Changes

Line 5,372: Line 5,372:     
This says that a lover of every woman in the given universe of discourse is a lover of <math>\mathrm{W}^{\prime}</math> that is a lover of <math>\mathrm{W}^{\prime\prime}</math> that is a lover of <math>\mathrm{W}^{\prime\prime\prime}.</math>  In other words, a lover of every woman in this context is a lover of <math>\mathrm{W}^{\prime}</math> and a lover of <math>\mathrm{W}^{\prime\prime}</math> and a lover of <math>\mathrm{W}^{\prime\prime\prime}.</math>
 
This says that a lover of every woman in the given universe of discourse is a lover of <math>\mathrm{W}^{\prime}</math> that is a lover of <math>\mathrm{W}^{\prime\prime}</math> that is a lover of <math>\mathrm{W}^{\prime\prime\prime}.</math>  In other words, a lover of every woman in this context is a lover of <math>\mathrm{W}^{\prime}</math> and a lover of <math>\mathrm{W}^{\prime\prime}</math> and a lover of <math>\mathrm{W}^{\prime\prime\prime}.</math>
 +
 +
Given a universe of discourse <math>X,\!</math> suppose that <math>L \subseteq X \times X\!</math> is the 2-adic relation associated with the relative term <math>\mathit{l} = \text{lover of}\,\underline{~~~~}.</math>
 +
 +
Recall the definition of the local flags for such a relation:
 +
 +
{| align="center" cellspacing="6" width="90%"
 +
|
 +
<math>\begin{array}{lll}
 +
L_{u \,\text{at}\, 1} & = & \{ (u, x) \in L \}
 +
\\[6pt]
 +
& = & \text{the set of ordered pairs in}~ L ~\text{with}~ u ~\text{in the 1st place}.
 +
\\[9pt]
 +
L_{v \,\text{at}\, 2} & = & \{ (x, v) \in L \}
 +
\\[6pt]
 +
& = & \text{the set of ordered pairs in}~ L ~\text{with}~ v ~\text{in the 2nd place}.
 +
\end{array}</math>
 +
|}
    
===Commentary Note 12.2===
 
===Commentary Note 12.2===
12,080

edits