| Line 105: |
Line 105: |
| | Here is a table of the two trajectories or ''orbits'' that we get by starting from each of the two permissible initial states and staying within the constraints of the dynamic law <math>d^2 x = (x).\!</math> | | Here is a table of the two trajectories or ''orbits'' that we get by starting from each of the two permissible initial states and staying within the constraints of the dynamic law <math>d^2 x = (x).\!</math> |
| | | | |
| − | {| cellpadding="8" width="100%" | + | {| align="center" cellpadding="8" style="text-align:center" |
| − | | width="10%" |
| + | | <math>\text{Initial State}\ x \cdot dx</math> |
| − | | width="90%" | | + | |- |
| − | <p><math>\text{Initial State}\ x \cdot dx</math></p>
| + | | |
| − | <br>
| + | <math>\begin{array}{cccc} |
| − | <p><math>\begin{array}{cccc}
| |
| | t & d^0 x & d^1 x & d^2 x \\ | | t & d^0 x & d^1 x & d^2 x \\ |
| | + | \\ |
| | 0 & 1 & 1 & 0 \\ | | 0 & 1 & 1 & 0 \\ |
| | 1 & 0 & 1 & 1 \\ | | 1 & 0 & 1 & 1 \\ |
| Line 121: |
Line 121: |
| | |} | | |} |
| | | | |
| − | {| align="center" cellpadding="8" width="90%" | + | <br> |
| − | |+ <math>\text{Initial State}\ (x) \cdot (dx)</math> | + | |
| − | | align="center" | | + | {| align="center" cellpadding="8" style="text-align:center" |
| | + | | <math>\text{Initial State}\ (x) \cdot (dx)</math> |
| | + | |- |
| | + | | |
| | <math>\begin{array}{cccc} | | <math>\begin{array}{cccc} |
| | t & d^0 x & d^1 x & d^2 x \\ | | t & d^0 x & d^1 x & d^2 x \\ |
| | + | \\ |
| | 0 & 0 & 0 & 1 \\ | | 0 & 0 & 0 & 1 \\ |
| | 1 & 0 & 1 & 1 \\ | | 1 & 0 & 1 & 1 \\ |
| Line 136: |
Line 140: |
| | | | |
| | <pre> | | <pre> |
| − | d d d
| |
| − | 0 1 2
| |
| − | x x x
| |
| − |
| |
| − | Initial State x dx
| |
| − |
| |
| − | 1 1 0
| |
| − | 0 1 1
| |
| − | 1 0 0
| |
| − | 1 0 0
| |
| − | 1 0 0
| |
| − | " " "
| |
| − |
| |
| − | Initial State (x)(dx)
| |
| − |
| |
| − | 0 0 1
| |
| − | 0 1 1
| |
| − | 1 0 0
| |
| − | 1 0 0
| |
| − | 1 0 0
| |
| − | " " "
| |
| − |
| |
| | Note that the state x (dx) (d^2.x), | | Note that the state x (dx) (d^2.x), |
| | that is, <x, dx, d^2.x> = <1, 0, 0>, | | that is, <x, dx, d^2.x> = <1, 0, 0>, |