| Line 280: |
Line 280: |
| | A set of logical features, <math>\mathcal{A} = \{ a_1, \ldots, a_n \},</math> affords a basis for generating an <math>n\!</math>-dimensional universe of discourse, written <math>A^\circ = [ \mathcal{A} ] = [ a_1, \ldots, a_n ].</math> It is useful to consider a universe of discourse as a categorical object that incorporates both the set of points <math>A = \langle a_1, \ldots, a_n \rangle</math> and the set of propositions <math>A^\uparrow = \{ f : A \to \mathbb{B} \}</math> that are implicit with the ordinary picture of a venn diagram on <math>n\!</math> features. Accordingly, the universe of discourse <math>A^\circ</math> may be regarded as an ordered pair <math>(A, A^\uparrow)</math> having the type <math>(\mathbb{B}^n, (\mathbb{B}^n \to \mathbb{B})),</math> and this last type designation may be abbreviated as <math>\mathbb{B}^n\ +\!\to \mathbb{B},</math> or even more succinctly as <math>[ \mathbb{B}^n ].</math> For convenience, the data type of a finite set on <math>n\!</math> elements may be indicated by either one of the equivalent notations, <math>[n]\!</math> or <math>\mathbf{n}.</math> | | A set of logical features, <math>\mathcal{A} = \{ a_1, \ldots, a_n \},</math> affords a basis for generating an <math>n\!</math>-dimensional universe of discourse, written <math>A^\circ = [ \mathcal{A} ] = [ a_1, \ldots, a_n ].</math> It is useful to consider a universe of discourse as a categorical object that incorporates both the set of points <math>A = \langle a_1, \ldots, a_n \rangle</math> and the set of propositions <math>A^\uparrow = \{ f : A \to \mathbb{B} \}</math> that are implicit with the ordinary picture of a venn diagram on <math>n\!</math> features. Accordingly, the universe of discourse <math>A^\circ</math> may be regarded as an ordered pair <math>(A, A^\uparrow)</math> having the type <math>(\mathbb{B}^n, (\mathbb{B}^n \to \mathbb{B})),</math> and this last type designation may be abbreviated as <math>\mathbb{B}^n\ +\!\to \mathbb{B},</math> or even more succinctly as <math>[ \mathbb{B}^n ].</math> For convenience, the data type of a finite set on <math>n\!</math> elements may be indicated by either one of the equivalent notations, <math>[n]\!</math> or <math>\mathbf{n}.</math> |
| | | | |
| − | Table 5 summarizes the notations that are needed to describe ordinary propositional calculi in a systematic fashion. | + | Table 5 summarizes the notations that are needed to describe ordinary propositional calculi in a systematic fashion. |
| | | | |
| − | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:left; width:96%" | + | <br> |
| | + | |
| | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; text-align:left; width:90%" |
| | |+ '''Table 5. Propositional Calculus : Basic Notation''' | | |+ '''Table 5. Propositional Calculus : Basic Notation''' |
| − | |- style="background:ghostwhite" | + | |- style="background:#e6e6ff" |
| | ! Symbol | | ! Symbol |
| | ! Notation | | ! Notation |
| Line 306: |
Line 308: |
| | |- | | |- |
| | | <math>A\!</math> | | | <math>A\!</math> |
| − | | <math>\langle \mathcal{A} \rangle</math><br> | + | | |
| | + | <math>\langle \mathcal{A} \rangle</math><br> |
| | <math>\langle a_1, \ldots, a_n \rangle</math><br> | | <math>\langle a_1, \ldots, a_n \rangle</math><br> |
| | <math>\{ (a_1, \ldots, a_n) \}\!</math> | | <math>\{ (a_1, \ldots, a_n) \}\!</math> |
| | <math>A_1 \times \ldots \times A_n</math><br> | | <math>A_1 \times \ldots \times A_n</math><br> |
| | <math>\textstyle \prod_i A_i\!</math> | | <math>\textstyle \prod_i A_i\!</math> |
| − | | Set of cells,<br> | + | | |
| | + | Set of cells,<br> |
| | coordinate tuples,<br> | | coordinate tuples,<br> |
| | points, or vectors<br> | | points, or vectors<br> |
| Line 329: |
Line 333: |
| | |- | | |- |
| | | <math>A^\circ</math> | | | <math>A^\circ</math> |
| − | | <math>[ \mathcal{A} ]</math><br> | + | | |
| | + | <math>[ \mathcal{A} ]</math><br> |
| | <math>(A, A^\uparrow)</math><br> | | <math>(A, A^\uparrow)</math><br> |
| | <math>(A\ +\!\to \mathbb{B})</math><br> | | <math>(A\ +\!\to \mathbb{B})</math><br> |
| | <math>(A, (A \to \mathbb{B}))</math><br> | | <math>(A, (A \to \mathbb{B}))</math><br> |
| | <math>[ a_1, \ldots, a_n ]</math> | | <math>[ a_1, \ldots, a_n ]</math> |
| − | | Universe of discourse<br> | + | | |
| | + | Universe of discourse<br> |
| | based on the features<br> | | based on the features<br> |
| | <math>\{ a_1, \ldots, a_n \}</math> | | <math>\{ a_1, \ldots, a_n \}</math> |
| − | | <math>(\mathbb{B}^n, (\mathbb{B}^n \to \mathbb{B}))</math><br> | + | | |
| | + | <math>(\mathbb{B}^n, (\mathbb{B}^n \to \mathbb{B}))</math><br> |
| | <math>(\mathbb{B}^n\ +\!\to \mathbb{B})</math><br> | | <math>(\mathbb{B}^n\ +\!\to \mathbb{B})</math><br> |
| | <math>[\mathbb{B}^n]</math> | | <math>[\mathbb{B}^n]</math> |
| | |} | | |} |
| | + | |
| | <br> | | <br> |
| | | | |
| Line 375: |
Line 383: |
| | A proposition in a differential extension of a universe of discourse is called a ''differential proposition'' and forms the analogue of a system of differential equations in ordinary calculus. With these constructions, the first order extended universe <math>\operatorname{E}A^\circ</math> and the first order differential proposition <math>f : \operatorname{E}A \to \mathbb{B},</math> we have arrived, in concept at least, at the foothills of [[differential logic]]. | | A proposition in a differential extension of a universe of discourse is called a ''differential proposition'' and forms the analogue of a system of differential equations in ordinary calculus. With these constructions, the first order extended universe <math>\operatorname{E}A^\circ</math> and the first order differential proposition <math>f : \operatorname{E}A \to \mathbb{B},</math> we have arrived, in concept at least, at the foothills of [[differential logic]]. |
| | | | |
| − | Table 6 summarizes the notations that are needed to describe the first order differential extensions of propositional calculi in a systematic manner. | + | Table 6 summarizes the notations that are needed to describe the first order differential extensions of propositional calculi in a systematic manner. |
| | + | |
| | + | <br> |
| | | | |
| − | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:left; width:96%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; text-align:left; width:90%" |
| | |+ '''Table 6. Differential Extension : Basic Notation''' | | |+ '''Table 6. Differential Extension : Basic Notation''' |
| − | |- style="background:ghostwhite" | + | |- style="background:#e6e6ff" |
| | ! Symbol | | ! Symbol |
| | ! Notation | | ! Notation |
| Line 387: |
Line 397: |
| | | <math>\operatorname{d}\mathfrak{A}</math> | | | <math>\operatorname{d}\mathfrak{A}</math> |
| | | <math>\lbrace\!</math> “<math>\operatorname{d}a_1</math>” <math>, \ldots,\!</math> “<math>\operatorname{d}a_n</math>” <math>\rbrace\!</math> | | | <math>\lbrace\!</math> “<math>\operatorname{d}a_1</math>” <math>, \ldots,\!</math> “<math>\operatorname{d}a_n</math>” <math>\rbrace\!</math> |
| − | | Alphabet of<br> | + | | |
| | + | Alphabet of<br> |
| | differential<br> | | differential<br> |
| | symbols | | symbols |
| Line 394: |
Line 405: |
| | | <math>\operatorname{d}\mathcal{A}</math> | | | <math>\operatorname{d}\mathcal{A}</math> |
| | | <math>\{ \operatorname{d}a_1, \ldots, \operatorname{d}a_n \}</math> | | | <math>\{ \operatorname{d}a_1, \ldots, \operatorname{d}a_n \}</math> |
| − | | Basis of<br> | + | | |
| | + | Basis of<br> |
| | differential<br> | | differential<br> |
| | features | | features |
| Line 401: |
Line 413: |
| | | <math>\operatorname{d}A_i</math> | | | <math>\operatorname{d}A_i</math> |
| | | <math>\{ \overline{\operatorname{d}a_i}, \operatorname{d}a_i \}</math> | | | <math>\{ \overline{\operatorname{d}a_i}, \operatorname{d}a_i \}</math> |
| − | | Differential<br> | + | | |
| | + | Differential<br> |
| | dimension <math>i\!</math> | | dimension <math>i\!</math> |
| | | <math>\mathbb{D}</math> | | | <math>\mathbb{D}</math> |
| | |- | | |- |
| | | <math>\operatorname{d}A</math> | | | <math>\operatorname{d}A</math> |
| − | | <math>\langle \operatorname{d}\mathcal{A} \rangle</math><br> | + | | |
| | + | <math>\langle \operatorname{d}\mathcal{A} \rangle</math><br> |
| | <math>\langle \operatorname{d}a_1, \ldots, \operatorname{d}a_n \rangle</math><br> | | <math>\langle \operatorname{d}a_1, \ldots, \operatorname{d}a_n \rangle</math><br> |
| | <math>\{ (\operatorname{d}a_1, \ldots, \operatorname{d}a_n) \}</math><br> | | <math>\{ (\operatorname{d}a_1, \ldots, \operatorname{d}a_n) \}</math><br> |
| | <math>\operatorname{d}A_1 \times \ldots \times \operatorname{d}A_n</math><br> | | <math>\operatorname{d}A_1 \times \ldots \times \operatorname{d}A_n</math><br> |
| | <math>\textstyle \prod_i \operatorname{d}A_i</math> | | <math>\textstyle \prod_i \operatorname{d}A_i</math> |
| − | | Tangent space<br> | + | | |
| | + | Tangent space<br> |
| | at a point:<br> | | at a point:<br> |
| | Set of changes,<br> | | Set of changes,<br> |
| Line 421: |
Line 436: |
| | | <math>\operatorname{d}A^*</math> | | | <math>\operatorname{d}A^*</math> |
| | | <math>(\operatorname{hom} : \operatorname{d}A \to \mathbb{B})</math> | | | <math>(\operatorname{hom} : \operatorname{d}A \to \mathbb{B})</math> |
| − | | Linear functions<br> | + | | |
| | + | Linear functions<br> |
| | on <math>\operatorname{d}A</math> | | on <math>\operatorname{d}A</math> |
| | | <math>(\mathbb{D}^n)^* \cong \mathbb{D}^n</math> | | | <math>(\mathbb{D}^n)^* \cong \mathbb{D}^n</math> |
| Line 427: |
Line 443: |
| | | <math>\operatorname{d}A^\uparrow</math> | | | <math>\operatorname{d}A^\uparrow</math> |
| | | <math>(\operatorname{d}A \to \mathbb{B})</math> | | | <math>(\operatorname{d}A \to \mathbb{B})</math> |
| − | | Boolean functions<br> | + | | |
| | + | Boolean functions<br> |
| | on <math>\operatorname{d}A</math> | | on <math>\operatorname{d}A</math> |
| | | <math>\mathbb{D}^n \to \mathbb{B}</math> | | | <math>\mathbb{D}^n \to \mathbb{B}</math> |
| | |- | | |- |
| | | <math>\operatorname{d}A^\circ</math> | | | <math>\operatorname{d}A^\circ</math> |
| − | | <math>[\operatorname{d}\mathcal{A}]</math><br> | + | | |
| | + | <math>[\operatorname{d}\mathcal{A}]</math><br> |
| | <math>(\operatorname{d}A, \operatorname{d}A^\uparrow)</math><br> | | <math>(\operatorname{d}A, \operatorname{d}A^\uparrow)</math><br> |
| | <math>(\operatorname{d}A\ +\!\to \mathbb{B})</math><br> | | <math>(\operatorname{d}A\ +\!\to \mathbb{B})</math><br> |
| | <math>(\operatorname{d}A, (\operatorname{d}A \to \mathbb{B}))</math><br> | | <math>(\operatorname{d}A, (\operatorname{d}A \to \mathbb{B}))</math><br> |
| | <math>[\operatorname{d}a_1, \ldots, \operatorname{d}a_n]</math> | | <math>[\operatorname{d}a_1, \ldots, \operatorname{d}a_n]</math> |
| − | | Tangent universe<br> | + | | |
| | + | Tangent universe<br> |
| | at a point of <math>A^\circ,</math><br> | | at a point of <math>A^\circ,</math><br> |
| | based on the<br> | | based on the<br> |
| | tangent features<br> | | tangent features<br> |
| | <math>\{ \operatorname{d}a_1, \ldots, \operatorname{d}a_n \}</math> | | <math>\{ \operatorname{d}a_1, \ldots, \operatorname{d}a_n \}</math> |
| − | | <math>(\mathbb{D}^n, (\mathbb{D}^n \to \mathbb{B}))</math><br> | + | | |
| | + | <math>(\mathbb{D}^n, (\mathbb{D}^n \to \mathbb{B}))</math><br> |
| | <math>(\mathbb{D}^n\ +\!\to \mathbb{B})</math><br> | | <math>(\mathbb{D}^n\ +\!\to \mathbb{B})</math><br> |
| | <math>[\mathbb{D}^n]</math> | | <math>[\mathbb{D}^n]</math> |
| | |} | | |} |
| | + | |
| | <br> | | <br> |
| | | | |