 50.} ~~ \text{Notations for Objects and Their Signs}\!\)
\(\text{Object}\!\) \(\text{Sign of Object}\!\)

\(\begin{matrix} \text{A} & \text{A} & w_1 \\[6pt] \text{B} & \text{B} & w_2 \\[12pt] {}^{\backprime\backprime} \text{A} {}^{\prime\prime} & {}^{\langle} \text{A} {}^{\rangle} & w_3 \\[6pt] {}^{\backprime\backprime} \text{B} {}^{\prime\prime} & {}^{\langle} \text{B} {}^{\rangle} & w_4 \\[6pt] {}^{\backprime\backprime} \text{i} {}^{\prime\prime} & {}^{\langle} \text{i} {}^{\rangle} & w_5 \\[6pt] {}^{\backprime\backprime} \text{u} {}^{\prime\prime} & {}^{\langle} \text{u} {}^{\rangle} & w_6 \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} & {}^{\langle} \text{A} {}^{\rangle} & {}^{\langle} w_1 {}^{\rangle} \\[6pt] {}^{\langle} \text{B} {}^{\rangle} & {}^{\langle} \text{B} {}^{\rangle} & {}^{\langle} w_2 {}^{\rangle} \\[12pt] {}^{\langle\backprime\backprime} \text{A} {}^{\prime\prime\rangle} & {}^{\langle\langle} \text{A} {}^{\rangle\rangle} & {}^{\langle} w_3 {}^{\rangle} \\[6pt] {}^{\langle\backprime\backprime} \text{B} {}^{\prime\prime\rangle} & {}^{\langle\langle} \text{B} {}^{\rangle\rangle} & {}^{\langle} w_4 {}^{\rangle} \\[6pt] {}^{\langle\backprime\backprime} \text{i} {}^{\prime\prime\rangle} & {}^{\langle\langle} \text{i} {}^{\rangle\rangle} & {}^{\langle} w_5 {}^{\rangle} \\[6pt] {}^{\langle\backprime\backprime} \text{u} {}^{\prime\prime\rangle} & {}^{\langle\langle} \text{u} {}^{\rangle\rangle} & {}^{\langle} w_6 {}^{\rangle} \end{matrix}\)


\(\text{Table 51.1} ~~ \text{Notations for Properties and Their Signs (1)}\!\)
\(\text{Property}\!\) \(\text{Sign of Property}\!\)

\(\begin{matrix} {}^{\lbrace} \text{A} {}^{\rbrace} & {}^{\lbrace} \text{A} {}^{\rbrace} & {}^{\lbrace} w_1 {}^{\rbrace} \\[6pt] {}^{\lbrace} \text{B} {}^{\rbrace} & {}^{\lbrace} \text{B} {}^{\rbrace} & {}^{\lbrace} w_2 {}^{\rbrace} \\[12pt] {}^{\lbrace\backprime\backprime} \text{A} {}^{\prime\prime\rbrace} & {}^{\lbrace\langle} \text{A} {}^{\rangle\rbrace} & {}^{\lbrace} w_3 {}^{\rbrace} \\[6pt] {}^{\lbrace\backprime\backprime} \text{B} {}^{\prime\prime\rbrace} & {}^{\lbrace\langle} \text{B} {}^{\rangle\rbrace} & {}^{\lbrace} w_4 {}^{\rbrace} \\[6pt] {}^{\lbrace\backprime\backprime} \text{i} {}^{\prime\prime\rbrace} & {}^{\lbrace\langle} \text{i} {}^{\rangle\rbrace} & {}^{\lbrace} w_5 {}^{\rbrace} \\[6pt] {}^{\lbrace\backprime\backprime} \text{u} {}^{\prime\prime\rbrace} & {}^{\lbrace\langle} \text{u} {}^{\rangle\rbrace} & {}^{\lbrace} w_6 {}^{\rbrace} \end{matrix}\)

\(\begin{matrix} {}^{\langle\lbrace} \text{A} {}^{\rbrace\rangle} & {}^{\langle\lbrace} \text{A} {}^{\rbrace\rangle} & {}^{\langle\lbrace} w_1 {}^{\rbrace\rangle} \\[6pt] {}^{\langle\lbrace} \text{B} {}^{\rbrace\rangle} & {}^{\langle\lbrace} \text{B} {}^{\rbrace\rangle} & {}^{\langle\lbrace} w_2 {}^{\rbrace\rangle} \\[12pt] {}^{\langle\lbrace\backprime\backprime} \text{A} {}^{\prime\prime\rbrace\rangle} & {}^{\langle\lbrace\langle} \text{A} {}^{\rangle\rbrace\rangle} & {}^{\langle\lbrace} w_3 {}^{\rbrace\rangle} \\[6pt] {}^{\langle\lbrace\backprime\backprime} \text{B} {}^{\prime\prime\rbrace\rangle} & {}^{\langle\lbrace\langle} \text{B} {}^{\rangle\rbrace\rangle} & {}^{\langle\lbrace} w_4 {}^{\rbrace\rangle} \\[6pt] {}^{\langle\lbrace\backprime\backprime} \text{i} {}^{\prime\prime\rbrace\rangle} & {}^{\langle\lbrace\langle} \text{i} {}^{\rangle\rbrace\rangle} & {}^{\langle\lbrace} w_5 {}^{\rbrace\rangle} \\[6pt] {}^{\langle\lbrace\backprime\backprime} \text{u} {}^{\prime\prime\rbrace\rangle} & {}^{\langle\lbrace\langle} \text{u} {}^{\rangle\rbrace\rangle} & {}^{\langle\lbrace} w_6 {}^{\rbrace\rangle} \end{matrix}\)


\(\text{Table 51.2} ~~ \text{Notations for Properties and Their Signs (2)}\!\)
\(\text{Property}\!\) \(\text{Sign of Property}\!\)

\(\begin{matrix} \underline{\underline{\text{A}}} & \underline{\underline{\text{A}}} & \underline{\underline{w_1}} \\[6pt] \underline{\underline{\text{B}}} & \underline{\underline{\text{B}}} & \underline{\underline{w_2}} \\[12pt] \underline{\underline{{}^{\backprime\backprime} \text{A} {}^{\prime\prime}}} & \underline{\underline{{}^{\langle} \text{A} {}^{\rangle}}} & \underline{\underline{w_3}} \\[6pt] \underline{\underline{{}^{\backprime\backprime} \text{B} {}^{\prime\prime}}} & \underline{\underline{{}^{\langle} \text{B} {}^{\rangle}}} & \underline{\underline{w_4}} \\[6pt] \underline{\underline{{}^{\backprime\backprime} \text{i} {}^{\prime\prime}}} & \underline{\underline{{}^{\langle} \text{i} {}^{\rangle}}} & \underline{\underline{w_5}} \\[6pt] \underline{\underline{{}^{\backprime\backprime} \text{u} {}^{\prime\prime}}} & \underline{\underline{{}^{\langle} \text{u} {}^{\rangle}}} & \underline{\underline{w_6}} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \underline{\underline{\text{A}}} {}^{\rangle} & {}^{\langle} \underline{\underline{\text{A}}} {}^{\rangle} & {}^{\langle} \underline{\underline{w_1}} {}^{\rangle} \\[6pt] {}^{\langle} \underline{\underline{\text{B}}} {}^{\rangle} & {}^{\langle} \underline{\underline{\text{B}}} {}^{\rangle} & {}^{\langle} \underline{\underline{w_2}} {}^{\rangle} \\[12pt] {}^{\langle} \underline{\underline{{}^{\backprime\backprime} \text{A} {}^{\prime\prime}}} {}^{\rangle} & {}^{\langle} \underline{\underline{{}^{\langle} \text{A} {}^{\rangle}}} {}^{\rangle} & {}^{\langle} \underline{\underline{w_3}} {}^{\rangle} \\[6pt] {}^{\langle} \underline{\underline{{}^{\backprime\backprime} \text{B} {}^{\prime\prime}}} {}^{\rangle} & {}^{\langle} \underline{\underline{{}^{\langle} \text{B} {}^{\rangle}}} {}^{\rangle} & {}^{\langle} \underline{\underline{w_4}} {}^{\rangle} \\[6pt] {}^{\langle} \underline{\underline{{}^{\backprime\backprime} \text{i} {}^{\prime\prime}}} {}^{\rangle} & {}^{\langle} \underline{\underline{{}^{\langle} \text{i} {}^{\rangle}}} {}^{\rangle} & {}^{\langle} \underline{\underline{w_5}} {}^{\rangle} \\[6pt] {}^{\langle} \underline{\underline{{}^{\backprime\backprime} \text{u} {}^{\prime\prime}}} {}^{\rangle} & {}^{\langle} \underline{\underline{{}^{\langle} \text{u} {}^{\rangle}}} {}^{\rangle} & {}^{\langle} \underline{\underline{w_6}} {}^{\rangle} \end{matrix}\)


\(\text{Table 51.3} ~~ \text{Notations for Properties and Their Signs (3)}\!\)
\(\text{Property}\!\) \(\text{Sign of Property}\!\)

\(\begin{matrix} \underline{\underline{\text{A}}} & \underline{\underline{o_1}} & \underline{\underline{w_1}} \\[6pt] \underline{\underline{\text{B}}} & \underline{\underline{o_2}} & \underline{\underline{w_2}} \\[12pt] \underline{\underline{\text{a}}} & \underline{\underline{s_1}} & \underline{\underline{w_3}} \\[6pt] \underline{\underline{\text{b}}} & \underline{\underline{s_2}} & \underline{\underline{w_4}} \\[6pt] \underline{\underline{\text{i}}} & \underline{\underline{s_3}} & \underline{\underline{w_5}} \\[6pt] \underline{\underline{\text{u}}} & \underline{\underline{s_4}} & \underline{\underline{w_6}} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \underline{\underline{\text{A}}} {}^{\rangle} & {}^{\langle} \underline{\underline{o_1}} {}^{\rangle} & {}^{\langle} \underline{\underline{w_1}} {}^{\rangle} \\[6pt] {}^{\langle} \underline{\underline{\text{B}}} {}^{\rangle} & {}^{\langle} \underline{\underline{o_2}} {}^{\rangle} & {}^{\langle} \underline{\underline{w_2}} {}^{\rangle} \\[12pt] {}^{\langle} \underline{\underline{\text{a}}} {}^{\rangle} & {}^{\langle} \underline{\underline{s_1}} {}^{\rangle} & {}^{\langle} \underline{\underline{w_3}} {}^{\rangle} \\[6pt] {}^{\langle} \underline{\underline{\text{b}}} {}^{\rangle} & {}^{\langle} \underline{\underline{s_2}} {}^{\rangle} & {}^{\langle} \underline{\underline{w_4}} {}^{\rangle} \\[6pt] {}^{\langle} \underline{\underline{\text{i}}} {}^{\rangle} & {}^{\langle} \underline{\underline{s_3}} {}^{\rangle} & {}^{\langle} \underline{\underline{w_5}} {}^{\rangle} \\[6pt] {}^{\langle} \underline{\underline{\text{u}}} {}^{\rangle} & {}^{\langle} \underline{\underline{s_4}} {}^{\rangle} & {}^{\langle} \underline{\underline{w_6}} {}^{\rangle} \end{matrix}\)


\(\text{Table 52.1} ~~ \text{Notations for Instances and Their Signs (1)}\!\)
\(\text{Instance}\!\) \(\text{Sign of Instance}\!\)

\(\begin{matrix} {}^{\lbrack} \text{A} {}^{\rbrack} & {}^{\lbrack} \text{A} {}^{\rbrack} & {}^{\lbrack} w_1 {}^{\rbrack} \\[6pt] {}^{\lbrack} \text{B} {}^{\rbrack} & {}^{\lbrack} \text{B} {}^{\rbrack} & {}^{\lbrack} w_2 {}^{\rbrack} \\[12pt] {}^{\lbrack\backprime\backprime} \text{A} {}^{\prime\prime\rbrack} & {}^{\lbrack\langle} \text{A} {}^{\rangle\rbrack} & {}^{\lbrack} w_3 {}^{\rbrack} \\[6pt] {}^{\lbrack\backprime\backprime} \text{B} {}^{\prime\prime\rbrack} & {}^{\lbrack\langle} \text{B} {}^{\rangle\rbrack} & {}^{\lbrack} w_4 {}^{\rbrack} \\[6pt] {}^{\lbrack\backprime\backprime} \text{i} {}^{\prime\prime\rbrack} & {}^{\lbrack\langle} \text{i} {}^{\rangle\rbrack} & {}^{\lbrack} w_5 {}^{\rbrack} \\[6pt] {}^{\lbrack\backprime\backprime} \text{u} {}^{\prime\prime\rbrack} & {}^{\lbrack\langle} \text{u} {}^{\rangle\rbrack} & {}^{\lbrack} w_6 {}^{\rbrack} \end{matrix}\)

\(\begin{matrix} {}^{\langle\lbrack} \text{A} {}^{\rbrack\rangle} & {}^{\langle\lbrack} \text{A} {}^{\rbrack\rangle} & {}^{\langle\lbrack} w_1 {}^{\rbrack\rangle} \\[6pt] {}^{\langle\lbrack} \text{B} {}^{\rbrack\rangle} & {}^{\langle\lbrack} \text{B} {}^{\rbrack\rangle} & {}^{\langle\lbrack} w_2 {}^{\rbrack\rangle} \\[12pt] {}^{\langle\lbrack\backprime\backprime} \text{A} {}^{\prime\prime\rbrack\rangle} & {}^{\langle\lbrack\langle} \text{A} {}^{\rangle\rbrack\rangle} & {}^{\langle\lbrack} w_3 {}^{\rbrack\rangle} \\[6pt] {}^{\langle\lbrack\backprime\backprime} \text{B} {}^{\prime\prime\rbrack\rangle} & {}^{\langle\lbrack\langle} \text{B} {}^{\rangle\rbrack\rangle} & {}^{\langle\lbrack} w_4 {}^{\rbrack\rangle} \\[6pt] {}^{\langle\lbrack\backprime\backprime} \text{i} {}^{\prime\prime\rbrack\rangle} & {}^{\langle\lbrack\langle} \text{i} {}^{\rangle\rbrack\rangle} & {}^{\langle\lbrack} w_5 {}^{\rbrack\rangle} \\[6pt] {}^{\langle\lbrack\backprime\backprime} \text{u} {}^{\prime\prime\rbrack\rangle} & {}^{\langle\lbrack\langle} \text{u} {}^{\rangle\rbrack\rangle} & {}^{\langle\lbrack} w_6 {}^{\rbrack\rangle} \end{matrix}\)


\(\text{Table 52.2} ~~ \text{Notations for Instances and Their Signs (2)}\!\)
\(\text{Instance}\!\) \(\text{Sign of Instance}\!\)

\(\begin{matrix} \overline{\text{A}} & \overline{\text{A}} & \overline{w_1} \\[6pt] \overline{\text{B}} & \overline{\text{B}} & \overline{w_2} \\[12pt] \overline{{}^{\backprime\backprime} \text{A} {}^{\prime\prime}} & \overline{{}^{\langle} \text{A} {}^{\rangle}} & \overline{w_3} \\[6pt] \overline{{}^{\backprime\backprime} \text{B} {}^{\prime\prime}} & \overline{{}^{\langle} \text{B} {}^{\rangle}} & \overline{w_4} \\[6pt] \overline{{}^{\backprime\backprime} \text{i} {}^{\prime\prime}} & \overline{{}^{\langle} \text{i} {}^{\rangle}} & \overline{w_5} \\[6pt] \overline{{}^{\backprime\backprime} \text{u} {}^{\prime\prime}} & \overline{{}^{\langle} \text{u} {}^{\rangle}} & \overline{w_6} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \overline{\text{A}} {}^{\rangle} & {}^{\langle} \overline{\text{A}} {}^{\rangle} & {}^{\langle} \overline{w_1} {}^{\rangle} \\[6pt] {}^{\langle} \overline{\text{B}} {}^{\rangle} & {}^{\langle} \overline{\text{B}} {}^{\rangle} & {}^{\langle} \overline{w_2} {}^{\rangle} \\[12pt] {}^{\langle} \overline{{}^{\backprime\backprime} \text{A} {}^{\prime\prime}} {}^{\rangle} & {}^{\langle} \overline{{}^{\langle} \text{A} {}^{\rangle}} {}^{\rangle} & {}^{\langle} \overline{w_3} {}^{\rangle} \\[6pt] {}^{\langle} \overline{{}^{\backprime\backprime} \text{B} {}^{\prime\prime}} {}^{\rangle} & {}^{\langle} \overline{{}^{\langle} \text{B} {}^{\rangle}} {}^{\rangle} & {}^{\langle} \overline{w_4} {}^{\rangle} \\[6pt] {}^{\langle} \overline{{}^{\backprime\backprime} \text{i} {}^{\prime\prime}} {}^{\rangle} & {}^{\langle} \overline{{}^{\langle} \text{i} {}^{\rangle}} {}^{\rangle} & {}^{\langle} \overline{w_5} {}^{\rangle} \\[6pt] {}^{\langle} \overline{{}^{\backprime\backprime} \text{u} {}^{\prime\prime}} {}^{\rangle} & {}^{\langle} \overline{{}^{\langle} \text{u} {}^{\rangle}} {}^{\rangle} & {}^{\langle} \overline{w_6} {}^{\rangle} \end{matrix}\)


\(\text{Table 52.3} ~~ \text{Notations for Instances and Their Signs (3)}\!\)
\(\text{Instance}\!\) \(\text{Sign of Instance}\!\)

\(\begin{matrix} \overline{\text{A}} & \overline{o_1} & \overline{w_1} \\[6pt] \overline{\text{B}} & \overline{o_2} & \overline{w_2} \\[12pt] \overline{\text{a}} & \overline{s_1} & \overline{w_3} \\[6pt] \overline{\text{b}} & \overline{s_2} & \overline{w_4} \\[6pt] \overline{\text{i}} & \overline{s_3} & \overline{w_5} \\[6pt] \overline{\text{u}} & \overline{s_4} & \overline{w_6} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \overline{\text{A}} {}^{\rangle} & {}^{\langle} \overline{o_1} {}^{\rangle} & {}^{\langle} \overline{w_1} {}^{\rangle} \\[6pt] {}^{\langle} \overline{\text{B}} {}^{\rangle} & {}^{\langle} \overline{o_2} {}^{\rangle} & {}^{\langle} \overline{w_2} {}^{\rangle} \\[12pt] {}^{\langle} \overline{\text{a}} {}^{\rangle} & {}^{\langle} \overline{s_1} {}^{\rangle} & {}^{\langle} \overline{w_3} {}^{\rangle} \\[6pt] {}^{\langle} \overline{\text{b}} {}^{\rangle} & {}^{\langle} \overline{s_2} {}^{\rangle} & {}^{\langle} \overline{w_4} {}^{\rangle} \\[6pt] {}^{\langle} \overline{\text{i}} {}^{\rangle} & {}^{\langle} \overline{s_3} {}^{\rangle} & {}^{\langle} \overline{w_5} {}^{\rangle} \\[6pt] {}^{\langle} \overline{\text{u}} {}^{\rangle} & {}^{\langle} \overline{s_4} {}^{\rangle} & {}^{\langle} \overline{w_6} {}^{\rangle} \end{matrix}\)


\(\text{Table 53.1} ~~ \text{Elements of} ~ \operatorname{ER}(W)\!\)
\(\text{Mnemonic Element}\!\)

\(w \in W\!\)
\(\text{Pragmatic Element}\!\)

\(w \in W\!\)
\(\text{Abstract Element}\!\)

\(w_i \in W\!\)

\(\begin{matrix} \text{A} \\[4pt] \text{B} \\[4pt] {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} o_1 \\[4pt] o_2 \\[4pt] s_1 \\[4pt] s_2 \\[4pt] s_3 \\[4pt] s_4 \end{matrix}\)

\(\begin{matrix} w_1 \\[4pt] w_2 \\[4pt] w_3 \\[4pt] w_4 \\[4pt] w_5 \\[4pt] w_6 \end{matrix}\)


\(\text{Table 53.2} ~~ \text{Features of} ~ \operatorname{LIR}(W)\!\)

\(\text{Mnemonic Feature}\!\)

\(\underline{\underline{w}} \in \underline{\underline{W}}\!\)

\(\text{Pragmatic Feature}\!\)

\(\underline{\underline{w}} \in \underline{\underline{W}}\!\)

\(\text{Abstract Feature}\!\)

\(\underline{\underline{w_i}} \in \underline{\underline{W}}\!\)

\(\begin{matrix} \underline{\underline{\text{A}}} \\[4pt] \underline{\underline{\text{B}}} \\[4pt] \underline{\underline{\text{a}}} \\[4pt] \underline{\underline{\text{b}}} \\[4pt] \underline{\underline{\text{i}}} \\[4pt] \underline{\underline{\text{u}}} \end{matrix}\)

\(\begin{matrix} \underline{\underline{o_1}} \\[4pt] \underline{\underline{o_2}} \\[4pt] \underline{\underline{s_1}} \\[4pt] \underline{\underline{s_2}} \\[4pt] \underline{\underline{s_3}} \\[4pt] \underline{\underline{s_4}} \end{matrix}\)

\(\begin{matrix} \underline{\underline{w_1}} \\[4pt] \underline{\underline{w_2}} \\[4pt] \underline{\underline{w_3}} \\[4pt] \underline{\underline{w_4}} \\[4pt] \underline{\underline{w_5}} \\[4pt] \underline{\underline{w_6}} \end{matrix}\)


\(\text{Table 54.1} ~~ \text{Mnemonic Literal Codes for Interpreters A and B}\!\)
\(\text{Element}\!\) \(\text{Vector}\!\) \(\text{Conjunct Term}\!\) \(\text{Code}\!\)

\(\begin{matrix} \text{A} \\[4pt] \text{B} \\[4pt] {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} 100000 \\[4pt] 010000 \\[4pt] 001000 \\[4pt] 000100 \\[4pt] 000010 \\[4pt] 000001 \end{matrix}\)

\(\begin{matrix} ~\underline{\underline{A}}~ (\underline{\underline{B}}) (\underline{\underline{a}}) (\underline{\underline{b}}) (\underline{\underline{i}}) (\underline{\underline{u}}) \\[4pt] (\underline{\underline{A}}) ~\underline{\underline{B}}~ (\underline{\underline{a}}) (\underline{\underline{b}}) (\underline{\underline{i}}) (\underline{\underline{u}}) \\[4pt] (\underline{\underline{A}}) (\underline{\underline{B}}) ~\underline{\underline{a}}~ (\underline{\underline{b}}) (\underline{\underline{i}}) (\underline{\underline{u}}) \\[4pt] (\underline{\underline{A}}) (\underline{\underline{B}}) (\underline{\underline{a}}) ~\underline{\underline{b}}~ (\underline{\underline{i}}) (\underline{\underline{u}}) \\[4pt] (\underline{\underline{A}}) (\underline{\underline{B}}) (\underline{\underline{a}}) (\underline{\underline{b}}) ~\underline{\underline{i}}~ (\underline{\underline{u}}) \\[4pt] (\underline{\underline{A}}) (\underline{\underline{B}}) (\underline{\underline{a}}) (\underline{\underline{b}}) (\underline{\underline{i}}) ~\underline{\underline{u}}~ \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{A}}\rangle}_W \\[4pt] {\langle\underline{\underline{B}}\rangle}_W \\[4pt] {\langle\underline{\underline{a}}\rangle}_W \\[4pt] {\langle\underline{\underline{b}}\rangle}_W \\[4pt] {\langle\underline{\underline{i}}\rangle}_W \\[4pt] {\langle\underline{\underline{u}}\rangle}_W \end{matrix}\)


\(\text{Table 54.2} ~~ \text{Pragmatic Literal Codes for Interpreters A and B}\!\)
\(\text{Element}\!\) \(\text{Vector}\!\) \(\text{Conjunct Term}\!\) \(\text{Code}\!\)

\(\begin{matrix} \text{A} \\[4pt] \text{B} \\[4pt] {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} 100000 \\[4pt] 010000 \\[4pt] 001000 \\[4pt] 000100 \\[4pt] 000010 \\[4pt] 000001 \end{matrix}\)

\(\begin{matrix} ~\underline{\underline{o_1}}~ (\underline{\underline{o_2}}) (\underline{\underline{s_1}}) (\underline{\underline{s_2}}) (\underline{\underline{s_3}}) (\underline{\underline{s_4}}) \\[4pt] (\underline{\underline{o_1}}) ~\underline{\underline{o_2}}~ (\underline{\underline{s_1}}) (\underline{\underline{s_2}}) (\underline{\underline{s_3}}) (\underline{\underline{s_4}}) \\[4pt] (\underline{\underline{o_1}}) (\underline{\underline{o_2}}) ~\underline{\underline{s_1}}~ (\underline{\underline{s_2}}) (\underline{\underline{s_3}}) (\underline{\underline{s_4}}) \\[4pt] (\underline{\underline{o_1}}) (\underline{\underline{o_2}}) (\underline{\underline{s_1}}) ~\underline{\underline{s_2}}~ (\underline{\underline{s_3}}) (\underline{\underline{s_4}}) \\[4pt] (\underline{\underline{o_1}}) (\underline{\underline{o_2}}) (\underline{\underline{s_1}}) (\underline{\underline{s_2}}) ~\underline{\underline{s_3}}~ (\underline{\underline{s_4}}) \\[4pt] (\underline{\underline{o_1}}) (\underline{\underline{o_2}}) (\underline{\underline{s_1}}) (\underline{\underline{s_2}}) (\underline{\underline{s_3}}) ~\underline{\underline{s_4}}~ \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{o_1}}\rangle}_W \\[4pt] {\langle\underline{\underline{o_2}}\rangle}_W \\[4pt] {\langle\underline{\underline{s_1}}\rangle}_W \\[4pt] {\langle\underline{\underline{s_2}}\rangle}_W \\[4pt] {\langle\underline{\underline{s_3}}\rangle}_W \\[4pt] {\langle\underline{\underline{s_4}}\rangle}_W \end{matrix}\)


\(\text{Table 54.3} ~~ \text{Abstract Literal Codes for Interpreters A and B}\!\)
\(\text{Element}\!\) \(\text{Vector}\!\) \(\text{Conjunct Term}\!\) \(\text{Code}\!\)

\(\begin{matrix} \text{A} \\[4pt] \text{B} \\[4pt] {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} 100000 \\[4pt] 010000 \\[4pt] 001000 \\[4pt] 000100 \\[4pt] 000010 \\[4pt] 000001 \end{matrix}\)

\(\begin{matrix} ~\underline{\underline{w_1}}~ (\underline{\underline{w_2}}) (\underline{\underline{w_3}}) (\underline{\underline{w_4}}) (\underline{\underline{w_5}}) (\underline{\underline{w_6}}) \\[4pt] (\underline{\underline{w_1}}) ~\underline{\underline{w_2}}~ (\underline{\underline{w_3}}) (\underline{\underline{w_4}}) (\underline{\underline{w_5}}) (\underline{\underline{w_6}}) \\[4pt] (\underline{\underline{w_1}}) (\underline{\underline{w_2}}) ~\underline{\underline{w_3}}~ (\underline{\underline{w_4}}) (\underline{\underline{w_5}}) (\underline{\underline{w_6}}) \\[4pt] (\underline{\underline{w_1}}) (\underline{\underline{w_2}}) (\underline{\underline{w_3}}) ~\underline{\underline{w_4}}~ (\underline{\underline{w_5}}) (\underline{\underline{w_6}}) \\[4pt] (\underline{\underline{w_1}}) (\underline{\underline{w_2}}) (\underline{\underline{w_3}}) (\underline{\underline{w_4}}) ~\underline{\underline{w_5}}~ (\underline{\underline{w_6}}) \\[4pt] (\underline{\underline{w_1}}) (\underline{\underline{w_2}}) (\underline{\underline{w_3}}) (\underline{\underline{w_4}}) (\underline{\underline{w_5}}) ~\underline{\underline{w_6}}~ \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{w_1}}\rangle}_W \\[4pt] {\langle\underline{\underline{w_2}}\rangle}_W \\[4pt] {\langle\underline{\underline{w_3}}\rangle}_W \\[4pt] {\langle\underline{\underline{w_4}}\rangle}_W \\[4pt] {\langle\underline{\underline{w_5}}\rangle}_W \\[4pt] {\langle\underline{\underline{w_6}}\rangle}_W \end{matrix}\)


\(\text{Table 55.1} ~~ \operatorname{LIR}_1 (L_\text{A}) : \text{Literal Representation of} ~ L_\text{A}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} {\langle\underline{\underline{\text{A}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{A}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{A}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{A}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{a}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{a}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{B}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{B}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{B}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{B}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{b}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{b}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_W \end{matrix}\)


\(\text{Table 55.2} ~~ \operatorname{LIR}_1 (\operatorname{Den}(L_\text{A})) : \text{Denotative Component of} ~ L_\text{A}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Transition}\!\)

\(\begin{matrix} {\langle\underline{\underline{\text{A}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{A}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} ({\langle\underline{\underline{\text{a}}}\rangle}_W, {\langle\underline{\underline{\text{A}}}\rangle}_W) \\[4pt] ({\langle\underline{\underline{\text{i}}}\rangle}_W, {\langle\underline{\underline{\text{A}}}\rangle}_W) \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{B}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{B}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} ({\langle\underline{\underline{\text{b}}}\rangle}_W, {\langle\underline{\underline{\text{B}}}\rangle}_W) \\[4pt] ({\langle\underline{\underline{\text{u}}}\rangle}_W, {\langle\underline{\underline{\text{B}}}\rangle}_W) \end{matrix}\)


\(\text{Table 55.3} ~~ \operatorname{LIR}_1 (\operatorname{Con}(L_\text{A})) : \text{Connotative Component of} ~ L_\text{A}\!\)
\(\text{Sign}\!\) \(\text{Interpretant}\!\) \(\text{Transition}\!\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{a}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{a}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} 0_{\operatorname{d}W} \\[4pt] {\langle \operatorname{d}\underline{\underline{\text{a}}} ~ \operatorname{d}\underline{\underline{\text{i}}} \rangle}_{\operatorname{d}W} \\[4pt] {\langle \operatorname{d}\underline{\underline{\text{a}}} ~ \operatorname{d}\underline{\underline{\text{i}}} \rangle}_{\operatorname{d}W} \\[4pt] 0_{\operatorname{d}W} \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{b}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{b}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} 0_{\operatorname{d}W} \\[4pt] {\langle \operatorname{d}\underline{\underline{\text{b}}} ~ \operatorname{d}\underline{\underline{\text{u}}} \rangle}_{\operatorname{d}W} \\[4pt] {\langle \operatorname{d}\underline{\underline{\text{b}}} ~ \operatorname{d}\underline{\underline{\text{u}}} \rangle}_{\operatorname{d}W} \\[4pt] 0_{\operatorname{d}W} \end{matrix}\)


\(\text{Table 56.1} ~~ \operatorname{LIR}_1 (L_\text{B}) : \text{Literal Representation of} ~ L_\text{B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} {\langle\underline{\underline{\text{A}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{A}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{A}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{A}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{a}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{a}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{B}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{B}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{B}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{B}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{b}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{b}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_W \end{matrix}\)


\(\text{Table 56.2} ~~ \operatorname{LIR}_1 (\operatorname{Den}(L_\text{B})) : \text{Denotative Component of} ~ L_\text{B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Transition}\!\)

\(\begin{matrix} {\langle\underline{\underline{\text{A}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{A}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} ({\langle\underline{\underline{\text{a}}}\rangle}_W, {\langle\underline{\underline{\text{A}}}\rangle}_W) \\[4pt] ({\langle\underline{\underline{\text{u}}}\rangle}_W, {\langle\underline{\underline{\text{A}}}\rangle}_W) \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{B}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{B}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} ({\langle\underline{\underline{\text{b}}}\rangle}_W, {\langle\underline{\underline{\text{B}}}\rangle}_W) \\[4pt] ({\langle\underline{\underline{\text{i}}}\rangle}_W, {\langle\underline{\underline{\text{B}}}\rangle}_W) \end{matrix}\)


\(\text{Table 56.3} ~~ \operatorname{LIR}_1 (\operatorname{Con}(L_\text{B})) : \text{Connotative Component of} ~ L_\text{B}\!\)
\(\text{Sign}\!\) \(\text{Interpretant}\!\) \(\text{Transition}\!\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{a}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{a}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} 0_{\operatorname{d}W} \\[4pt] {\langle \operatorname{d}\underline{\underline{\text{a}}} ~ \operatorname{d}\underline{\underline{\text{u}}} \rangle}_{\operatorname{d}W} \\[4pt] {\langle \operatorname{d}\underline{\underline{\text{a}}} ~ \operatorname{d}\underline{\underline{\text{u}}} \rangle}_{\operatorname{d}W} \\[4pt] 0_{\operatorname{d}W} \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{b}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{b}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} 0_{\operatorname{d}W} \\[4pt] {\langle \operatorname{d}\underline{\underline{\text{b}}} ~ \operatorname{d}\underline{\underline{\text{i}}} \rangle}_{\operatorname{d}W} \\[4pt] {\langle \operatorname{d}\underline{\underline{\text{b}}} ~ \operatorname{d}\underline{\underline{\text{i}}} \rangle}_{\operatorname{d}W} \\[4pt] 0_{\operatorname{d}W} \end{matrix}\)


\(\text{Table 57.1} ~~ \text{Mnemonic Lateral Codes for Interpreters A and B}\!\)
\(\text{Element}\!\) \(\text{Vector}\!\) \(\text{Conjunct Term}\!\) \(\text{Code}\!\)

\(\begin{matrix} \text{A} \\[4pt] \text{B} \\[4pt] {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {10}_X \\[4pt] {01}_X \\[4pt] {1000}_Y \\[4pt] {0100}_Y \\[4pt] {0010}_Y \\[4pt] {0001}_Y \end{matrix}\)

\(\begin{matrix} ~\underline{\underline{A}}~ (\underline{\underline{B}}) \\[4pt] (\underline{\underline{A}}) ~\underline{\underline{B}}~ \\[4pt] ~\underline{\underline{a}}~ (\underline{\underline{b}}) (\underline{\underline{i}}) (\underline{\underline{u}}) \\[4pt] (\underline{\underline{a}}) ~\underline{\underline{b}}~ (\underline{\underline{i}}) (\underline{\underline{u}}) \\[4pt] (\underline{\underline{a}}) (\underline{\underline{b}}) ~\underline{\underline{i}}~ (\underline{\underline{u}}) \\[4pt] (\underline{\underline{a}}) (\underline{\underline{b}}) (\underline{\underline{i}}) ~\underline{\underline{u}}~ \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{A}}\rangle}_X \\[4pt] {\langle\underline{\underline{B}}\rangle}_X \\[4pt] {\langle\underline{\underline{a}}\rangle}_Y \\[4pt] {\langle\underline{\underline{b}}\rangle}_Y \\[4pt] {\langle\underline{\underline{i}}\rangle}_Y \\[4pt] {\langle\underline{\underline{u}}\rangle}_Y \end{matrix}\)


\(\text{Table 57.2} ~~ \text{Pragmatic Lateral Codes for Interpreters A and B}\!\)
\(\text{Element}\!\) \(\text{Vector}\!\) \(\text{Conjunct Term}\!\) \(\text{Code}\!\)

\(\begin{matrix} \text{A} \\[4pt] \text{B} \\[4pt] {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {10}_X \\[4pt] {01}_X \\[4pt] {1000}_Y \\[4pt] {0100}_Y \\[4pt] {0010}_Y \\[4pt] {0001}_Y \end{matrix}\)

\(\begin{matrix} ~\underline{\underline{o_1}}~ (\underline{\underline{o_2}}) \\[4pt] (\underline{\underline{o_1}}) ~\underline{\underline{o_2}}~ \\[4pt] ~\underline{\underline{s_1}}~ (\underline{\underline{s_2}}) (\underline{\underline{s_3}}) (\underline{\underline{s_4}}) \\[4pt] (\underline{\underline{s_1}}) ~\underline{\underline{s_2}}~ (\underline{\underline{s_3}}) (\underline{\underline{s_4}}) \\[4pt] (\underline{\underline{s_1}}) (\underline{\underline{s_2}}) ~\underline{\underline{s_3}}~ (\underline{\underline{s_4}}) \\[4pt] (\underline{\underline{s_1}}) (\underline{\underline{s_2}}) (\underline{\underline{s_3}}) ~\underline{\underline{s_4}}~ \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{o_1}}\rangle}_X \\[4pt] {\langle\underline{\underline{o_2}}\rangle}_X \\[4pt] {\langle\underline{\underline{s_1}}\rangle}_Y \\[4pt] {\langle\underline{\underline{s_2}}\rangle}_Y \\[4pt] {\langle\underline{\underline{s_3}}\rangle}_Y \\[4pt] {\langle\underline{\underline{s_4}}\rangle}_Y \end{matrix}\)


\(\text{Table 57.3} ~~ \text{Abstract Lateral Codes for Interpreters A and B}\!\)
\(\text{Element}\!\) \(\text{Vector}\!\) \(\text{Conjunct Term}\!\) \(\text{Code}\!\)

\(\begin{matrix} \text{A} \\[4pt] \text{B} \\[4pt] {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {10}_X \\[4pt] {01}_X \\[4pt] {1000}_Y \\[4pt] {0100}_Y \\[4pt] {0010}_Y \\[4pt] {0001}_Y \end{matrix}\)

\(\begin{matrix} ~\underline{\underline{x_1}}~ (\underline{\underline{x_2}}) \\[4pt] (\underline{\underline{x_1}}) ~\underline{\underline{x_2}}~ \\[4pt] ~\underline{\underline{y_1}}~ (\underline{\underline{y_2}}) (\underline{\underline{y_3}}) (\underline{\underline{y_4}}) \\[4pt] (\underline{\underline{y_1}}) ~\underline{\underline{y_2}}~ (\underline{\underline{y_3}}) (\underline{\underline{y_4}}) \\[4pt] (\underline{\underline{y_1}}) (\underline{\underline{y_2}}) ~\underline{\underline{y_3}}~ (\underline{\underline{y_4}}) \\[4pt] (\underline{\underline{y_1}}) (\underline{\underline{y_2}}) (\underline{\underline{y_3}}) ~\underline{\underline{y_4}}~ \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{x_1}}\rangle}_X \\[4pt] {\langle\underline{\underline{x_2}}\rangle}_X \\[4pt] {\langle\underline{\underline{y_1}}\rangle}_Y \\[4pt] {\langle\underline{\underline{y_2}}\rangle}_Y \\[4pt] {\langle\underline{\underline{y_3}}\rangle}_Y \\[4pt] {\langle\underline{\underline{y_4}}\rangle}_Y \end{matrix}\)


\(\text{Table 58.1} ~~ \operatorname{LIR}_2 (L_\text{A}) : \text{Lateral Representation of} ~ L_\text{A}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} ~\underline{\underline{\text{A}}}~ (\underline{\underline{\text{B}}}) \\[4pt] ~\underline{\underline{\text{A}}}~ (\underline{\underline{\text{B}}}) \\[4pt] ~\underline{\underline{\text{A}}}~ (\underline{\underline{\text{B}}}) \\[4pt] ~\underline{\underline{\text{A}}}~ (\underline{\underline{\text{B}}}) \end{matrix}\)

\(\begin{matrix} ~\underline{\underline{\text{a}}}~ (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] ~\underline{\underline{\text{a}}}~ (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) ~\underline{\underline{\text{i}}}~ (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) ~\underline{\underline{\text{i}}}~ (\underline{\underline{\text{u}}}) \end{matrix}\)

\(\begin{matrix} ~\underline{\underline{\text{a}}}~ (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) ~\underline{\underline{\text{i}}}~ (\underline{\underline{\text{u}}}) \\[4pt] ~\underline{\underline{\text{a}}}~ (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) ~\underline{\underline{\text{i}}}~ (\underline{\underline{\text{u}}}) \end{matrix}\)

\(\begin{matrix} (\underline{\underline{\text{A}}}) ~\underline{\underline{\text{B}}}~ \\[4pt] (\underline{\underline{\text{A}}}) ~\underline{\underline{\text{B}}}~ \\[4pt] (\underline{\underline{\text{A}}}) ~\underline{\underline{\text{B}}}~ \\[4pt] (\underline{\underline{\text{A}}}) ~\underline{\underline{\text{B}}}~ \end{matrix}\)

\(\begin{matrix} (\underline{\underline{\text{a}}}) ~\underline{\underline{\text{b}}}~ (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) ~\underline{\underline{\text{b}}}~ (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) ~\underline{\underline{\text{u}}}~ \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) ~\underline{\underline{\text{u}}}~ \end{matrix}\)

\(\begin{matrix} (\underline{\underline{\text{a}}}) ~\underline{\underline{\text{b}}}~ (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) ~\underline{\underline{\text{u}}}~ \\[4pt] (\underline{\underline{\text{a}}}) ~\underline{\underline{\text{b}}}~ (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) ~\underline{\underline{\text{u}}}~ \end{matrix}\)


\(\text{Table 58.2} ~~ \operatorname{LIR}_2 (\operatorname{Den}(L_\text{A})) : \text{Denotative Component of} ~ L_\text{A}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Transition}\!\)

\(\begin{matrix} ~\underline{\underline{\text{A}}}~ (\underline{\underline{\text{B}}}) \\[4pt] ~\underline{\underline{\text{A}}}~ (\underline{\underline{\text{B}}}) \end{matrix}\)

\(\begin{matrix} ~\underline{\underline{\text{a}}}~ (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) ~\underline{\underline{\text{i}}}~ (\underline{\underline{\text{u}}}) \end{matrix}\)

\(\begin{matrix} ({\langle\underline{\underline{\text{a}}}\rangle}_Y, {\langle\underline{\underline{\text{A}}}\rangle}_X) \\[4pt] ({\langle\underline{\underline{\text{i}}}\rangle}_Y, {\langle\underline{\underline{\text{A}}}\rangle}_X) \end{matrix}\)

\(\begin{matrix} (\underline{\underline{\text{A}}}) ~\underline{\underline{\text{B}}}~ \\[4pt] (\underline{\underline{\text{A}}}) ~\underline{\underline{\text{B}}}~ \end{matrix}\)

\(\begin{matrix} (\underline{\underline{\text{a}}}) ~\underline{\underline{\text{b}}}~ (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) ~\underline{\underline{\text{u}}}~ \end{matrix}\)

\(\begin{matrix} ({\langle\underline{\underline{\text{b}}}\rangle}_Y, {\langle\underline{\underline{\text{B}}}\rangle}_X) \\[4pt] ({\langle\underline{\underline{\text{u}}}\rangle}_Y, {\langle\underline{\underline{\text{B}}}\rangle}_X) \end{matrix}\)


\(\text{Table 58.3} ~~ \operatorname{LIR}_2 (\operatorname{Con}(L_\text{A})) : \text{Connotative Component of} ~ L_\text{A}\!\)
\(\text{Sign}\!\) \(\text{Interpretant}\!\) \(\text{Transition}\!\)

\(\begin{matrix} ~\underline{\underline{\text{a}}}~ (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] ~\underline{\underline{\text{a}}}~ (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) ~\underline{\underline{\text{i}}}~ (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) ~\underline{\underline{\text{i}}}~ (\underline{\underline{\text{u}}}) \end{matrix}\)

\(\begin{matrix} ~\underline{\underline{\text{a}}}~ (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) ~\underline{\underline{\text{i}}}~ (\underline{\underline{\text{u}}}) \\[4pt] ~\underline{\underline{\text{a}}}~ (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) ~\underline{\underline{\text{i}}}~ (\underline{\underline{\text{u}}}) \end{matrix}\)

\(\begin{matrix} (\underline{\underline{\text{da}}}) (\underline{\underline{\text{db}}}) (\underline{\underline{\text{di}}}) (\underline{\underline{\text{du}}}) \\[4pt] ~\underline{\underline{\text{da}}}~ (\underline{\underline{\text{db}}}) ~\underline{\underline{\text{di}}}~ (\underline{\underline{\text{du}}}) \\[4pt] ~\underline{\underline{\text{da}}}~ (\underline{\underline{\text{db}}}) ~\underline{\underline{\text{di}}}~ (\underline{\underline{\text{du}}}) \\[4pt] (\underline{\underline{\text{da}}}) (\underline{\underline{\text{db}}}) (\underline{\underline{\text{di}}}) (\underline{\underline{\text{du}}}) \end{matrix}\)

\(\begin{matrix} (\underline{\underline{\text{a}}}) ~\underline{\underline{\text{b}}}~ (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) ~\underline{\underline{\text{b}}}~ (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) ~\underline{\underline{\text{u}}}~ \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) ~\underline{\underline{\text{u}}}~ \end{matrix}\)

\(\begin{matrix} (\underline{\underline{\text{a}}}) ~\underline{\underline{\text{b}}}~ (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) ~\underline{\underline{\text{u}}}~ \\[4pt] (\underline{\underline{\text{a}}}) ~\underline{\underline{\text{b}}}~ (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) ~\underline{\underline{\text{u}}}~ \end{matrix}\)

\(\begin{matrix} (\underline{\underline{\text{da}}}) (\underline{\underline{\text{db}}}) (\underline{\underline{\text{di}}}) (\underline{\underline{\text{du}}}) \\[4pt] (\underline{\underline{\text{da}}}) ~\underline{\underline{\text{db}}}~ (\underline{\underline{\text{di}}}) ~\underline{\underline{\text{du}}}~ \\[4pt] (\underline{\underline{\text{da}}}) ~\underline{\underline{\text{db}}}~ (\underline{\underline{\text{di}}}) ~\underline{\underline{\text{du}}}~ \\[4pt] (\underline{\underline{\text{da}}}) (\underline{\underline{\text{db}}}) (\underline{\underline{\text{di}}}) (\underline{\underline{\text{du}}}) \end{matrix}\)


\(\text{Table 59.1} ~~ \operatorname{LIR}_2 (L_\text{B}) : \text{Lateral Representation of} ~ L_\text{B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} ~\underline{\underline{\text{A}}}~ (\underline{\underline{\text{B}}}) \\[4pt] ~\underline{\underline{\text{A}}}~ (\underline{\underline{\text{B}}}) \\[4pt] ~\underline{\underline{\text{A}}}~ (\underline{\underline{\text{B}}}) \\[4pt] ~\underline{\underline{\text{A}}}~ (\underline{\underline{\text{B}}}) \end{matrix}\)

\(\begin{matrix} ~\underline{\underline{\text{a}}}~ (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] ~\underline{\underline{\text{a}}}~ (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) ~\underline{\underline{\text{u}}}~ \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) ~\underline{\underline{\text{u}}}~ \end{matrix}\)

\(\begin{matrix} ~\underline{\underline{\text{a}}}~ (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) ~\underline{\underline{\text{u}}}~ \\[4pt] ~\underline{\underline{\text{a}}}~ (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) ~\underline{\underline{\text{u}}}~ \end{matrix}\)

\(\begin{matrix} (\underline{\underline{\text{A}}}) ~\underline{\underline{\text{B}}}~ \\[4pt] (\underline{\underline{\text{A}}}) ~\underline{\underline{\text{B}}}~ \\[4pt] (\underline{\underline{\text{A}}}) ~\underline{\underline{\text{B}}}~ \\[4pt] (\underline{\underline{\text{A}}}) ~\underline{\underline{\text{B}}}~ \end{matrix}\)

\(\begin{matrix} (\underline{\underline{\text{a}}}) ~\underline{\underline{\text{b}}}~ (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) ~\underline{\underline{\text{b}}}~ (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) ~\underline{\underline{\text{i}}}~ (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) ~\underline{\underline{\text{i}}}~ (\underline{\underline{\text{u}}}) \end{matrix}\)

\(\begin{matrix} (\underline{\underline{\text{a}}}) ~\underline{\underline{\text{b}}}~ (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) ~\underline{\underline{\text{i}}}~ (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) ~\underline{\underline{\text{b}}}~ (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) ~\underline{\underline{\text{i}}}~ (\underline{\underline{\text{u}}}) \end{matrix}\)


\(\text{Table 59.2} ~~ \operatorname{LIR}_2 (\operatorname{Den}(L_\text{B})) : \text{Denotative Component of} ~ L_\text{B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Transition}\!\)

\(\begin{matrix} ~\underline{\underline{\text{A}}}~ (\underline{\underline{\text{B}}}) \\[4pt] ~\underline{\underline{\text{A}}}~ (\underline{\underline{\text{B}}}) \end{matrix}\)

\(\begin{matrix} ~\underline{\underline{\text{a}}}~ (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) ~\underline{\underline{\text{u}}}~ \end{matrix}\)

\(\begin{matrix} ({\langle\underline{\underline{\text{a}}}\rangle}_Y, {\langle\underline{\underline{\text{A}}}\rangle}_X) \\[4pt] ({\langle\underline{\underline{\text{u}}}\rangle}_Y, {\langle\underline{\underline{\text{A}}}\rangle}_X) \end{matrix}\)

\(\begin{matrix} (\underline{\underline{\text{A}}}) ~\underline{\underline{\text{B}}}~ \\[4pt] (\underline{\underline{\text{A}}}) ~\underline{\underline{\text{B}}}~ \end{matrix}\)

\(\begin{matrix} (\underline{\underline{\text{a}}}) ~\underline{\underline{\text{b}}}~ (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) ~\underline{\underline{\text{i}}}~ (\underline{\underline{\text{u}}}) \end{matrix}\)

\(\begin{matrix} ({\langle\underline{\underline{\text{b}}}\rangle}_Y, {\langle\underline{\underline{\text{B}}}\rangle}_X) \\[4pt] ({\langle\underline{\underline{\text{i}}}\rangle}_Y, {\langle\underline{\underline{\text{B}}}\rangle}_X) \end{matrix}\)


\(\text{Table 59.3} ~~ \operatorname{LIR}_2 (\operatorname{Con}(L_\text{B})) : \text{Connotative Component of} ~ L_\text{B}\!\)
\(\text{Sign}\!\) \(\text{Interpretant}\!\) \(\text{Transition}\!\)

\(\begin{matrix} ~\underline{\underline{\text{a}}}~ (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] ~\underline{\underline{\text{a}}}~ (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) ~\underline{\underline{\text{u}}}~ \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) ~\underline{\underline{\text{u}}}~ \end{matrix}\)

\(\begin{matrix} ~\underline{\underline{\text{a}}}~ (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) ~\underline{\underline{\text{u}}}~ \\[4pt] ~\underline{\underline{\text{a}}}~ (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) ~\underline{\underline{\text{u}}}~ \end{matrix}\)

\(\begin{matrix} (\underline{\underline{\text{da}}}) (\underline{\underline{\text{db}}}) (\underline{\underline{\text{di}}}) (\underline{\underline{\text{du}}}) \\[4pt] ~\underline{\underline{\text{da}}}~ (\underline{\underline{\text{db}}}) (\underline{\underline{\text{di}}}) ~\underline{\underline{\text{du}}}~ \\[4pt] ~\underline{\underline{\text{da}}}~ (\underline{\underline{\text{db}}}) (\underline{\underline{\text{di}}}) ~\underline{\underline{\text{du}}}~ \\[4pt] (\underline{\underline{\text{da}}}) (\underline{\underline{\text{db}}}) (\underline{\underline{\text{di}}}) (\underline{\underline{\text{du}}}) \end{matrix}\)

\(\begin{matrix} (\underline{\underline{\text{a}}}) ~\underline{\underline{\text{b}}}~ (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) ~\underline{\underline{\text{b}}}~ (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) ~\underline{\underline{\text{i}}}~ (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) ~\underline{\underline{\text{i}}}~ (\underline{\underline{\text{u}}}) \end{matrix}\)

\(\begin{matrix} (\underline{\underline{\text{a}}}) ~\underline{\underline{\text{b}}}~ (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) ~\underline{\underline{\text{i}}}~ (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) ~\underline{\underline{\text{b}}}~ (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) ~\underline{\underline{\text{i}}}~ (\underline{\underline{\text{u}}}) \end{matrix}\)

\(\begin{matrix} (\underline{\underline{\text{da}}}) (\underline{\underline{\text{db}}}) (\underline{\underline{\text{di}}}) (\underline{\underline{\text{du}}}) \\[4pt] (\underline{\underline{\text{da}}}) ~\underline{\underline{\text{db}}}~ ~\underline{\underline{\text{di}}}~ (\underline{\underline{\text{du}}}) \\[4pt] (\underline{\underline{\text{da}}}) ~\underline{\underline{\text{db}}}~ ~\underline{\underline{\text{di}}}~ (\underline{\underline{\text{du}}}) \\[4pt] (\underline{\underline{\text{da}}}) (\underline{\underline{\text{db}}}) (\underline{\underline{\text{di}}}) (\underline{\underline{\text{du}}}) \end{matrix}\)


\(\text{Table 60.1} ~~ \operatorname{LIR}_3 (L_\text{A}) : \text{Lateral Representation of} ~ L_\text{A}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} {\langle\underline{\underline{\text{A}}}\rangle}_X \\[4pt] {\langle\underline{\underline{\text{A}}}\rangle}_X \\[4pt] {\langle\underline{\underline{\text{A}}}\rangle}_X \\[4pt] {\langle\underline{\underline{\text{A}}}\rangle}_X \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{a}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{a}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{B}}}\rangle}_X \\[4pt] {\langle\underline{\underline{\text{B}}}\rangle}_X \\[4pt] {\langle\underline{\underline{\text{B}}}\rangle}_X \\[4pt] {\langle\underline{\underline{\text{B}}}\rangle}_X \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{b}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{b}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_Y \end{matrix}\)


\(\text{Table 60.2} ~~ \operatorname{LIR}_3 (\operatorname{Den}(L_\text{A})) : \text{Denotative Component of} ~ L_\text{A}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Transition}\!\)

\(\begin{matrix} {\langle\underline{\underline{\text{A}}}\rangle}_X \\[4pt] {\langle\underline{\underline{\text{A}}}\rangle}_X \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_Y \end{matrix}\)

\(\begin{matrix} ({\langle\underline{\underline{\text{a}}}\rangle}_Y, {\langle\underline{\underline{\text{A}}}\rangle}_X) \\[4pt] ({\langle\underline{\underline{\text{i}}}\rangle}_Y, {\langle\underline{\underline{\text{A}}}\rangle}_X) \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{B}}}\rangle}_X \\[4pt] {\langle\underline{\underline{\text{B}}}\rangle}_X \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_Y \end{matrix}\)

\(\begin{matrix} ({\langle\underline{\underline{\text{b}}}\rangle}_Y, {\langle\underline{\underline{\text{B}}}\rangle}_X) \\[4pt] ({\langle\underline{\underline{\text{u}}}\rangle}_Y, {\langle\underline{\underline{\text{B}}}\rangle}_X) \end{matrix}\)


\(\text{Table 60.3} ~~ \operatorname{LIR}_3 (\operatorname{Con}(L_\text{A})) : \text{Connotative Component of} ~ L_\text{A}\!\)
\(\text{Sign}\!\) \(\text{Interpretant}\!\) \(\text{Transition}\!\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{a}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{a}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_Y \end{matrix}\)

\(\begin{matrix} 0_{\operatorname{d}Y} \\[4pt] {\langle \operatorname{d}\underline{\underline{\text{a}}} ~ \operatorname{d}\underline{\underline{\text{i}}} \rangle}_{\operatorname{d}Y} \\[4pt] {\langle \operatorname{d}\underline{\underline{\text{a}}} ~ \operatorname{d}\underline{\underline{\text{i}}} \rangle}_{\operatorname{d}Y} \\[4pt] 0_{\operatorname{d}Y} \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{b}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{b}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_Y \end{matrix}\)

\(\begin{matrix} 0_{\operatorname{d}Y} \\[4pt] {\langle \operatorname{d}\underline{\underline{\text{b}}} ~ \operatorname{d}\underline{\underline{\text{u}}} \rangle}_{\operatorname{d}Y} \\[4pt] {\langle \operatorname{d}\underline{\underline{\text{b}}} ~ \operatorname{d}\underline{\underline{\text{u}}} \rangle}_{\operatorname{d}Y} \\[4pt] 0_{\operatorname{d}Y} \end{matrix}\)


\(\text{Table 61.1} ~~ \operatorname{LIR}_3 (L_\text{B}) : \text{Lateral Representation of} ~ L_\text{B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} {\langle\underline{\underline{\text{A}}}\rangle}_X \\[4pt] {\langle\underline{\underline{\text{A}}}\rangle}_X \\[4pt] {\langle\underline{\underline{\text{A}}}\rangle}_X \\[4pt] {\langle\underline{\underline{\text{A}}}\rangle}_X \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{a}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{a}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{B}}}\rangle}_X \\[4pt] {\langle\underline{\underline{\text{B}}}\rangle}_X \\[4pt] {\langle\underline{\underline{\text{B}}}\rangle}_X \\[4pt] {\langle\underline{\underline{\text{B}}}\rangle}_X \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{b}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{b}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_Y \end{matrix}\)


\(\text{Table 61.2} ~~ \operatorname{LIR}_3 (\operatorname{Den}(L_\text{B})) : \text{Denotative Component of} ~ L_\text{B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Transition}\!\)

\(\begin{matrix} {\langle\underline{\underline{\text{A}}}\rangle}_X \\[4pt] {\langle\underline{\underline{\text{A}}}\rangle}_X \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_Y \end{matrix}\)

\(\begin{matrix} ({\langle\underline{\underline{\text{a}}}\rangle}_Y, {\langle\underline{\underline{\text{A}}}\rangle}_X) \\[4pt] ({\langle\underline{\underline{\text{u}}}\rangle}_Y, {\langle\underline{\underline{\text{A}}}\rangle}_X) \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{B}}}\rangle}_X \\[4pt] {\langle\underline{\underline{\text{B}}}\rangle}_X \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_Y \end{matrix}\)

\(\begin{matrix} ({\langle\underline{\underline{\text{b}}}\rangle}_Y, {\langle\underline{\underline{\text{B}}}\rangle}_X) \\[4pt] ({\langle\underline{\underline{\text{i}}}\rangle}_Y, {\langle\underline{\underline{\text{B}}}\rangle}_X) \end{matrix}\)


\(\text{Table 61.3} ~~ \operatorname{LIR}_3 (\operatorname{Con}(L_\text{B})) : \text{Connotative Component of} ~ L_\text{B}\!\)
\(\text{Sign}\!\) \(\text{Interpretant}\!\) \(\text{Transition}\!\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{a}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{a}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_Y \end{matrix}\)

\(\begin{matrix} 0_{\operatorname{d}Y} \\[4pt] {\langle \operatorname{d}\underline{\underline{\text{a}}} ~ \operatorname{d}\underline{\underline{\text{u}}} \rangle}_{\operatorname{d}Y} \\[4pt] {\langle \operatorname{d}\underline{\underline{\text{a}}} ~ \operatorname{d}\underline{\underline{\text{u}}} \rangle}_{\operatorname{d}Y} \\[4pt] 0_{\operatorname{d}Y} \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{b}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{b}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_Y \end{matrix}\)

\(\begin{matrix} 0_{\operatorname{d}Y} \\[4pt] {\langle \operatorname{d}\underline{\underline{\text{b}}} ~ \operatorname{d}\underline{\underline{\text{i}}} \rangle}_{\operatorname{d}Y} \\[4pt] {\langle \operatorname{d}\underline{\underline{\text{b}}} ~ \operatorname{d}\underline{\underline{\text{i}}} \rangle}_{\operatorname{d}Y} \\[4pt] 0_{\operatorname{d}Y} \end{matrix}\)


\(\text{Table 62.1} ~~ \text{Analytic Codes for Object Features}\!\)
\(\text{Category}\!\) \(\text{Mnemonic}\!\) \(\text{Code}\!\)

\(\begin{array}{l} \text{Self} \\[4pt] \text{Other} \end{array}\)

\(\begin{matrix} \text{self} \\[4pt] \text{(self)} \end{matrix}\)

\(\begin{matrix} \text{s} \\[4pt] \text{(s)} \end{matrix}\)


\(\text{Table 62.2} ~~ \text{Analytic Codes for Semantic Features}\!\)
\(\text{Category}\!\) \(\text{Mnemonic}\!\) \(\text{Code}\!\)

\(\begin{array}{l} \text{1st Person} \\[4pt] \text{2nd Person} \end{array}\)

\(\begin{matrix} \text{my} \\[4pt] \text{(my)} \end{matrix}\)

\(\begin{matrix} \text{m} \\[4pt] \text{(m)} \end{matrix}\)


\(\text{Table 62.3} ~~ \text{Analytic Codes for Syntactic Features}\!\)
\(\text{Category}\!\) \(\text{Mnemonic}\!\) \(\text{Code}\!\)

\(\begin{array}{l} \text{Noun} \\[4pt] \text{Pronoun} \end{array}\)

\(\begin{matrix} \text{name} \\[4pt] \text{(name)} \end{matrix}\)

\(\begin{matrix} \text{n} \\[4pt] \text{(n)} \end{matrix}\)


\(\text{Table 63.} ~~ \text{Analytic Codes for Interpreter A}\!\)
\(\text{Name}\!\) \(\text{Vector}\!\) \(\text{Conjunct Term}\!\) \(\text{Mnemonic}\!\) \(\text{Code}\!\)

\(\begin{matrix} \text{A} \\[4pt] \text{B} \\[4pt] {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {1}_X \\[4pt] {0}_X \\[4pt] {11}_Y \\[4pt] {01}_Y \\[4pt] {10}_Y \\[4pt] {00}_Y \end{matrix}\)

\(\begin{matrix} ~x_1~ \\[4pt] (x_1) \\[4pt] ~y_1~~y_2~ \\[4pt] (y_1)~y_2~ \\[4pt] ~y_1~(y_2) \\[4pt] (y_1)(y_2) \end{matrix}\)

\(\begin{matrix} ~\text{self}~ \\[4pt] (\text{self}) \\[4pt] ~\text{my}~~\text{name}~ \\[4pt] (\text{my})~\text{name}~ \\[4pt] ~\text{my}~(\text{name}) \\[4pt] (\text{my})(\text{name}) \end{matrix}\)

\(\begin{matrix} ~\text{s}~ \\[4pt] (\text{s}) \\[4pt] ~\text{m}~~\text{n}~ \\[4pt] (\text{m})~\text{n}~ \\[4pt] ~\text{m}~(\text{n}) \\[4pt] (\text{m})(\text{n}) \end{matrix}\)


\(\text{Table 64.} ~~ \text{Analytic Codes for Interpreter B}\!\)
\(\text{Name}\!\) \(\text{Vector}\!\) \(\text{Conjunct Term}\!\) \(\text{Mnemonic}\!\) \(\text{Code}\!\)

\(\begin{matrix} \text{A} \\[4pt] \text{B} \\[4pt] {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {0}_X \\[4pt] {1}_X \\[4pt] {01}_Y \\[4pt] {11}_Y \\[4pt] {10}_Y \\[4pt] {00}_Y \end{matrix}\)

\(\begin{matrix} (x_1) \\[4pt] ~x_1~ \\[4pt] (y_1)~y_2~ \\[4pt] ~y_1~~y_2~ \\[4pt] ~y_1~(y_2) \\[4pt] (y_1)(y_2) \end{matrix}\)

\(\begin{matrix} (\text{self}) \\[4pt] ~\text{self}~ \\[4pt] (\text{my})~\text{name}~ \\[4pt] ~\text{my}~~\text{name}~ \\[4pt] ~\text{my}~(\text{name}) \\[4pt] (\text{my})(\text{name}) \end{matrix}\)

\(\begin{matrix} (\text{s}) \\[4pt] ~\text{s}~ \\[4pt] (\text{m})~\text{n}~ \\[4pt] ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~(\text{n}) \\[4pt] (\text{m})(\text{n}) \end{matrix}\)


\(\text{Table 65.1} ~~ \operatorname{AIR}_1 (L_\text{A}) : \text{Analytic Representation of} ~ L_\text{A}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{s} \\[4pt] \text{s} \\[4pt] \text{s} \\[4pt] \text{s} \end{matrix}\)

\(\begin{matrix} ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~(\text{n}) \\[4pt] ~\text{m}~(\text{n}) \end{matrix}\)

\(\begin{matrix} ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~(\text{n}) \\[4pt] ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~(\text{n}) \end{matrix}\)

\(\begin{matrix} (\text{s}) \\[4pt] (\text{s}) \\[4pt] (\text{s}) \\[4pt] (\text{s}) \end{matrix}\)

\(\begin{matrix} (\text{m})~\text{n}~ \\[4pt] (\text{m})~\text{n}~ \\[4pt] (\text{m})(\text{n}) \\[4pt] (\text{m})(\text{n}) \end{matrix}\)

\(\begin{matrix} (\text{m})~\text{n}~ \\[4pt] (\text{m})(\text{n}) \\[4pt] (\text{m})~\text{n}~ \\[4pt] (\text{m})(\text{n}) \end{matrix}\)


\(\text{Table 65.2} ~~ \operatorname{AIR}_1 (\operatorname{Den}(L_\text{A})) : \text{Denotative Component of} ~ L_\text{A}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Transition}\!\)

\(\begin{matrix} \text{s} \\[4pt] \text{s} \end{matrix}\)

\(\begin{matrix} ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~(\text{n}) \end{matrix}\)

\(\begin{matrix} ~\text{m}~~\text{n}~ \mapsto ~\text{s}~ \\[4pt] ~\text{m}~(\text{n}) \mapsto ~\text{s}~ \end{matrix}\)

\(\begin{matrix} (\text{s}) \\[4pt] (\text{s}) \end{matrix}\)

\(\begin{matrix} (\text{m})~\text{n}~ \\[4pt] (\text{m})(\text{n}) \end{matrix}\)

\(\begin{matrix} (\text{m})~\text{n}~ \mapsto (\text{s}) \\[4pt] (\text{m})(\text{n}) \mapsto (\text{s}) \end{matrix}\)


\(\text{Table 65.3} ~~ \operatorname{AIR}_1 (\operatorname{Con}(L_\text{A})) : \text{Connotative Component of} ~ L_\text{A}\!\)
\(\text{Sign}\!\) \(\text{Interpretant}\!\) \(\text{Transition}\!\)

\(\begin{matrix} ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~(\text{n}) \\[4pt] ~\text{m}~(\text{n}) \end{matrix}\)

\(\begin{matrix} ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~(\text{n}) \\[4pt] ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~(\text{n}) \end{matrix}\)

\(\begin{matrix} (\text{dm})(\text{dn}) \\[4pt] (\text{dm})~\text{dn}~ \\[4pt] (\text{dm})~\text{dn}~ \\[4pt] (\text{dm})(\text{dn}) \end{matrix}\)

\(\begin{matrix} (\text{m})~\text{n}~ \\[4pt] (\text{m})~\text{n}~ \\[4pt] (\text{m})(\text{n}) \\[4pt] (\text{m})(\text{n}) \end{matrix}\)

\(\begin{matrix} (\text{m})~\text{n}~ \\[4pt] (\text{m})(\text{n}) \\[4pt] (\text{m})~\text{n}~ \\[4pt] (\text{m})(\text{n}) \end{matrix}\)

\(\begin{matrix} (\text{dm})(\text{dn}) \\[4pt] (\text{dm})~\text{dn}~ \\[4pt] (\text{dm})~\text{dn}~ \\[4pt] (\text{dm})(\text{dn}) \end{matrix}\)


\(\text{Table 66.1} ~~ \operatorname{AIR}_1 (L_\text{B}) : \text{Analytic Representation of} ~ L_\text{B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} (\text{s}) \\[4pt] (\text{s}) \\[4pt] (\text{s}) \\[4pt] (\text{s}) \end{matrix}\)

\(\begin{matrix} (\text{m})~\text{n}~ \\[4pt] (\text{m})~\text{n}~ \\[4pt] (\text{m})(\text{n}) \\[4pt] (\text{m})(\text{n}) \end{matrix}\)

\(\begin{matrix} (\text{m})~\text{n}~ \\[4pt] (\text{m})(\text{n}) \\[4pt] (\text{m})~\text{n}~ \\[4pt] (\text{m})(\text{n}) \end{matrix}\)

\(\begin{matrix} \text{s} \\[4pt] \text{s} \\[4pt] \text{s} \\[4pt] \text{s} \end{matrix}\)

\(\begin{matrix} ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~(\text{n}) \\[4pt] ~\text{m}~(\text{n}) \end{matrix}\)

\(\begin{matrix} ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~(\text{n}) \\[4pt] ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~(\text{n}) \end{matrix}\)


\(\text{Table 66.2} ~~ \operatorname{AIR}_1 (\operatorname{Den}(L_\text{B})) : \text{Denotative Component of} ~ L_\text{B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Transition}\!\)

\(\begin{matrix} (\text{s}) \\[4pt] (\text{s}) \end{matrix}\)

\(\begin{matrix} (\text{m})~\text{n}~ \\[4pt] (\text{m})(\text{n}) \end{matrix}\)

\(\begin{matrix} (\text{m})~\text{n}~ \mapsto (\text{s}) \\[4pt] (\text{m})(\text{n}) \mapsto (\text{s}) \end{matrix}\)

\(\begin{matrix} \text{s} \\[4pt] \text{s} \end{matrix}\)

\(\begin{matrix} ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~(\text{n}) \end{matrix}\)

\(\begin{matrix} ~\text{m}~~\text{n}~ \mapsto ~\text{s}~ \\[4pt] ~\text{m}~(\text{n}) \mapsto ~\text{s}~ \end{matrix}\)


\(\text{Table 66.3} ~~ \operatorname{AIR}_1 (\operatorname{Con}(L_\text{B})) : \text{Connotative Component of} ~ L_\text{B}\!\)
\(\text{Sign}\!\) \(\text{Interpretant}\!\) \(\text{Transition}\!\)

\(\begin{matrix} (\text{m})~\text{n}~ \\[4pt] (\text{m})~\text{n}~ \\[4pt] (\text{m})(\text{n}) \\[4pt] (\text{m})(\text{n}) \end{matrix}\)

\(\begin{matrix} (\text{m})~\text{n}~ \\[4pt] (\text{m})(\text{n}) \\[4pt] (\text{m})~\text{n}~ \\[4pt] (\text{m})(\text{n}) \end{matrix}\)

\(\begin{matrix} (\text{dm})(\text{dn}) \\[4pt] (\text{dm})~\text{dn}~ \\[4pt] (\text{dm})~\text{dn}~ \\[4pt] (\text{dm})(\text{dn}) \end{matrix}\)

\(\begin{matrix} ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~(\text{n}) \\[4pt] ~\text{m}~(\text{n}) \end{matrix}\)

\(\begin{matrix} ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~(\text{n}) \\[4pt] ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~(\text{n}) \end{matrix}\)

\(\begin{matrix} (\text{dm})(\text{dn}) \\[4pt] (\text{dm})~\text{dn}~ \\[4pt] (\text{dm})~\text{dn}~ \\[4pt] (\text{dm})(\text{dn}) \end{matrix}\)


\(\text{Table 67.1} ~~ \operatorname{AIR}_2 (L_\text{A}) : \text{Analytic Representation of} ~ L_\text{A}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} {\langle * \rangle}_X \\[4pt] {\langle * \rangle}_X \\[4pt] {\langle * \rangle}_X \\[4pt] {\langle * \rangle}_X \end{matrix}\)

\(\begin{matrix} {\langle * \rangle}_Y \\[4pt] {\langle * \rangle}_Y \\[4pt] {\langle\text{m}\rangle}_Y \\[4pt] {\langle\text{m}\rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle * \rangle}_Y \\[4pt] {\langle\text{m}\rangle}_Y \\[4pt] {\langle * \rangle}_Y \\[4pt] {\langle\text{m}\rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle ! \rangle}_X \\[4pt] {\langle ! \rangle}_X \\[4pt] {\langle ! \rangle}_X \\[4pt] {\langle ! \rangle}_X \end{matrix}\)

\(\begin{matrix} {\langle\text{n}\rangle}_Y \\[4pt] {\langle\text{n}\rangle}_Y \\[4pt] {\langle ! \rangle}_Y \\[4pt] {\langle ! \rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle\text{n}\rangle}_Y \\[4pt] {\langle ! \rangle}_Y \\[4pt] {\langle\text{n}\rangle}_Y \\[4pt] {\langle ! \rangle}_Y \end{matrix}\)


\(\text{Table 67.2} ~~ \operatorname{AIR}_2 (\operatorname{Den}(L_\text{A})) : \text{Denotative Component of} ~ L_\text{A}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Transition}\!\)

\(\begin{matrix} {\langle * \rangle}_X \\[4pt] {\langle * \rangle}_X \end{matrix}\)

\(\begin{matrix} {\langle * \rangle}_Y \\[4pt] {\langle\text{m}\rangle}_Y \end{matrix}\)

\(\begin{array}{r} {\langle * \rangle}_Y \mapsto {\langle * \rangle}_X \\[4pt] {\langle\text{m}\rangle}_Y \mapsto {\langle * \rangle}_X \end{array}\)

\(\begin{matrix} {\langle ! \rangle}_X \\[4pt] {\langle ! \rangle}_X \end{matrix}\)

\(\begin{matrix} {\langle\text{n}\rangle}_Y \\[4pt] {\langle ! \rangle}_Y \end{matrix}\)

\(\begin{array}{r} {\langle\text{n}\rangle}_Y \mapsto {\langle ! \rangle}_X \\[4pt] {\langle ! \rangle}_Y \mapsto {\langle ! \rangle}_X \end{array}\)


\(\text{Table 67.3} ~~ \operatorname{AIR}_2 (\operatorname{Con}(L_\text{A})) : \text{Connotative Component of} ~ L_\text{A}\!\)
\(\text{Sign}\!\) \(\text{Interpretant}\!\) \(\text{Transition}\!\)

\(\begin{matrix} {\langle * \rangle}_Y \\[4pt] {\langle * \rangle}_Y \\[4pt] {\langle\text{m}\rangle}_Y \\[4pt] {\langle\text{m}\rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle * \rangle}_Y \\[4pt] {\langle\text{m}\rangle}_Y \\[4pt] {\langle * \rangle}_Y \\[4pt] {\langle\text{m}\rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle\operatorname{d}!\rangle}_{\operatorname{d}Y} \\[4pt] {\langle\operatorname{d}\text{n}\rangle}_{\operatorname{d}Y} \\[4pt] {\langle\operatorname{d}\text{n}\rangle}_{\operatorname{d}Y} \\[4pt] {\langle\operatorname{d}!\rangle}_{\operatorname{d}Y} \end{matrix}\)

\(\begin{matrix} {\langle\text{n}\rangle}_Y \\[4pt] {\langle\text{n}\rangle}_Y \\[4pt] {\langle ! \rangle}_Y \\[4pt] {\langle ! \rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle\text{n}\rangle}_Y \\[4pt] {\langle ! \rangle}_Y \\[4pt] {\langle\text{n}\rangle}_Y \\[4pt] {\langle ! \rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle\operatorname{d}!\rangle}_{\operatorname{d}Y} \\[4pt] {\langle\operatorname{d}\text{n}\rangle}_{\operatorname{d}Y} \\[4pt] {\langle\operatorname{d}\text{n}\rangle}_{\operatorname{d}Y} \\[4pt] {\langle\operatorname{d}!\rangle}_{\operatorname{d}Y} \end{matrix}\)


\(\text{Table 68.1} ~~ \operatorname{AIR}_2 (L_\text{B}) : \text{Analytic Representation of} ~ L_\text{B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} {\langle ! \rangle}_X \\[4pt] {\langle ! \rangle}_X \\[4pt] {\langle ! \rangle}_X \\[4pt] {\langle ! \rangle}_X \end{matrix}\)

\(\begin{matrix} {\langle\text{n}\rangle}_Y \\[4pt] {\langle\text{n}\rangle}_Y \\[4pt] {\langle ! \rangle}_Y \\[4pt] {\langle ! \rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle\text{n}\rangle}_Y \\[4pt] {\langle ! \rangle}_Y \\[4pt] {\langle\text{n}\rangle}_Y \\[4pt] {\langle ! \rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle * \rangle}_X \\[4pt] {\langle * \rangle}_X \\[4pt] {\langle * \rangle}_X \\[4pt] {\langle * \rangle}_X \end{matrix}\)

\(\begin{matrix} {\langle * \rangle}_Y \\[4pt] {\langle * \rangle}_Y \\[4pt] {\langle\text{m}\rangle}_Y \\[4pt] {\langle\text{m}\rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle * \rangle}_Y \\[4pt] {\langle\text{m}\rangle}_Y \\[4pt] {\langle * \rangle}_Y \\[4pt] {\langle\text{m}\rangle}_Y \end{matrix}\)


\(\text{Table 68.2} ~~ \operatorname{AIR}_2 (\operatorname{Den}(L_\text{B})) : \text{Denotative Component of} ~ L_\text{B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Transition}\!\)

\(\begin{matrix} {\langle ! \rangle}_X \\[4pt] {\langle ! \rangle}_X \end{matrix}\)

\(\begin{matrix} {\langle\text{n}\rangle}_Y \\[4pt] {\langle ! \rangle}_Y \end{matrix}\)

\(\begin{array}{r} {\langle\text{n}\rangle}_Y \mapsto {\langle ! \rangle}_X \\[4pt] {\langle ! \rangle}_Y \mapsto {\langle ! \rangle}_X \end{array}\)

\(\begin{matrix} {\langle * \rangle}_X \\[4pt] {\langle * \rangle}_X \end{matrix}\)

\(\begin{matrix} {\langle * \rangle}_Y \\[4pt] {\langle\text{m}\rangle}_Y \end{matrix}\)

\(\begin{array}{r} {\langle * \rangle}_Y \mapsto {\langle * \rangle}_X \\[4pt] {\langle\text{m}\rangle}_Y \mapsto {\langle * \rangle}_X \end{array}\)


\(\text{Table 68.3} ~~ \operatorname{AIR}_2 (\operatorname{Con}(L_\text{B})) : \text{Connotative Component of} ~ L_\text{B}\!\)
\(\text{Sign}\!\) \(\text{Interpretant}\!\) \(\text{Transition}\!\)

\(\begin{matrix} {\langle\text{n}\rangle}_Y \\[4pt] {\langle\text{n}\rangle}_Y \\[4pt] {\langle ! \rangle}_Y \\[4pt] {\langle ! \rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle\text{n}\rangle}_Y \\[4pt] {\langle ! \rangle}_Y \\[4pt] {\langle\text{n}\rangle}_Y \\[4pt] {\langle ! \rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle\operatorname{d}!\rangle}_{\operatorname{d}Y} \\[4pt] {\langle\operatorname{d}\text{n}\rangle}_{\operatorname{d}Y} \\[4pt] {\langle\operatorname{d}\text{n}\rangle}_{\operatorname{d}Y} \\[4pt] {\langle\operatorname{d}!\rangle}_{\operatorname{d}Y} \end{matrix}\)

\(\begin{matrix} {\langle * \rangle}_Y \\[4pt] {\langle * \rangle}_Y \\[4pt] {\langle\text{m}\rangle}_Y \\[4pt] {\langle\text{m}\rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle * \rangle}_Y \\[4pt] {\langle\text{m}\rangle}_Y \\[4pt] {\langle * \rangle}_Y \\[4pt] {\langle\text{m}\rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle\operatorname{d}!\rangle}_{\operatorname{d}Y} \\[4pt] {\langle\operatorname{d}\text{n}\rangle}_{\operatorname{d}Y} \\[4pt] {\langle\operatorname{d}\text{n}\rangle}_{\operatorname{d}Y} \\[4pt] {\langle\operatorname{d}!\rangle}_{\operatorname{d}Y} \end{matrix}\)


\(\text{Table 69.} ~~ \text{Schematism of Sequential Inference}\!\)
\(\text{Initial Premiss}\!\) \(\text{Differential Premiss}\!\) \(\text{Inferred Sequel}\!\)

\(\begin{matrix} ~x~ ~\operatorname{at}~ t \\[4pt] ~x~ ~\operatorname{at}~ t \\[4pt] (x) ~\operatorname{at}~ t \\[4pt] (x) ~\operatorname{at}~ t \end{matrix}\)

\(\begin{matrix} ~\operatorname{d}x~ ~\operatorname{at}~ t \\[4pt] (\operatorname{d}x) ~\operatorname{at}~ t \\[4pt] ~\operatorname{d}x~ ~\operatorname{at}~ t \\[4pt] (\operatorname{d}x) ~\operatorname{at}~ t \end{matrix}\)

\(\begin{matrix} (x) ~\operatorname{at}~ t' \\[4pt] ~x~ ~\operatorname{at}~ t' \\[4pt] ~x~ ~\operatorname{at}~ t' \\[4pt] (x) ~\operatorname{at}~ t' \end{matrix}\)


\(\text{Table 70.1} ~~ \text{Group Representation} ~ \operatorname{Rep}^\text{A} (V_4)\!\)
\(\begin{matrix} \text{Abstract} \\ \text{Element} \end{matrix}\) \(\begin{matrix} \text{Logical} \\ \text{Element} \end{matrix}\) \(\begin{matrix} \text{Active} \\ \text{List} \end{matrix}\) \(\begin{matrix} \text{Active} \\ \text{Term} \end{matrix}\) \(\begin{matrix} \text{Genetic} \\ \text{Element} \end{matrix}\)

\(\begin{matrix} 1 \\[4pt] r \\[4pt] s \\[4pt] t \end{matrix}\)

\(\begin{matrix} (\operatorname{d}\underline{\underline{\text{a}}}) (\operatorname{d}\underline{\underline{\text{b}}}) (\operatorname{d}\underline{\underline{\text{i}}}) (\operatorname{d}\underline{\underline{\text{u}}}) \\[4pt] ~\operatorname{d}\underline{\underline{\text{a}}}~ (\operatorname{d}\underline{\underline{\text{b}}}) ~\operatorname{d}\underline{\underline{\text{i}}}~ (\operatorname{d}\underline{\underline{\text{u}}}) \\[4pt] (\operatorname{d}\underline{\underline{\text{a}}}) ~\operatorname{d}\underline{\underline{\text{b}}}~ (\operatorname{d}\underline{\underline{\text{i}}}) ~\operatorname{d}\underline{\underline{\text{u}}}~ \\[4pt] ~\operatorname{d}\underline{\underline{\text{a}}}~ ~\operatorname{d}\underline{\underline{\text{b}}}~ ~\operatorname{d}\underline{\underline{\text{i}}}~ ~\operatorname{d}\underline{\underline{\text{u}}}~ \end{matrix}\)

\(\begin{matrix} \langle \operatorname{d}! \rangle \\[4pt] \langle \operatorname{d}\underline{\underline{\text{a}}} ~ \operatorname{d}\underline{\underline{\text{i}}} \rangle \\[4pt] \langle \operatorname{d}\underline{\underline{\text{b}}} ~ \operatorname{d}\underline{\underline{\text{u}}} \rangle \\[4pt] \langle \operatorname{d}* \rangle \end{matrix}\)

\(\begin{matrix} \operatorname{d}! \\[4pt] \operatorname{d}\underline{\underline{\text{a}}} \cdot \operatorname{d}\underline{\underline{\text{i}}} ~ ! \\[4pt] \operatorname{d}\underline{\underline{\text{b}}} \cdot \operatorname{d}\underline{\underline{\text{u}}} ~ ! \\[4pt] \operatorname{d}* \end{matrix}\)

\(\begin{matrix} 1 \\[4pt] \operatorname{d}_{\text{ai}} \\[4pt] \operatorname{d}_{\text{bu}} \\[4pt] \operatorname{d}_{\text{ai}} * \operatorname{d}_{\text{bu}} \end{matrix}\)


\(\text{Table 70.2} ~~ \text{Group Representation} ~ \operatorname{Rep}^\text{B} (V_4)\!\)
\(\begin{matrix} \text{Abstract} \\ \text{Element} \end{matrix}\) \(\begin{matrix} \text{Logical} \\ \text{Element} \end{matrix}\) \(\begin{matrix} \text{Active} \\ \text{List} \end{matrix}\) \(\begin{matrix} \text{Active} \\ \text{Term} \end{matrix}\) \(\begin{matrix} \text{Genetic} \\ \text{Element} \end{matrix}\)

\(\begin{matrix} 1 \\[4pt] r \\[4pt] s \\[4pt] t \end{matrix}\)

\(\begin{matrix} (\operatorname{d}\underline{\underline{\text{a}}}) (\operatorname{d}\underline{\underline{\text{b}}}) (\operatorname{d}\underline{\underline{\text{i}}}) (\operatorname{d}\underline{\underline{\text{u}}}) \\[4pt] ~\operatorname{d}\underline{\underline{\text{a}}}~ (\operatorname{d}\underline{\underline{\text{b}}}) (\operatorname{d}\underline{\underline{\text{i}}}) ~\operatorname{d}\underline{\underline{\text{u}}}~ \\[4pt] (\operatorname{d}\underline{\underline{\text{a}}}) ~\operatorname{d}\underline{\underline{\text{b}}}~ ~\operatorname{d}\underline{\underline{\text{i}}}~ (\operatorname{d}\underline{\underline{\text{u}}}) \\[4pt] ~\operatorname{d}\underline{\underline{\text{a}}}~ ~\operatorname{d}\underline{\underline{\text{b}}}~ ~\operatorname{d}\underline{\underline{\text{i}}}~ ~\operatorname{d}\underline{\underline{\text{u}}}~ \end{matrix}\)

\(\begin{matrix} \langle \operatorname{d}! \rangle \\[4pt] \langle \operatorname{d}\underline{\underline{\text{a}}} ~ \operatorname{d}\underline{\underline{\text{u}}} \rangle \\[4pt] \langle \operatorname{d}\underline{\underline{\text{b}}} ~ \operatorname{d}\underline{\underline{\text{i}}} \rangle \\[4pt] \langle \operatorname{d}* \rangle \end{matrix}\)

\(\begin{matrix} \operatorname{d}! \\[4pt] \operatorname{d}\underline{\underline{\text{a}}} \cdot \operatorname{d}\underline{\underline{\text{u}}} ~ ! \\[4pt] \operatorname{d}\underline{\underline{\text{b}}} \cdot \operatorname{d}\underline{\underline{\text{i}}} ~ ! \\[4pt] \operatorname{d}* \end{matrix}\)

\(\begin{matrix} 1 \\[4pt] \operatorname{d}_{\text{au}} \\[4pt] \operatorname{d}_{\text{bi}} \\[4pt] \operatorname{d}_{\text{au}} * \operatorname{d}_{\text{bi}} \end{matrix}\)


\(\text{Table 70.3} ~~ \text{Group Representation} ~ \operatorname{Rep}^\text{C} (V_4)\!\)
\(\begin{matrix} \text{Abstract} \\ \text{Element} \end{matrix}\) \(\begin{matrix} \text{Logical} \\ \text{Element} \end{matrix}\) \(\begin{matrix} \text{Active} \\ \text{List} \end{matrix}\) \(\begin{matrix} \text{Active} \\ \text{Term} \end{matrix}\) \(\begin{matrix} \text{Genetic} \\ \text{Element} \end{matrix}\)

\(\begin{matrix} 1 \\[4pt] r \\[4pt] s \\[4pt] t \end{matrix}\)

\(\begin{matrix} (\operatorname{d}\text{m}) (\operatorname{d}\text{n}) \\[4pt] ~\operatorname{d}\text{m}~ (\operatorname{d}\text{n}) \\[4pt] (\operatorname{d}\text{m}) ~\operatorname{d}\text{n}~ \\[4pt] ~\operatorname{d}\text{m}~ ~\operatorname{d}\text{n}~ \end{matrix}\)

\(\begin{matrix} \langle\operatorname{d}!\rangle \\[4pt] \langle\operatorname{d}\text{m}\rangle \\[4pt] \langle\operatorname{d}\text{n}\rangle \\[4pt] \langle\operatorname{d}*\rangle \end{matrix}\)

\(\begin{matrix} \operatorname{d}! \\[4pt] \operatorname{d}\text{m}! \\[4pt] \operatorname{d}\text{n}! \\[4pt] \operatorname{d}* \end{matrix}\)

\(\begin{matrix} 1 \\[4pt] \operatorname{d}_{\text{m}} \\[4pt] \operatorname{d}_{\text{n}} \\[4pt] \operatorname{d}_{\text{m}} * \operatorname{d}_{\text{n}} \end{matrix}\)


\(\text{Table 71.1} ~~ \text{The Differential Group} ~ G = V_4\!\)
\(\begin{matrix} \text{Abstract} \\ \text{Element} \end{matrix}\) \(\begin{matrix} \text{Logical} \\ \text{Element} \end{matrix}\) \(\begin{matrix} \text{Active} \\ \text{List} \end{matrix}\) \(\begin{matrix} \text{Active} \\ \text{Term} \end{matrix}\) \(\begin{matrix} \text{Genetic} \\ \text{Element} \end{matrix}\)

\(\begin{matrix} 1 \\[4pt] r \\[4pt] s \\[4pt] t \end{matrix}\)

\(\begin{matrix} (\operatorname{d}\text{m}) (\operatorname{d}\text{n}) \\[4pt] ~\operatorname{d}\text{m}~ (\operatorname{d}\text{n}) \\[4pt] (\operatorname{d}\text{m}) ~\operatorname{d}\text{n}~ \\[4pt] ~\operatorname{d}\text{m}~ ~\operatorname{d}\text{n}~ \end{matrix}\)

\(\begin{matrix} \langle\operatorname{d}!\rangle \\[4pt] \langle\operatorname{d}\text{m}\rangle \\[4pt] \langle\operatorname{d}\text{n}\rangle \\[4pt] \langle\operatorname{d}*\rangle \end{matrix}\)

\(\begin{matrix} \operatorname{d}! \\[4pt] \operatorname{d}\text{m}! \\[4pt] \operatorname{d}\text{n}! \\[4pt] \operatorname{d}* \end{matrix}\)

\(\begin{matrix} 1 \\[4pt] \operatorname{d}_{\text{m}} \\[4pt] \operatorname{d}_{\text{n}} \\[4pt] \operatorname{d}_{\text{m}} * \operatorname{d}_{\text{n}} \end{matrix}\)


\(\text{Table 71.2} ~~ \text{Cosets of} ~ G_\text{m} ~ \text{in} ~ G\!\)
\(\text{Group Coset}\!\) \(\text{Logical Coset}\!\) \(\text{Logical Element}\!\) \(\text{Group Element}\!\)
\(G_\text{m}\!\) \((\operatorname{d}\text{m})\!\)

\(\begin{matrix} (\operatorname{d}\text{m})(\operatorname{d}\text{n}) \\[4pt] (\operatorname{d}\text{m})~\operatorname{d}\text{n}~ \end{matrix}\)

\(\begin{matrix} 1 \\[4pt] \operatorname{d}_\text{n} \end{matrix}\)

\(G_\text{m} * \operatorname{d}_\text{m}\!\) \(\operatorname{d}\text{m}\!\)

\(\begin{matrix} ~\operatorname{d}\text{m}~(\operatorname{d}\text{n}) \\[4pt] ~\operatorname{d}\text{m}~~\operatorname{d}\text{n}~ \end{matrix}\)

\(\begin{matrix} \operatorname{d}_\text{m} \\[4pt] \operatorname{d}_\text{n} * \operatorname{d}_\text{m} \end{matrix}\)


\(\text{Table 71.3} ~~ \text{Cosets of} ~ G_\text{n} ~ \text{in} ~ G\!\)
\(\text{Group Coset}\!\) \(\text{Logical Coset}\!\) \(\text{Logical Element}\!\) \(\text{Group Element}\!\)
\(G_\text{n}\!\) \((\operatorname{d}\text{n})\!\)

\(\begin{matrix} (\operatorname{d}\text{m})(\operatorname{d}\text{n}) \\[4pt] ~\operatorname{d}\text{m}~(\operatorname{d}\text{n}) \end{matrix}\)

\(\begin{matrix} 1 \\[4pt] \operatorname{d}_\text{m} \end{matrix}\)

\(G_\text{n} * \operatorname{d}_\text{n}\!\) \(\operatorname{d}\text{n}\!\)

\(\begin{matrix} (\operatorname{d}\text{m})~\operatorname{d}\text{n}~ \\[4pt] ~\operatorname{d}\text{m}~~\operatorname{d}\text{n}~ \end{matrix}\)

\(\begin{matrix} \operatorname{d}_\text{n} \\[4pt] \operatorname{d}_\text{m} * \operatorname{d}_\text{n} \end{matrix}\)


Current Work


Table 69.1  Sign Relation of Interpreter A
	Object	Sign	Interpretant
	A	"A"	"A"
	A	"A"	"i"
	A	"i"	"A"
	A	"i"	"i"
	B	"B"	"B"
	B	"B"	"u"
	B	"u"	"B"
	B	"u"	"u"


Table 69.2  Dyadic Projection AOS
	Object	Sign
	A	"A"
	A	"i"
	B	"B"
	B	"u"


Table 69.3  Dyadic Projection AOI
	Object	Interpretant
	A	"A"
	A	"i"
	B	"B"
	B	"u"


Table 69.4  Dyadic Projection ASI
	Sign	Interpretant
	"A"	"A"
	"A"	"i"
	"i"	"A"
	"i"	"i"
	"B"	"B"
	"B"	"u"
	"u"	"B"
	"u"	"u"


Table 70.1  Sign Relation of Interpreter B
	Object	Sign	Interpretant
	A	"A"	"A"
	A	"A"	"u"
	A	"u"	"A"
	A	"u"	"u"
	B	"B"	"B"
	B	"B"	"i"
	B	"i"	"B"
	B	"i"	"i"


Table 70.2  Dyadic Projection BOS
	Object	Sign
	A	"A"
	A	"u"
	B	"B"
	B	"i"


Table 70.3  Dyadic Projection BOI
	Object	Interpretant
	A	"A"
	A	"u"
	B	"B"
	B	"i"


Table 70.4  Dyadic Projection BSI
	Sign	Interpretant
	"A"	"A"
	"A"	"u"
	"u"	"A"
	"u"	"u"
	"B"	"B"
	"B"	"i"
	"i"	"B"
	"i"	"i"