MyWikiBiz, Author Your Legacy — Friday October 31, 2025
Jump to navigationJump to search
	
	
	
		2 bytes added
	
		,  19:54, 16 November 2012
	
 
| Line 175: | Line 175: | 
|  | In a similar fashion, it is possible to define the numerical incidence properties <math>^{\backprime\backprime}(< c)\text{-regular at}~ j \, ^{\prime\prime},</math> <math>^{\backprime\backprime}(> c)\text{-regular at}~ j \, ^{\prime\prime},</math> and so on.  For ease of reference,  a few of these definitions are recorded below. |  | In a similar fashion, it is possible to define the numerical incidence properties <math>^{\backprime\backprime}(< c)\text{-regular at}~ j \, ^{\prime\prime},</math> <math>^{\backprime\backprime}(> c)\text{-regular at}~ j \, ^{\prime\prime},</math> and so on.  For ease of reference,  a few of these definitions are recorded below. | 
|  |  |  |  | 
| − | {| align="center" cellspacing="6" width="90%" | + | {| align="center" cellspacing="8" width="90%" | 
|  | | |  | | | 
|  | <math>\begin{array}{lll} |  | <math>\begin{array}{lll} | 
| Line 204: | Line 204: | 
|  | Among the variety of conceivable regularities affecting 2-adic relations, we pay special attention to the <math>c\!</math>-regularity conditions where <math>c\!</math> is equal to 1. |  | Among the variety of conceivable regularities affecting 2-adic relations, we pay special attention to the <math>c\!</math>-regularity conditions where <math>c\!</math> is equal to 1. | 
|  |  |  |  | 
| − | Let <math>P \subseteq X \times Y</math> be an arbitrary 2-adic relation.  The following properties of <math>~P~</math> can be defined: | + | Let <math>L \subseteq X \times Y\!</math> be an arbitrary 2-adic relation.  The following properties of <math>L\!</math> can be defined: | 
|  |  |  |  | 
| − | {| align="center" cellspacing="6" width="90%" | + | {| align="center" cellspacing="8" width="90%" | 
|  | | |  | | | 
|  | <math>\begin{array}{lll} |  | <math>\begin{array}{lll} | 
| − | P ~\text{is total at}~ X
 | + | L ~\text{is total at}~ X | 
|  | & \iff & |  | & \iff & | 
| − | P ~\text{is}~ (\ge 1)\text{-regular}~ \text{at}~ X.
 | + | L ~\text{is}~ (\ge 1)\text{-regular}~ \text{at}~ X. | 
|  | \\[6pt] |  | \\[6pt] | 
| − | P ~\text{is total at}~ Y
 | + | L ~\text{is total at}~ Y | 
|  | & \iff & |  | & \iff & | 
| − | P ~\text{is}~ (\ge 1)\text{-regular}~ \text{at}~ Y.
 | + | L ~\text{is}~ (\ge 1)\text{-regular}~ \text{at}~ Y. | 
|  | \\[6pt] |  | \\[6pt] | 
| − | P ~\text{is tubular at}~ X
 | + | L ~\text{is tubular at}~ X | 
|  | & \iff & |  | & \iff & | 
| − | P ~\text{is}~ (\le 1)\text{-regular}~ \text{at}~ X.
 | + | L ~\text{is}~ (\le 1)\text{-regular}~ \text{at}~ X. | 
|  | \\[6pt] |  | \\[6pt] | 
| − | P ~\text{is tubular at}~ Y
 | + | L ~\text{is tubular at}~ Y | 
|  | & \iff & |  | & \iff & | 
| − | P ~\text{is}~ (\le 1)\text{-regular}~ \text{at}~ Y.
 | + | L ~\text{is}~ (\le 1)\text{-regular}~ \text{at}~ Y. | 
|  | \end{array}</math> |  | \end{array}</math> | 
|  | |} |  | |} |