Changes

MyWikiBiz, Author Your Legacy — Monday December 23, 2024
Jump to navigationJump to search
Line 3,050: Line 3,050:  
Peirce describes the action of an "elementary dual relative" in this way:
 
Peirce describes the action of an "elementary dual relative" in this way:
   −
<pre>
+
{| align="center" cellpadding="6" width="90%"
| [Let] A:B be taken to denote
+
| [Let] <math>A\!:\!B</math> be taken to denote the elementary relative which multiplied into <math>B\!</math> gives <math>A.\!</math>
| the elementary relative which
+
|-
| multiplied into B gives A.
+
| C.S. Peirce, ''Collected Papers'', CP&nbsp;3.123.
|
+
|}
| Peirce, 'Collected Papers', CP 3.123.
  −
</pre>
      
And though he is well aware that it is not at all necessary to arrange elementary relatives into arrays, matrices, or tables, when he does so he tends to prefer organizing dyadic relations in the following manner:
 
And though he is well aware that it is not at all necessary to arrange elementary relatives into arrays, matrices, or tables, when he does so he tends to prefer organizing dyadic relations in the following manner:
   −
<pre>
+
{| align="center" cellpadding="6" width="90%"
A:A   A:B   A:C |
+
|
|                  |
+
<math>\begin{bmatrix}
B:A   B:B   B:C |
+
A:A & A:B & A:C
|                  |
+
\\
C:A   C:B   C:C |
+
B:A & B:B & B:C
</pre>
+
\\
 +
C:A & C:B & C:C
 +
\end{bmatrix}</math>
 +
|}
    
That conforms to the way that the last school of thought I matriculated into stipulated that we tabulate material:
 
That conforms to the way that the last school of thought I matriculated into stipulated that we tabulate material:
   −
<pre>
+
{| align="center" cellpadding="6" width="90%"
|  e_11  e_12  e_13  |
+
|
|                    |
+
<math>\begin{bmatrix}
|  e_21  e_22  e_23  |
+
e_{11} & e_{12} & e_{13}
|                    |
+
\\
|  e_31  e_32  e_33  |
+
e_{21} & e_{22} & e_{23}
</pre>
+
\\
 +
e_{31} & e_{32} & e_{33}
 +
\end{bmatrix}</math>
 +
|}
   −
So, for example, let us suppose that we have the small universe <math>\{ A, B, C \},\!</math> and the 2-adic relation <math>\mathrm{m} = {}^{\backprime\backprime} \text{mover of} \, {}^{\prime\prime}</math> that is represented by this matrix:
+
So, for example, let us suppose that we have the small universe <math>\{ A, B, C \},\!</math> and the 2-adic relation <math>m = {}^{\backprime\backprime}\, \text{mover of}\, \underline{~~~~}\, {}^{\prime\prime}</math> that is represented by this matrix:
   −
<pre>
+
{| align="center" cellpadding="6" width="90%"
m =
+
|
 
+
<math>
|  m_AA (A:A)   m_AB (A:B)   m_AC (A:C) |
+
m ~=~
|                                        |
+
\begin{bmatrix}
|  m_BA (B:A)   m_BB (B:B)   m_BC (B:C) |
+
m_{AA} (A:A) & m_{AB} (A:B) & m_{AC} (A:C)
|                                        |
+
\\
|  m_CA (C:A)   m_CB (C:B)   m_CC (C:C) |
+
m_{BA} (B:A) & m_{BB} (B:B) & m_{BC} (B:C)
</pre>
+
\\
 +
m_{CA} (C:A) & m_{CB} (C:B) & m_{CC} (C:C)
 +
\end{bmatrix}
 +
</math>
 +
|}
   −
Also, let <math>\mathrm{m}\!</math> be such that
+
Also, let <math>m\!</math> be such that
    
<pre>
 
<pre>
12,080

edits

Navigation menu