MyWikiBiz, Author Your Legacy — Wednesday September 10, 2025
Jump to navigationJump to search
300 bytes added
, 14:18, 11 March 2009
Line 1,212: |
Line 1,212: |
| | | |
| <math>\operatorname{D}f</math> tells you what you would have to do, from where you are in the universe <math>[u, v],\!</math> if you want to bring about a change in the value of <math>f,\!</math> that is, if you want to get to a place where the value of <math>f\!</math> is different from what it is where you are. In the present case, where the reigning proposition <math>f\!</math> is <math>\texttt{((u)(v))},</math> the term <math>\texttt{uv} \cdot \texttt{du~dv}</math> of <math>\operatorname{D}f</math> tells you this: If <math>u\!</math> and <math>v\!</math> are both true where you are, then you would have to change both <math>u\!</math> and <math>v\!</math> in order to reach a place where the value of <math>f\!</math> is different from what it is where you are. | | <math>\operatorname{D}f</math> tells you what you would have to do, from where you are in the universe <math>[u, v],\!</math> if you want to bring about a change in the value of <math>f,\!</math> that is, if you want to get to a place where the value of <math>f\!</math> is different from what it is where you are. In the present case, where the reigning proposition <math>f\!</math> is <math>\texttt{((u)(v))},</math> the term <math>\texttt{uv} \cdot \texttt{du~dv}</math> of <math>\operatorname{D}f</math> tells you this: If <math>u\!</math> and <math>v\!</math> are both true where you are, then you would have to change both <math>u\!</math> and <math>v\!</math> in order to reach a place where the value of <math>f\!</math> is different from what it is where you are. |
| + | |
| + | Figure 1.4 approximates <math>\operatorname{D}f</math> by the linear form <math>\operatorname{d}f</math> that expands over <math>[u, v]\!</math> as follows: |
| + | |
| + | {| align="center" cellpadding="8" width="90%" |
| + | | <math>\operatorname{d}f ~=~ \texttt{uv} \cdot \texttt{0} ~+~ \texttt{u(v)} \cdot \texttt{du} ~+~ \texttt{(u)v} \cdot \texttt{dv} ~+~ \texttt{(u)(v)} \cdot \texttt{(du, dv)}</math> |
| + | |} |
| | | |
| <pre> | | <pre> |
− | Figure 1.4 approximates Df by the linear form
| |
− | df = uv 0 + u(v) du + (u)v dv + (u)(v)(du, dv).
| |
− |
| |
| Figure 1.5 shows what remains of the difference map Df | | Figure 1.5 shows what remains of the difference map Df |
| when the first order linear contribution df is removed: | | when the first order linear contribution df is removed: |