MyWikiBiz, Author Your Legacy — Sunday November 24, 2024
Jump to navigationJump to search
49 bytes removed
, 12:42, 26 August 2009
Line 1: |
Line 1: |
− | The '''minimal negation operator''' <math>\nu\!</math> is a [[multigrade operator]] <math>(\nu_k)_{k \in \mathbb{N}}</math> where each <math>\nu_k\!</math> is a <math>k\!</math>-ary [[boolean function]] <math>\nu_k : \mathbb{B}^k \to \mathbb{B}</math> defined in such a way that <math>\nu_k (x_1, \ldots , x_k) = 1</math> in just those cases where exactly one of the arguments <math>x_j\!</math> is <math>0.\!</math> | + | The '''minimal negation operator''' <math>\nu\!</math> is a [[multigrade operator]] <math>(\nu_k)_{k \in \mathbb{N}}</math> where each <math>\nu_k\!</math> is a <math>k\!</math>-ary [[boolean function]] defined in such a way that <math>\nu_k (x_1, \ldots , x_k) = 1</math> in just those cases where exactly one of the arguments <math>x_j\!</math> is <math>0.\!</math> |
| | | |
| In contexts where the initial letter <math>\nu\!</math> is understood, the minimal negation operators can be indicated by argument lists in parentheses. In the following text a distinctive typeface will be used for logical expressions based on minimal negation operators, for example, <math>\texttt{(x, y, z)}</math> = <math>\nu (x, y, z).\!</math> | | In contexts where the initial letter <math>\nu\!</math> is understood, the minimal negation operators can be indicated by argument lists in parentheses. In the following text a distinctive typeface will be used for logical expressions based on minimal negation operators, for example, <math>\texttt{(x, y, z)}</math> = <math>\nu (x, y, z).\!</math> |
Line 260: |
Line 260: |
| For example, consider two cases at opposite vertices of the cube: | | For example, consider two cases at opposite vertices of the cube: |
| | | |
− | {| align="center" cellpadding="8" width="90%" | + | {| align="center" cellpadding="4" width="90%" |
| | valign="top" | <big>•</big> | | | valign="top" | <big>•</big> |
| | The point <math>(1, 1, \ldots , 1, 1)</math> with all 1's as coordinates is the point where the conjunction of all posited variables evaluates to <math>1,\!</math> namely, the point where: | | | The point <math>(1, 1, \ldots , 1, 1)</math> with all 1's as coordinates is the point where the conjunction of all posited variables evaluates to <math>1,\!</math> namely, the point where: |