MyWikiBiz, Author Your Legacy — Wednesday September 10, 2025
Jump to navigationJump to search
144 bytes removed
, 16:00, 28 February 2009
Line 105: |
Line 105: |
| Here is a table of the two trajectories or ''orbits'' that we get by starting from each of the two permissible initial states and staying within the constraints of the dynamic law <math>d^2 x = (x).\!</math> | | Here is a table of the two trajectories or ''orbits'' that we get by starting from each of the two permissible initial states and staying within the constraints of the dynamic law <math>d^2 x = (x).\!</math> |
| | | |
− | {| cellpadding="8" width="100%" | + | {| align="center" cellpadding="8" style="text-align:center" |
− | | width="10%" |
| + | | <math>\text{Initial State}\ x \cdot dx</math> |
− | | width="90%" | | + | |- |
− | <p><math>\text{Initial State}\ x \cdot dx</math></p>
| + | | |
− | <br>
| + | <math>\begin{array}{cccc} |
− | <p><math>\begin{array}{cccc}
| |
| t & d^0 x & d^1 x & d^2 x \\ | | t & d^0 x & d^1 x & d^2 x \\ |
| + | \\ |
| 0 & 1 & 1 & 0 \\ | | 0 & 1 & 1 & 0 \\ |
| 1 & 0 & 1 & 1 \\ | | 1 & 0 & 1 & 1 \\ |
Line 121: |
Line 121: |
| |} | | |} |
| | | |
− | {| align="center" cellpadding="8" width="90%" | + | <br> |
− | |+ <math>\text{Initial State}\ (x) \cdot (dx)</math> | + | |
− | | align="center" | | + | {| align="center" cellpadding="8" style="text-align:center" |
| + | | <math>\text{Initial State}\ (x) \cdot (dx)</math> |
| + | |- |
| + | | |
| <math>\begin{array}{cccc} | | <math>\begin{array}{cccc} |
| t & d^0 x & d^1 x & d^2 x \\ | | t & d^0 x & d^1 x & d^2 x \\ |
| + | \\ |
| 0 & 0 & 0 & 1 \\ | | 0 & 0 & 0 & 1 \\ |
| 1 & 0 & 1 & 1 \\ | | 1 & 0 & 1 & 1 \\ |
Line 136: |
Line 140: |
| | | |
| <pre> | | <pre> |
− | d d d
| |
− | 0 1 2
| |
− | x x x
| |
− |
| |
− | Initial State x dx
| |
− |
| |
− | 1 1 0
| |
− | 0 1 1
| |
− | 1 0 0
| |
− | 1 0 0
| |
− | 1 0 0
| |
− | " " "
| |
− |
| |
− | Initial State (x)(dx)
| |
− |
| |
− | 0 0 1
| |
− | 0 1 1
| |
− | 1 0 0
| |
− | 1 0 0
| |
− | 1 0 0
| |
− | " " "
| |
− |
| |
| Note that the state x (dx) (d^2.x), | | Note that the state x (dx) (d^2.x), |
| that is, <x, dx, d^2.x> = <1, 0, 0>, | | that is, <x, dx, d^2.x> = <1, 0, 0>, |