Line 2,926: |
Line 2,926: |
| | | |
| {| align="center" cellpadding="6" width="90%" | | {| align="center" cellpadding="6" width="90%" |
− | | <math>\mathrm{G} ~=~ \mathrm{e} + \mathrm{f} + \mathrm{g} + \mathrm{h}</math> | + | | <math>\mathrm{G} ~=~ \mathrm{e} ~+~ \mathrm{f} ~+~ \mathrm{g} ~+~ \mathrm{h}</math> |
| |} | | |} |
| | | |
Line 2,939: |
Line 2,939: |
| & + & \mathrm{g}:\mathrm{g} | | & + & \mathrm{g}:\mathrm{g} |
| & + & \mathrm{h}:\mathrm{h} | | & + & \mathrm{h}:\mathrm{h} |
− | \\ | + | \\[4pt] |
| & + & \mathrm{e}:\mathrm{f} | | & + & \mathrm{e}:\mathrm{f} |
| & + & \mathrm{f}:\mathrm{e} | | & + & \mathrm{f}:\mathrm{e} |
| & + & \mathrm{g}:\mathrm{h} | | & + & \mathrm{g}:\mathrm{h} |
| & + & \mathrm{h}:\mathrm{g} | | & + & \mathrm{h}:\mathrm{g} |
− | \\ | + | \\[4pt] |
| & + & \mathrm{e}:\mathrm{g} | | & + & \mathrm{e}:\mathrm{g} |
| & + & \mathrm{f}:\mathrm{h} | | & + & \mathrm{f}:\mathrm{h} |
| & + & \mathrm{g}:\mathrm{e} | | & + & \mathrm{g}:\mathrm{e} |
| & + & \mathrm{h}:\mathrm{f} | | & + & \mathrm{h}:\mathrm{f} |
− | \\ | + | \\[4pt] |
| & + & \mathrm{e}:\mathrm{h} | | & + & \mathrm{e}:\mathrm{h} |
| & + & \mathrm{f}:\mathrm{g} | | & + & \mathrm{f}:\mathrm{g} |
Line 2,963: |
Line 2,963: |
| Working through the construction for each one of the four group elements, we arrive at the following exegeses of their senses, giving their regular post-representations: | | Working through the construction for each one of the four group elements, we arrive at the following exegeses of their senses, giving their regular post-representations: |
| | | |
− | <pre> | + | {| align="center" cellpadding="6" width="90%" |
− | e = e:e + f:f + g:g + h:h
| + | | |
− | | + | <math>\begin{matrix} |
− | f = e:f + f:e + g:h + h:g
| + | \mathrm{e} |
− | | + | & = & \mathrm{e}:\mathrm{e} |
− | g = e:g + f:h + g:e + h:f
| + | & + & \mathrm{f}:\mathrm{f} |
− | | + | & + & \mathrm{g}:\mathrm{g} |
− | h = e:h + f:g + g:f + h:e
| + | & + & \mathrm{h}:\mathrm{h} |
− | </pre> | + | \\[4pt] |
| + | \mathrm{f} |
| + | & = & \mathrm{e}:\mathrm{f} |
| + | & + & \mathrm{f}:\mathrm{e} |
| + | & + & \mathrm{g}:\mathrm{h} |
| + | & + & \mathrm{h}:\mathrm{g} |
| + | \\[4pt] |
| + | \mathrm{g} |
| + | & = & \mathrm{e}:\mathrm{g} |
| + | & + & \mathrm{f}:\mathrm{h} |
| + | & + & \mathrm{g}:\mathrm{e} |
| + | & + & \mathrm{h}:\mathrm{f} |
| + | \\[4pt] |
| + | \mathrm{h} |
| + | & = & \mathrm{e}:\mathrm{h} |
| + | & + & \mathrm{f}:\mathrm{g} |
| + | & + & \mathrm{g}:\mathrm{f} |
| + | & + & \mathrm{h}:\mathrm{e} |
| + | \end{matrix}</math> |
| + | |} |
| | | |
| So if somebody asks you, say, "What is <math>\operatorname{g}</math>?", you can say, "I don't know for certain, but in practice its effects go a bit like this: | | So if somebody asks you, say, "What is <math>\operatorname{g}</math>?", you can say, "I don't know for certain, but in practice its effects go a bit like this: |
Line 2,983: |
Line 3,002: |
| Working through this alternative for each one of the four group elements, we arrive at the following exegeses of their senses, giving their regular ante-representations: | | Working through this alternative for each one of the four group elements, we arrive at the following exegeses of their senses, giving their regular ante-representations: |
| | | |
− | <pre> | + | {| align="center" cellpadding="6" width="90%" |
− | e = e:e + f:f + g:g + h:h
| + | | |
− | | + | <math>\begin{matrix} |
− | f = f:e + e:f + h:g + g:h
| + | \mathrm{e} |
− | | + | & = & \mathrm{e}:\mathrm{e} |
− | g = g:e + h:f + e:g + f:h
| + | & + & \mathrm{f}:\mathrm{f} |
− | | + | & + & \mathrm{g}:\mathrm{g} |
− | h = h:e + g:f + f:g + e:h
| + | & + & \mathrm{h}:\mathrm{h} |
− | </pre> | + | \\[4pt] |
| + | \mathrm{f} |
| + | & = & \mathrm{f}:\mathrm{e} |
| + | & + & \mathrm{e}:\mathrm{f} |
| + | & + & \mathrm{h}:\mathrm{g} |
| + | & + & \mathrm{g}:\mathrm{h} |
| + | \\[4pt] |
| + | \mathrm{g} |
| + | & = & \mathrm{g}:\mathrm{e} |
| + | & + & \mathrm{h}:\mathrm{f} |
| + | & + & \mathrm{e}:\mathrm{g} |
| + | & + & \mathrm{f}:\mathrm{h} |
| + | \\[4pt] |
| + | \mathrm{h} |
| + | & = & \mathrm{h}:\mathrm{e} |
| + | & + & \mathrm{g}:\mathrm{f} |
| + | & + & \mathrm{f}:\mathrm{g} |
| + | & + & \mathrm{e}:\mathrm{h} |
| + | \end{matrix}</math> |
| + | |} |
| | | |
| Your paraphrastic interpretation of what this all means would come out precisely the same as before. | | Your paraphrastic interpretation of what this all means would come out precisely the same as before. |