| Line 148: | 
Line 148: | 
|   |  |   |  | 
|   | ======Definitions======  |   | ======Definitions======  | 
| − | 
  |   | 
| − | <pre>
  |   | 
| − | Definition 2
  |   | 
| − | 
  |   | 
| − | If	X, Y	c	U,
  |   | 
| − | 
  |   | 
| − | then the following are equivalent:
  |   | 
| − | 
  |   | 
| − | D2a.	X = Y.
  |   | 
| − | 
  |   | 
| − | D2b.	u C X  <=>  u C Y, for all u C U.
  |   | 
| − | </pre>
  |   | 
| − | 
  |   | 
| − | <pre>
  |   | 
| − | Definition 3
  |   | 
| − | 
  |   | 
| − | If	f, g	:	U -> V,
  |   | 
| − | 
  |   | 
| − | then the following are equivalent:
  |   | 
| − | 
  |   | 
| − | D3a.	f = g.
  |   | 
| − | 
  |   | 
| − | D3b.	f(u) = g(u), for all u C U.
  |   | 
| − | </pre>
  |   | 
| − | 
  |   | 
| − | <pre>
  |   | 
| − | Definition 4
  |   | 
| − | 
  |   | 
| − | If	X	c	U,
  |   | 
| − | 
  |   | 
| − | then the following are identical subsets of UxB:
  |   | 
| − | 
  |   | 
| − | D4a.	{X}
  |   | 
| − | 
  |   | 
| − | D4b.	{< u, v> C UxB : v = [u C X]}
  |   | 
| − | </pre>
  |   | 
|   |  |   |  | 
|   | <pre>  |   | <pre>  | 
| Line 199: | 
Line 163: | 
|   | </pre>  |   | </pre>  | 
|   |  |   |  | 
| − | Given an indexed set of sentences, Sj for j C J, it is possible to consider the logical conjunction of the corresponding propositions.  Various notations for this concept are be useful in various contexts, a sufficient sample of which are recorded in Definition 6.
  |   | 
| − | 
  |   | 
| − | <pre>
  |   | 
| − | Definition 6
  |   | 
| − | 
  |   | 
| − | If	Sj	is a sentence
  |   | 
| − | 
  |   | 
| − | 		about things in the universe U,
  |   | 
| − | 
  |   | 
| − | 		for all j C J,
  |   | 
| − | 
  |   | 
| − | then the following are equivalent:
  |   | 
| − | 
  |   | 
| − | D6a.	Sj, for all j C J.
  |   | 
| − | 
  |   | 
| − | D6b.	For all j C J, Sj.
  |   | 
| − | 
  |   | 
| − | D6c.	Conj(j C J) Sj.
  |   | 
| − | 
  |   | 
| − | D6d.	ConjJ,j Sj.
  |   | 
| − | 
  |   | 
| − | D6e.	ConjJj Sj.
  |   | 
| − | </pre>
  |   | 
|   |  |   |  | 
|   | <pre>  |   | <pre>  | 
| − | Definition 7
  |   | 
| − | 
  |   | 
| − | If	S, T	are sentences
  |   | 
| − | 
  |   | 
| − | 		about things in the universe U,
  |   | 
| − | 
  |   | 
| − | then the following are equivalent:
  |   | 
| − | 
  |   | 
| − | D7a.	S <=> T.
  |   | 
| − | 
  |   | 
| − | D7b.	[S] = [T].
  |   | 
| − | </pre>
  |   | 
|   |  |   |  | 
|   | ======Other Rules======  |   | ======Other Rules======  |