Line 22: |
Line 22: |
| | | |
| {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" |
− | |+ '''Table 3. Relational Composition''' | + | |+ <math>\text{Table 3. Relational Composition}\!</math> |
| |- | | |- |
| | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | | | | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | |
Line 65: |
Line 65: |
| <br> | | <br> |
| | | |
− | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:70%" | + | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:75%" |
− | |+ '''Table 9. Composite of Triadic and Dyadic Relations''' | + | |+ <math>\text{Table 9. Composite of Triadic and Dyadic Relations}\!</math> |
| |- | | |- |
| | style="border-right:1px solid black; border-bottom:1px solid black; width:20%" | | | | style="border-right:1px solid black; border-bottom:1px solid black; width:20%" | |
Line 114: |
Line 114: |
| | | |
| {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" |
− | |+ '''Table 13. Another Brand of Composition''' | + | |+ <math>\text{Table 13. Another Brand of Composition}\!</math> |
| |- | | |- |
| | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | | | | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | |
Line 135: |
Line 135: |
| | | | | |
| | <math>Z\!</math> | | | <math>Z\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" cellspacing="6" width="90%" |
| + | | align="center" | |
| + | <pre> |
| + | Table 15. Conjunction Via Composition |
| + | o---------o---------o---------o---------o |
| + | | # !1! | !1! | !1! | |
| + | o=========o=========o=========o=========o |
| + | | L, # X | X | Y | |
| + | o---------o---------o---------o---------o |
| + | | S # | X | Y | |
| + | o---------o---------o---------o---------o |
| + | | L , S # X | | Y | |
| + | o---------o---------o---------o---------o |
| + | </pre> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" |
| + | |+ <math>\text{Table 15. Conjunction Via Composition}\!</math> |
| + | |- |
| + | | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | |
| + | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> |
| + | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> |
| + | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> |
| + | |- |
| + | | style="border-right:1px solid black" | <math>L,\!</math> |
| + | | <math>X\!</math> |
| + | | <math>X\!</math> |
| + | | <math>Y\!</math> |
| + | |- |
| + | | style="border-right:1px solid black" | <math>S\!</math> |
| + | | |
| + | | <math>X\!</math> |
| + | | <math>Y\!</math> |
| + | |- |
| + | | style="border-right:1px solid black" | <math>L,\!S</math> |
| + | | <math>X\!</math> |
| + | | |
| + | | <math>Y\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" cellspacing="6" width="90%" |
| + | | align="center" | |
| + | <pre> |
| + | Table 18. Relational Composition P o Q |
| + | o---------o---------o---------o---------o |
| + | | # !1! | !1! | !1! | |
| + | o=========o=========o=========o=========o |
| + | | P # X | Y | | |
| + | o---------o---------o---------o---------o |
| + | | Q # | Y | Z | |
| + | o---------o---------o---------o---------o |
| + | | P o Q # X | | Z | |
| + | o---------o---------o---------o---------o |
| + | </pre> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" |
| + | |+ <math>\text{Table 18. Relational Composition}~ P \circ Q</math> |
| + | |- |
| + | | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | |
| + | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> |
| + | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> |
| + | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> |
| + | |- |
| + | | style="border-right:1px solid black" | <math>P\!</math> |
| + | | <math>X\!</math> |
| + | | <math>Y\!</math> |
| + | | |
| + | |- |
| + | | style="border-right:1px solid black" | <math>Q\!</math> |
| + | | |
| + | | <math>Y\!</math> |
| + | | <math>Z\!</math> |
| + | |- |
| + | | style="border-right:1px solid black" | <math>P \circ Q</math> |
| + | | <math>X\!</math> |
| + | | |
| + | | <math>Z\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" cellspacing="6" width="90%" |
| + | | align="center" | |
| + | <pre> |
| + | Table 20. Arrow: J(L(u, v)) = K(Ju, Jv) |
| + | o---------o---------o---------o---------o |
| + | | # J | J | J | |
| + | o=========o=========o=========o=========o |
| + | | K # X | X | X | |
| + | o---------o---------o---------o---------o |
| + | | L # Y | Y | Y | |
| + | o---------o---------o---------o---------o |
| + | </pre> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" |
| + | |+ <math>\text{Table 20. Arrow Equation:}~~ J(L(u, v)) = K(Ju, Jv)</math> |
| + | |- |
| + | | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | |
| + | | style="border-bottom:1px solid black; width:25%" | <math>J\!</math> |
| + | | style="border-bottom:1px solid black; width:25%" | <math>J\!</math> |
| + | | style="border-bottom:1px solid black; width:25%" | <math>J\!</math> |
| + | |- |
| + | | style="border-right:1px solid black" | <math>K\!</math> |
| + | | <math>X\!</math> |
| + | | <math>X\!</math> |
| + | | <math>X\!</math> |
| + | |- |
| + | | style="border-right:1px solid black" | <math>L\!</math> |
| + | | <math>Y\!</math> |
| + | | <math>Y\!</math> |
| + | | <math>Y\!</math> |
| |} | | |} |
| | | |