Line 1,193: |
Line 1,193: |
| This fact can be verified in several ways: (1) by checking that the map <math>h\!</math> is bijective and that <math>h(x \cdot y) = h(x) + h(y)\!</math> for every <math>x\!</math> and <math>y\!</math> in <math>Z_4(\cdot),\!</math> (2) by noting that <math>h\!</math> transforms the whole multiplication table for <math>Z_4(\cdot)\!</math> into the whole addition table for <math>Z_4(+)\!</math> in a one-to-one and onto fashion, or (3) by finding that both systems share some collection of properties that are definitive of the abstract group, for example, being cyclic of order <math>4.\!</math> | | This fact can be verified in several ways: (1) by checking that the map <math>h\!</math> is bijective and that <math>h(x \cdot y) = h(x) + h(y)\!</math> for every <math>x\!</math> and <math>y\!</math> in <math>Z_4(\cdot),\!</math> (2) by noting that <math>h\!</math> transforms the whole multiplication table for <math>Z_4(\cdot)\!</math> into the whole addition table for <math>Z_4(+)\!</math> in a one-to-one and onto fashion, or (3) by finding that both systems share some collection of properties that are definitive of the abstract group, for example, being cyclic of order <math>4.\!</math> |
| | | |
− | <pre> | + | <br> |
− | Table 34.1 Multiplicative Presentation of the Group Z4(.) | + | |
− | . 1 a b c
| + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" |
− | 1 1 a b c
| + | |+ <math>\text{Table 34.1}~~\text{Multiplicative Presentation of the Group}~Z_4(\cdot)</math> |
− | a a b c 1
| + | |- style="height:50px" |
− | b b c 1 a
| + | | width="20%" style="border-bottom:1px solid black; border-right:1px solid black" | <math>\cdot\!</math> |
− | c c 1 a b
| + | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{1}</math> |
− | </pre> | + | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{a}</math> |
| + | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{b}</math> |
| + | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{c}</math> |
| + | |- style="height:50px" |
| + | | style="border-right:1px solid black" | <math>\operatorname{1}</math> |
| + | | <math>\operatorname{1}</math> |
| + | | <math>\operatorname{a}</math> |
| + | | <math>\operatorname{b}</math> |
| + | | <math>\operatorname{c}</math> |
| + | |- style="height:50px" |
| + | | style="border-right:1px solid black" | <math>\operatorname{a}</math> |
| + | | <math>\operatorname{a}</math> |
| + | | <math>\operatorname{b}</math> |
| + | | <math>\operatorname{c}</math> |
| + | | <math>\operatorname{1}</math> |
| + | |- style="height:50px" |
| + | | style="border-right:1px solid black" | <math>\operatorname{b}</math> |
| + | | <math>\operatorname{b}</math> |
| + | | <math>\operatorname{c}</math> |
| + | | <math>\operatorname{1}</math> |
| + | | <math>\operatorname{a}</math> |
| + | |- style="height:50px" |
| + | | style="border-right:1px solid black" | <math>\operatorname{c}</math> |
| + | | <math>\operatorname{c}</math> |
| + | | <math>\operatorname{1}</math> |
| + | | <math>\operatorname{a}</math> |
| + | | <math>\operatorname{b}</math> |
| + | |} |
| + | |
| + | <br> |
| | | |
| <pre> | | <pre> |