MyWikiBiz, Author Your Legacy — Sunday November 24, 2024
Jump to navigationJump to search
|
|
Line 223: |
Line 223: |
| | | | | |
| | <math>Z\!</math> | | | <math>Z\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" cellspacing="6" width="90%" |
| + | | align="center" | |
| + | <pre> |
| + | Table 20. Arrow: J(L(u, v)) = K(Ju, Jv) |
| + | o---------o---------o---------o---------o |
| + | | # J | J | J | |
| + | o=========o=========o=========o=========o |
| + | | K # X | X | X | |
| + | o---------o---------o---------o---------o |
| + | | L # Y | Y | Y | |
| + | o---------o---------o---------o---------o |
| + | </pre> |
| |} | | |} |
| | | |
Revision as of 12:40, 24 April 2009
Logic of Relatives
Table 3. Relational Composition
o---------o---------o---------o---------o
| # !1! | !1! | !1! |
o=========o=========o=========o=========o
| L # X | Y | |
o---------o---------o---------o---------o
| M # | Y | Z |
o---------o---------o---------o---------o
| L o M # X | | Z |
o---------o---------o---------o---------o
|
Table 3. Relational Composition
|
\(\mathit{1}\!\)
|
\(\mathit{1}\!\)
|
\(\mathit{1}\!\)
|
\(L\!\)
|
\(X\!\)
|
\(Y\!\)
|
|
\(M\!\)
|
|
\(Y\!\)
|
\(Z\!\)
|
\(L \circ M\)
|
\(X\!\)
|
|
\(Z\!\)
|
Table 9. Composite of Triadic and Dyadic Relations
o---------o---------o---------o---------o---------o
| # !1! | !1! | !1! | !1! |
o=========o=========o=========o=========o=========o
| G # T | U | | V |
o---------o---------o---------o---------o---------o
| L # | U | W | |
o---------o---------o---------o---------o---------o
| G o L # T | | W | V |
o---------o---------o---------o---------o---------o
|
Table 9. Composite of Triadic and Dyadic Relations
|
\(\mathit{1}\!\)
|
\(\mathit{1}\!\)
|
\(\mathit{1}\!\)
|
\(\mathit{1}\!\)
|
\(G\!\)
|
\(T\!\)
|
\(U\!\)
|
|
\(V\!\)
|
\(L\!\)
|
|
\(U\!\)
|
\(W\!\)
|
|
\(G \circ L\)
|
\(T\!\)
|
|
\(W\!\)
|
\(V\!\)
|
Table 13. Another Brand of Composition
o---------o---------o---------o---------o
| # !1! | !1! | !1! |
o=========o=========o=========o=========o
| G # X | Y | Z |
o---------o---------o---------o---------o
| T # | Y | Z |
o---------o---------o---------o---------o
| G o T # X | | Z |
o---------o---------o---------o---------o
|
Table 13. Another Brand of Composition
|
\(\mathit{1}\!\)
|
\(\mathit{1}\!\)
|
\(\mathit{1}\!\)
|
\(G\!\)
|
\(X\!\)
|
\(Y\!\)
|
\(Z\!\)
|
\(T\!\)
|
|
\(Y\!\)
|
\(Z\!\)
|
\(G \circ T\)
|
\(X\!\)
|
|
\(Z\!\)
|
Table 15. Conjunction Via Composition
o---------o---------o---------o---------o
| # !1! | !1! | !1! |
o=========o=========o=========o=========o
| L, # X | X | Y |
o---------o---------o---------o---------o
| S # | X | Y |
o---------o---------o---------o---------o
| L , S # X | | Y |
o---------o---------o---------o---------o
|
Table 15. Conjunction Via Composition
|
\(\mathit{1}\!\)
|
\(\mathit{1}\!\)
|
\(\mathit{1}\!\)
|
\(L,\!\)
|
\(X\!\)
|
\(X\!\)
|
\(Y\!\)
|
\(S\!\)
|
|
\(X\!\)
|
\(Y\!\)
|
\(L,\!S\)
|
\(X\!\)
|
|
\(Y\!\)
|
Table 18. Relational Composition P o Q
o---------o---------o---------o---------o
| # !1! | !1! | !1! |
o=========o=========o=========o=========o
| P # X | Y | |
o---------o---------o---------o---------o
| Q # | Y | Z |
o---------o---------o---------o---------o
| P o Q # X | | Z |
o---------o---------o---------o---------o
|
Table 18. Relational Composition P o Q
|
\(\mathit{1}\!\)
|
\(\mathit{1}\!\)
|
\(\mathit{1}\!\)
|
\(P\!\)
|
\(X\!\)
|
\(Y\!\)
|
|
\(Q\!\)
|
|
\(Y\!\)
|
\(Z\!\)
|
\(P \circ Q\)
|
\(X\!\)
|
|
\(Z\!\)
|
Table 20. Arrow: J(L(u, v)) = K(Ju, Jv)
o---------o---------o---------o---------o
| # J | J | J |
o=========o=========o=========o=========o
| K # X | X | X |
o---------o---------o---------o---------o
| L # Y | Y | Y |
o---------o---------o---------o---------o
|
Grammar Stuff
Table 13. Algorithmic Translation Rules
\(\text{Sentence in PARCE}\!\)
|
\(\xrightarrow{\operatorname{Parse}}\)
|
\(\text{Graph in PARC}\!\)
|
|
\(\operatorname{Conc}^0\)
|
\(\xrightarrow{\operatorname{Parse}}\)
|
\(\operatorname{Node}^0\)
|
\(\operatorname{Conc}_{j=1}^k s_j\)
|
\(\xrightarrow{\operatorname{Parse}}\)
|
\(\operatorname{Node}_{j=1}^k \operatorname{Parse} (s_j)\)
|
|
\(\operatorname{Surc}^0\)
|
\(\xrightarrow{\operatorname{Parse}}\)
|
\(\operatorname{Lobe}^0\)
|
\(\operatorname{Surc}_{j=1}^k s_j\)
|
\(\xrightarrow{\operatorname{Parse}}\)
|
\(\operatorname{Lobe}_{j=1}^k \operatorname{Parse} (s_j)\)
|
|
Table 14.1 Semantic Translation : Functional Form
\(\operatorname{Sentence}\)
|
\(\xrightarrow[\operatorname{~~~~~~~~~~}]{\operatorname{Parse}}\)
|
\(\operatorname{Graph}\)
|
\(\xrightarrow[\operatorname{~~~~~~~~~~}]{\operatorname{Denotation}}\)
|
\(\operatorname{Proposition}\)
|
|
\(s_j\!\)
|
\(\xrightarrow{\operatorname{~~~~~~~~~~}}\)
|
\(C_j\!\)
|
\(\xrightarrow{\operatorname{~~~~~~~~~~}}\)
|
\(q_j\!\)
|
|
\(\operatorname{Conc}^0\)
|
\(\xrightarrow{\operatorname{~~~~~~~~~~}}\)
|
\(\operatorname{Node}^0\)
|
\(\xrightarrow{\operatorname{~~~~~~~~~~}}\)
|
\(\underline{1}\)
|
\(\operatorname{Conc}^k_j s_j\)
|
\(\xrightarrow{\operatorname{~~~~~~~~~~}}\)
|
\(\operatorname{Node}^k_j C_j\)
|
\(\xrightarrow{\operatorname{~~~~~~~~~~}}\)
|
\(\operatorname{Conj}^k_j q_j\)
|
|
\(\operatorname{Surc}^0\)
|
\(\xrightarrow{\operatorname{~~~~~~~~~~}}\)
|
\(\operatorname{Lobe}^0\)
|
\(\xrightarrow{\operatorname{~~~~~~~~~~}}\)
|
\(\underline{0}\)
|
\(\operatorname{Surc}^k_j s_j\)
|
\(\xrightarrow{\operatorname{~~~~~~~~~~}}\)
|
\(\operatorname{Lobe}^k_j C_j\)
|
\(\xrightarrow{\operatorname{~~~~~~~~~~}}\)
|
\(\operatorname{Surj}^k_j q_j\)
|
|
Table 14.2 Semantic Translation : Equational Form
\(\downharpoonleft \operatorname{Sentence} \downharpoonright\)
|
\(\stackrel{\operatorname{Parse}}{=}\)
|
\(\downharpoonleft \operatorname{Graph} \downharpoonright\)
|
\(\stackrel{\operatorname{Denotation}}{=}\)
|
\(\operatorname{Proposition}\)
|
|
\(\downharpoonleft s_j \downharpoonright\)
|
\(=\!\)
|
\(\downharpoonleft C_j \downharpoonright\)
|
\(=\!\)
|
\(q_j\!\)
|
|
\(\downharpoonleft \operatorname{Conc}^0 \downharpoonright\)
|
\(=\!\)
|
\(\downharpoonleft \operatorname{Node}^0 \downharpoonright\)
|
\(=\!\)
|
\(\underline{1}\)
|
\(\downharpoonleft \operatorname{Conc}^k_j s_j \downharpoonright\)
|
\(=\!\)
|
\(\downharpoonleft \operatorname{Node}^k_j C_j \downharpoonright\)
|
\(=\!\)
|
\(\operatorname{Conj}^k_j q_j\)
|
|
\(\downharpoonleft \operatorname{Surc}^0 \downharpoonright\)
|
\(=\!\)
|
\(\downharpoonleft \operatorname{Lobe}^0 \downharpoonright\)
|
\(=\!\)
|
\(\underline{0}\)
|
\(\downharpoonleft \operatorname{Surc}^k_j s_j \downharpoonright\)
|
\(=\!\)
|
\(\downharpoonleft \operatorname{Lobe}^k_j C_j \downharpoonright\)
|
\(=\!\)
|
\(\operatorname{Surj}^k_j q_j\)
|
|
Table Stuff
Table 15. Boolean Functions on Zero Variables
\(F\!\)
|
\(F\!\)
|
\(F()\!\)
|
\(F\!\)
|
\(\underline{0}\)
|
\(F_0^{(0)}\!\)
|
\(\underline{0}\)
|
\((~)\)
|
\(\underline{1}\)
|
\(F_1^{(0)}\!\)
|
\(\underline{1}\)
|
\(((~))\)
|
Table 16. Boolean Functions on One Variable
\(F\!\)
|
\(F\!\)
|
\(F(x)\!\)
|
\(F\!\)
|
|
|
\(F(\underline{1})\)
|
\(F(\underline{0})\)
|
|
\(F_0^{(1)}\!\)
|
\(F_{00}^{(1)}\!\)
|
\(\underline{0}\)
|
\(\underline{0}\)
|
\((~)\)
|
\(F_1^{(1)}\!\)
|
\(F_{01}^{(1)}\!\)
|
\(\underline{0}\)
|
\(\underline{1}\)
|
\((x)\!\)
|
\(F_2^{(1)}\!\)
|
\(F_{10}^{(1)}\!\)
|
\(\underline{1}\)
|
\(\underline{0}\)
|
\(x\!\)
|
\(F_3^{(1)}\!\)
|
\(F_{11}^{(1)}\!\)
|
\(\underline{1}\)
|
\(\underline{1}\)
|
\(((~))\)
|
Table 17. Boolean Functions on Two Variables
\(F\!\)
|
\(F\!\)
|
\(F(x, y)\!\)
|
\(F\!\)
|
|
|
\(F(\underline{1}, \underline{1})\)
|
\(F(\underline{1}, \underline{0})\)
|
\(F(\underline{0}, \underline{1})\)
|
\(F(\underline{0}, \underline{0})\)
|
|
\(F_{0}^{(2)}\!\)
|
\(F_{0000}^{(2)}\!\)
|
\(\underline{0}\)
|
\(\underline{0}\)
|
\(\underline{0}\)
|
\(\underline{0}\)
|
\((~)\)
|
\(F_{1}^{(2)}\!\)
|
\(F_{0001}^{(2)}\!\)
|
\(\underline{0}\)
|
\(\underline{0}\)
|
\(\underline{0}\)
|
\(\underline{1}\)
|
\((x)(y)\!\)
|
\(F_{2}^{(2)}\!\)
|
\(F_{0010}^{(2)}\!\)
|
\(\underline{0}\)
|
\(\underline{0}\)
|
\(\underline{1}\)
|
\(\underline{0}\)
|
\((x) y\!\)
|
\(F_{3}^{(2)}\!\)
|
\(F_{0011}^{(2)}\!\)
|
\(\underline{0}\)
|
\(\underline{0}\)
|
\(\underline{1}\)
|
\(\underline{1}\)
|
\((x)\!\)
|
\(F_{4}^{(2)}\!\)
|
\(F_{0100}^{(2)}\!\)
|
\(\underline{0}\)
|
\(\underline{1}\)
|
\(\underline{0}\)
|
\(\underline{0}\)
|
\(x (y)\!\)
|
\(F_{5}^{(2)}\!\)
|
\(F_{0101}^{(2)}\!\)
|
\(\underline{0}\)
|
\(\underline{1}\)
|
\(\underline{0}\)
|
\(\underline{1}\)
|
\((y)\!\)
|
\(F_{6}^{(2)}\!\)
|
\(F_{0110}^{(2)}\!\)
|
\(\underline{0}\)
|
\(\underline{1}\)
|
\(\underline{1}\)
|
\(\underline{0}\)
|
\((x, y)\!\)
|
\(F_{7}^{(2)}\!\)
|
\(F_{0111}^{(2)}\!\)
|
\(\underline{0}\)
|
\(\underline{1}\)
|
\(\underline{1}\)
|
\(\underline{1}\)
|
\((x y)\!\)
|
\(F_{8}^{(2)}\!\)
|
\(F_{1000}^{(2)}\!\)
|
\(\underline{1}\)
|
\(\underline{0}\)
|
\(\underline{0}\)
|
\(\underline{0}\)
|
\(x y\!\)
|
\(F_{9}^{(2)}\!\)
|
\(F_{1001}^{(2)}\!\)
|
\(\underline{1}\)
|
\(\underline{0}\)
|
\(\underline{0}\)
|
\(\underline{1}\)
|
\(((x, y))\!\)
|
\(F_{10}^{(2)}\!\)
|
\(F_{1010}^{(2)}\!\)
|
\(\underline{1}\)
|
\(\underline{0}\)
|
\(\underline{1}\)
|
\(\underline{0}\)
|
\(y\!\)
|
\(F_{11}^{(2)}\!\)
|
\(F_{1011}^{(2)}\!\)
|
\(\underline{1}\)
|
\(\underline{0}\)
|
\(\underline{1}\)
|
\(\underline{1}\)
|
\((x (y))\!\)
|
\(F_{12}^{(2)}\!\)
|
\(F_{1100}^{(2)}\!\)
|
\(\underline{1}\)
|
\(\underline{1}\)
|
\(\underline{0}\)
|
\(\underline{0}\)
|
\(x\!\)
|
\(F_{13}^{(2)}\!\)
|
\(F_{1101}^{(2)}\!\)
|
\(\underline{1}\)
|
\(\underline{1}\)
|
\(\underline{0}\)
|
\(\underline{1}\)
|
\(((x)y)\!\)
|
\(F_{14}^{(2)}\!\)
|
\(F_{1110}^{(2)}\!\)
|
\(\underline{1}\)
|
\(\underline{1}\)
|
\(\underline{1}\)
|
\(\underline{0}\)
|
\(((x)(y))\!\)
|
\(F_{15}^{(2)}\!\)
|
\(F_{1111}^{(2)}\!\)
|
\(\underline{1}\)
|
\(\underline{1}\)
|
\(\underline{1}\)
|
\(\underline{1}\)
|
\(((~))\)
|