MyWikiBiz, Author Your Legacy — Monday November 25, 2024
Jump to navigationJump to search
5 bytes removed
, 21:00, 7 May 2009
Line 5,712: |
Line 5,712: |
| |} | | |} |
| | | |
− | If <math>\mathfrak{A}</math> and <math>\mathfrak{B}</math> are two 1-dimensional matrices over the same index set <math>X,\!</math> then <math>\mathfrak{A} = \mathfrak{B}</math> if and only if <math>\mathfrak{A}_x = \mathfrak{B}_x</math> for every <math>x \in X.</math> Therefore, a routine way to check whether the 1-dimensional matrices <math>(\mathfrak{S}^\mathfrak{L})^\mathfrak{W}</math> and <math>\mathfrak{S}^{\mathfrak{L}\mathfrak{W}}</math> are equal is to check whether the following equation holds for an arbitrary choice of the index <math>x \in X.</math> | + | If <math>\mathfrak{A}</math> and <math>\mathfrak{B}</math> are two 1-dimensional matrices over the same index set <math>X,\!</math> then <math>\mathfrak{A} = \mathfrak{B}</math> if and only if <math>\mathfrak{A}_x = \mathfrak{B}_x</math> for every <math>x \in X.</math> This provides us with a routine way of checking whether <math>(\mathfrak{S}^\mathfrak{L})^\mathfrak{W} = \mathfrak{S}^{\mathfrak{L}\mathfrak{W}}</math>, and that is simply to check whether the following equation holds for an arbitrary choice of the index <math>x\!</math> in <math>X.\!</math> |
| | | |
| {| align="center" cellspacing="6" width="90%" | | {| align="center" cellspacing="6" width="90%" |