Changes

MyWikiBiz, Author Your Legacy — Thursday January 02, 2025
Jump to navigationJump to search
Line 3,761: Line 3,761:  
|}
 
|}
   −
<pre>
+
From the relational representation of <math>\operatorname{Sym} \{ a, b, c \} \cong S_3,</math> one easily derives a ''linear representation'' of the group by viewing each permutation as a linear transformation that maps the elements of a suitable vector space into each other.  Each of these linear transformations is in turn represented by the a 2-dimensional array of coefficients in <math>\mathbb{B},</math> resulting in the following set of matrices for the group:
From this relational representation of Sym {a, b, c} ~=~ S_3,
  −
one easily derives a "linear representation", regarding each
  −
permutation as a linear transformation that maps the elements
  −
of a suitable vector space into each other, and representing
  −
each of these linear transformations by means of a matrix,
  −
resulting in the following set of matrices for the group:
     −
Table 21.  Matrix Representations of the Permutations in S_3
+
<br>
o---------o---------o---------o---------o---------o---------o
  −
|        |        |        |        |        |        |
  −
|    e    |    f    |    g    |    h    |    i    |    j    |
  −
|        |        |        |        |        |        |
  −
o=========o=========o=========o=========o=========o=========o
  −
|        |        |        |        |        |        |
  −
|  1 0 0  |  0 0 1  |  0 1 0  |  1 0 0  |  0 0 1  |  0 1 0  |
  −
|  0 1 0  |  1 0 0  |  0 0 1  |  0 0 1  |  0 1 0  |  1 0 0  |
  −
|  0 0 1  |  0 1 0  |  1 0 0  |  0 1 0  |  1 0 0  |  0 0 1  |
  −
|        |        |        |        |        |        |
  −
o---------o---------o---------o---------o---------o---------o
     −
The key to the mysteries of these matrices is revealed by
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; text-align:center; width:90%"
observing that their coefficient entries are arrayed and
+
|+ <math>\text{Matrix Representations of Permutations in}~ \operatorname{Sym}(3)</math>
overlayed on a place mat that's marked like so:
+
|- style="background:#f0f0ff"
 +
| width="16%" | <math>\operatorname{e}</math>
 +
| width="16%" | <math>\operatorname{f}</math>
 +
| width="16%" | <math>\operatorname{g}</math>
 +
| width="16%" | <math>\operatorname{h}</math>
 +
| width="16%" | <math>\operatorname{i}</math>
 +
| width="16%" | <math>\operatorname{j}</math>
 +
|-
 +
|
 +
<math>\begin{matrix}
 +
1 & 0 & 0
 +
\\
 +
0 & 1 & 0
 +
\\
 +
0 & 0 & 1
 +
\end{matrix}</math>
 +
|
 +
<math>\begin{matrix}
 +
0 & 0 & 1
 +
\\
 +
1 & 0 & 0
 +
\\
 +
0 & 1 & 0
 +
\end{matrix}</math>
 +
|
 +
<math>\begin{matrix}
 +
0 & 1 & 0
 +
\\
 +
0 & 0 & 1
 +
\\
 +
1 & 0 & 0
 +
\end{matrix}</math>
 +
|
 +
<math>\begin{matrix}
 +
1 & 0 & 0
 +
\\
 +
0 & 0 & 1
 +
\\
 +
0 & 1 & 0
 +
\end{matrix}</math>
 +
|
 +
<math>\begin{matrix}
 +
0 & 0 & 1
 +
\\
 +
0 & 1 & 0
 +
\\
 +
1 & 0 & 0
 +
\end{matrix}</math>
 +
|
 +
<math>\begin{matrix}
 +
0 & 1 & 0
 +
\\
 +
1 & 0 & 0
 +
\\
 +
0 & 0 & 1
 +
\end{matrix}</math>
 +
|}
   −
o-----o-----o-----o
+
<br>
| a:a | a:b | a:c |
+
 
o-----o-----o-----o
+
The key to the mysteries of these matrices is revealed by observing that their coefficient entries are arrayed and overlaid on a place-mat marked like so:
| b:a | b:b | b:c |
+
 
o-----o-----o-----o
+
{| align="center" cellpadding="6" width="90%"
| c:a | c:b | c:c |
+
| align="center" |
o-----o-----o-----o
+
<math>\begin{bmatrix}
</pre>
+
a\!:\!a &
 +
a\!:\!b &
 +
a\!:\!c
 +
\\
 +
b\!:\!a &
 +
b\!:\!b &
 +
b\!:\!c
 +
\\
 +
c\!:\!a &
 +
c\!:\!b &
 +
c\!:\!c
 +
\end{bmatrix}</math>
 +
|}
    
==Note 22==
 
==Note 22==
12,080

edits

Navigation menu