Changes

Line 1,764: Line 1,764:     
Signs are ''equiferent'' if they refer to all and only the same objects, that is, if they have exactly the same denotations.  In other language for the same relation, signs are said to be ''denotatively equivalent'' or ''referentially equivalent'', but it is probably best to check whether the extension of this concept over the syntactic domain is really a genuine equivalence relation before jumping to the conclusions that are implied by these latter terms.
 
Signs are ''equiferent'' if they refer to all and only the same objects, that is, if they have exactly the same denotations.  In other language for the same relation, signs are said to be ''denotatively equivalent'' or ''referentially equivalent'', but it is probably best to check whether the extension of this concept over the syntactic domain is really a genuine equivalence relation before jumping to the conclusions that are implied by these latter terms.
 +
 +
To define the ''equiference'' of signs in terms of their denotations, one says that ''<math>x\!</math> is equiferent to <math>y\!</math> under <math>L,\!</math>'' and writes <math>x ~\overset{L}{=}~ y,\!</math> to mean that <math>\operatorname{Den}(L, x) = \operatorname{Den}(L, y).</math>  Taken in extension, this notion of a relation between signs induces an ''equiference relation'' on the syntactic domain.
    
<pre>
 
<pre>
To define the "equiference" of signs in terms of their denotations, one says that "x is equiferent to y under R", and writes "x =R y", to mean that Den(R, x) = Den(R, y).  Taken in extension, this notion of a relation between signs induces an "equiference relation" on the syntactic domain.
  −
   
For each sign relation R, this yields a binary relation Der(R) c SxI that is defined as follows:
 
For each sign relation R, this yields a binary relation Der(R) c SxI that is defined as follows:
  
12,080

edits