Changes

MyWikiBiz, Author Your Legacy — Monday November 25, 2024
Jump to navigationJump to search
Line 24: Line 24:  
Table&nbsp;1 is a [[truth table]] for the sixteen boolean functions of type <math>f : \mathbb{B}^3 \to \mathbb{B}</math> whose fibers of 1 are either the boundaries of points in <math>\mathbb{B}^3</math> or the complements of those boundaries.
 
Table&nbsp;1 is a [[truth table]] for the sixteen boolean functions of type <math>f : \mathbb{B}^3 \to \mathbb{B}</math> whose fibers of 1 are either the boundaries of points in <math>\mathbb{B}^3</math> or the complements of those boundaries.
    +
<br>
 
{| align="center" border="1" cellpadding="4" cellspacing="0" style="background:whitesmoke; font-weight:bold; text-align:center; width:80%"
 
{| align="center" border="1" cellpadding="4" cellspacing="0" style="background:whitesmoke; font-weight:bold; text-align:center; width:80%"
 
|+ Table 1.  Logical Boundaries and Their Complements
 
|+ Table 1.  Logical Boundaries and Their Complements
Line 53: Line 54:  
{| align="center" border="1" cellpadding="4" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:80%"
 
{| align="center" border="1" cellpadding="4" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:80%"
 
|-
 
|-
| width="20%" | <math>f_{104}</math>
+
| width="20%" | <math>f_{104}\!</math>
| width="20%" | <math>f_{01101000}</math>
+
| width="20%" | <math>f_{01101000}\!</math>
 
| width="20%" | 0 1 1 0 1 0 0 0
 
| width="20%" | 0 1 1 0 1 0 0 0
| width="20%" | <math>( p , q , r )</math>
+
| width="20%" | <math>( p , q , r )\!</math>
 
|-
 
|-
| <math>f_{148}</math>
+
| <math>f_{148}\!</math>
| <math>f_{10010100}</math>
+
| <math>f_{10010100}\!</math>
 
| 1 0 0 1 0 1 0 0
 
| 1 0 0 1 0 1 0 0
| <math>( p , q , (r))</math>
+
| <math>( p , q , (r))\!</math>
 
|-
 
|-
| <math>f_{146}</math>
+
| <math>f_{146}\!</math>
| <math>f_{10010010}</math>
+
| <math>f_{10010010}\!</math>
 
| 1 0 0 1 0 0 1 0
 
| 1 0 0 1 0 0 1 0
| <math>( p , (q), r )</math>
+
| <math>( p , (q), r )\!</math>
 
|-
 
|-
| <math>f_{97}</math>
+
| <math>f_{97}\!</math>
| <math>f_{01100001}</math>
+
| <math>f_{01100001}\!</math>
 
| 0 1 1 0 0 0 0 1
 
| 0 1 1 0 0 0 0 1
| <math>( p , (q), (r))</math>
+
| <math>( p , (q), (r))\!</math>
 
|-
 
|-
| <math>f_{134}</math>
+
| <math>f_{134}\!</math>
| <math>f_{10000110}</math>
+
| <math>f_{10000110}\!</math>
 
| 1 0 0 0 0 1 1 0
 
| 1 0 0 0 0 1 1 0
| <math>((p), q , r )</math>
+
| <math>((p), q , r )\!</math>
 
|-
 
|-
| <math>f_{73}</math>
+
| <math>f_{73}\!</math>
| <math>f_{01001001}</math>
+
| <math>f_{01001001}\!</math>
 
| 0 1 0 0 1 0 0 1
 
| 0 1 0 0 1 0 0 1
| <math>((p), q , (r))</math>
+
| <math>((p), q , (r))\!</math>
 
|-
 
|-
| <math>f_{41}</math>
+
| <math>f_{41}\!</math>
| <math>f_{00101001}</math>
+
| <math>f_{00101001}\!</math>
 
| 0 0 1 0 1 0 0 1
 
| 0 0 1 0 1 0 0 1
| <math>((p), (q), r )</math>
+
| <math>((p), (q), r )\!</math>
 
|-
 
|-
| <math>f_{22}</math>
+
| <math>f_{22}\!</math>
| <math>f_{00010110}</math>
+
| <math>f_{00010110}\!</math>
 
| 0 0 0 1 0 1 1 0
 
| 0 0 0 1 0 1 1 0
| <math>((p), (q), (r))</math>
+
| <math>((p), (q), (r))\!</math>
 
|}
 
|}
 
{|  align="center" border="1" cellpadding="4" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:80%"
 
{|  align="center" border="1" cellpadding="4" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:80%"
 
|-
 
|-
| width="20%" | <math>f_{233}</math>
+
| width="20%" | <math>f_{233}\!</math>
| width="20%" | <math>f_{11101001}</math>
+
| width="20%" | <math>f_{11101001}\!</math>
 
| width="20%" | 1 1 1 0 1 0 0 1
 
| width="20%" | 1 1 1 0 1 0 0 1
| width="20%" | <math>(((p), (q), (r)))</math>
+
| width="20%" | <math>(((p), (q), (r)))\!</math>
 
|-
 
|-
| <math>f_{214}</math>
+
| <math>f_{214}\!</math>
| <math>f_{11010110}</math>
+
| <math>f_{11010110}\!</math>
 
| 1 1 0 1 0 1 1 0
 
| 1 1 0 1 0 1 1 0
| <math>(((p), (q), r ))</math>
+
| <math>(((p), (q), r ))\!</math>
 
|-
 
|-
| <math>f_{182}</math>
+
| <math>f_{182}\!</math>
| <math>f_{10110110}</math>
+
| <math>f_{10110110}\!</math>
 
| 1 0 1 1 0 1 1 0
 
| 1 0 1 1 0 1 1 0
| <math>(((p), q , (r)))</math>
+
| <math>(((p), q , (r)))\!</math>
 
|-
 
|-
| <math>f_{121}</math>
+
| <math>f_{121}\!</math>
| <math>f_{01111001}</math>
+
| <math>f_{01111001}\!</math>
 
| 0 1 1 1 1 0 0 1
 
| 0 1 1 1 1 0 0 1
| <math>(((p), q , r ))</math>
+
| <math>(((p), q , r ))\!</math>
 
|-
 
|-
| <math>f_{158}</math>
+
| <math>f_{158}\!</math>
| <math>f_{10011110}</math>
+
| <math>f_{10011110}\!</math>
 
| 1 0 0 1 1 1 1 0
 
| 1 0 0 1 1 1 1 0
| <math>(( p , (q), (r)))</math>
+
| <math>(( p , (q), (r)))\!</math>
 
|-
 
|-
| <math>f_{109}</math>
+
| <math>f_{109}\!</math>
| <math>f_{01101101}</math>
+
| <math>f_{01101101}\!</math>
 
| 0 1 1 0 1 1 0 1
 
| 0 1 1 0 1 1 0 1
| <math>(( p , (q), r ))</math>
+
| <math>(( p , (q), r ))\!</math>
 
|-
 
|-
| <math>f_{107}</math>
+
| <math>f_{107}\!</math>
| <math>f_{01101011}</math>
+
| <math>f_{01101011}\!</math>
 
| 0 1 1 0 1 0 1 1
 
| 0 1 1 0 1 0 1 1
| <math>(( p , q , (r)))</math>
+
| <math>(( p , q , (r)))\!</math>
 
|-
 
|-
| <math>f_{151}</math>
+
| <math>f_{151}\!</math>
| <math>f_{10010111}</math>
+
| <math>f_{10010111}\!</math>
 
| 1 0 0 1 0 1 1 1
 
| 1 0 0 1 0 1 1 1
| <math>(( p , q , r ))</math>
+
| <math>(( p , q , r ))\!</math>
 
|}
 
|}
 
<br>
 
<br>
12,080

edits

Navigation menu