MyWikiBiz, Author Your Legacy — Tuesday November 26, 2024
Jump to navigationJump to search
2,028 bytes removed
, 04:14, 17 June 2009
Line 3,998: |
Line 3,998: |
| Continuing with the example <math>pq : X \to \mathbb{B},</math> Figure 25-1 shows the enlargement or shift map <math>\operatorname{E}(pq) : \operatorname{E}X \to \mathbb{B}</math> in the same style of differential field picture that we drew for the tacit extension <math>\varepsilon (pq) : \operatorname{E}X \to \mathbb{B}.</math> | | Continuing with the example <math>pq : X \to \mathbb{B},</math> Figure 25-1 shows the enlargement or shift map <math>\operatorname{E}(pq) : \operatorname{E}X \to \mathbb{B}</math> in the same style of differential field picture that we drew for the tacit extension <math>\varepsilon (pq) : \operatorname{E}X \to \mathbb{B}.</math> |
| | | |
− | | + | {| align="center" cellspacing="10" style="text-align:center" |
− | {| align="center" cellspacing="10" style="text-align:center; width:90%" | + | | [[Image:Field Picture PQ Enlargement Conjunction.jpg|500px]] |
| + | |- |
| + | | <math>\text{Figure 25-1. Enlargement}~ \operatorname{E}(pq) : \operatorname{E}X \to \mathbb{B}</math> |
| + | |- |
| | | | | |
− | <pre> | + | <math>\begin{array}{rcccccc} |
− | o---------------------------------------------------------------------o
| + | \operatorname{E}(pq) |
− | | |
| + | & = & p & \cdot & q & \cdot & (\operatorname{d}p)(\operatorname{d}q) |
− | | X |
| + | \\[4pt] |
− | | o-------------------o o-------------------o |
| + | & + & p & \cdot & (q) & \cdot & (\operatorname{d}p)~\operatorname{d}q~ |
− | | / \ / \ |
| + | \\[4pt] |
− | | / P o Q \ |
| + | & + & (p) & \cdot & q & \cdot & ~\operatorname{d}p~(\operatorname{d}q) |
− | | / / \ \ |
| + | \\[4pt] |
− | | / / \ \ |
| + | & + & (p) & \cdot & (q) & \cdot & ~\operatorname{d}p~~\operatorname{d}q~ |
− | | / / \ \ |
| + | \end{array}</math> |
− | | / / \ \ |
| |
− | | / / \ \ |
| |
− | | o o (dp) (dq) o o |
| |
− | | | | o-->--o | | |
| |
− | | | | \ / | | |
| |
− | | | (dp) dq | \ / | dp (dq) | |
| |
− | | | o----------------->o<-----------------o | |
| |
− | | | | ^ | | |
| |
− | | | | | | | |
| |
− | | | | | | | |
| |
− | | o o | o o |
| |
− | | \ \ | / / |
| |
− | | \ \ | / / |
| |
− | | \ \ | / / |
| |
− | | \ \ | / / |
| |
− | | \ \|/ / |
| |
− | | \ | / |
| |
− | | \ /|\ / |
| |
− | | o-------------------o | o-------------------o |
| |
− | | | |
| |
− | | dp | dq |
| |
− | | | |
| |
− | | | |
| |
− | | o |
| |
− | | |
| |
− | o---------------------------------------------------------------------o
| |
− | Figure 25-1. Enlargement E[pq] : EX -> B
| |
− | </pre> | |
| |} | | |} |
| | | |