Changes

MyWikiBiz, Author Your Legacy — Monday November 25, 2024
Jump to navigationJump to search
Line 3,905: Line 3,905:  
|}
 
|}
   −
In the case of a 2-adic relation <math>L \subseteq X_1 \times X_2 = X \times Y,</math> we can reap the benefits of a radical simplification in the definitions of the local flagsAlso in this case, we tend to refer to <math>L_{u \,\text{at}\, 1}</math> as <math>L_{u \,\text{at}\, X}</math> and <math>L_{v \,\text{at}\, 2}</math> as <math>L_{v \,\text{at}\, Y}.</math>
+
In the case of a 2-adic relation <math>L \subseteq X_1 \times X_2 = X \times Y,</math> it is possible to simplify the notation for local flags in a couple of waysFirst, it is often easier in the 2-adic case to refer to <math>L_{u \,\text{at}\, 1}</math> as <math>L_{u \,\text{at}\, X}</math> and <math>L_{v \,\text{at}\, 2}</math> as <math>L_{v \,\text{at}\, Y}.</math>  Second, the notation may be streamlined even further by writing <math>L_{u \,\text{at}\, 1}</math> as <math>u \cdot L</math> and <math>L_{v \,\text{at}\, 2}</math> as <math>L \cdot v.</math>
   −
In the light of these considerations, the local flags of a 2-adic relation <math>L \subseteq X \times Y</math> may be formulated as follows:
+
In light of these considerations, the local flags of a 2-adic relation <math>L \subseteq X \times Y</math> may be formulated as follows:
    
{| align="center" cellspacing="6" width="90%"
 
{| align="center" cellspacing="6" width="90%"
 
|
 
|
 
<math>\begin{array}{lll}
 
<math>\begin{array}{lll}
 +
u \cdot L
 +
& = &
 
L_{u \,\text{at}\, X}
 
L_{u \,\text{at}\, X}
 +
\\[6pt]
 
& = &
 
& = &
 
\{ (x, y) \in L : x = u \}
 
\{ (x, y) \in L : x = u \}
Line 3,919: Line 3,922:  
\text{the set of all ordered pairs in}~ L ~\text{incident with}~ u \in X.
 
\text{the set of all ordered pairs in}~ L ~\text{incident with}~ u \in X.
 
\\[9pt]
 
\\[9pt]
 +
L \cdot v
 +
& = &
 
L_{v \,\text{at}\, Y}
 
L_{v \,\text{at}\, Y}
 +
\\[6pt]
 
& = &
 
& = &
 
\{ (x, y) \in L : y = v \}
 
\{ (x, y) \in L : y = v \}
12,080

edits

Navigation menu