Line 1,378: |
Line 1,378: |
| | | |
| ===Geometric Translation Rule 2=== | | ===Geometric Translation Rule 2=== |
− |
| |
− | <pre>
| |
− | Geometric Translation Rule 2
| |
− |
| |
− | If X, Y c U
| |
− |
| |
− | and P, Q U -> B, such that:
| |
− |
| |
− | G2a. {X} = P and {Y} = Q,
| |
− |
| |
− | then the following equations hold:
| |
− |
| |
− | G2b00. {{}} = () = 0 : U->B.
| |
− |
| |
− | G2b01. {~X n ~Y} = ({X})({Y}) = (P)(Q).
| |
− |
| |
− | G2b02. {~X n Y} = ({X}){Y} = (P) Q.
| |
− |
| |
− | G2b03. {~X} = ({X}) = (P).
| |
− |
| |
− | G2b04. {X n ~Y} = {X}({Y}) = P (Q).
| |
− |
| |
− | G2b05. {~Y} = ({Y}) = (Q).
| |
− |
| |
− | G2b06. {X + Y} = ({X}, {Y}) = (P, Q).
| |
− |
| |
− | G2b07. {~(X n Y)} = ({X}.{Y}) = (P Q).
| |
− |
| |
− | G2b08. {X n Y} = {X}.{Y} = P.Q.
| |
− |
| |
− | G2b09. {~(X + Y)} = (({X}, {Y})) = ((P, Q)).
| |
− |
| |
− | G2b10. {Y} = {Y} = Q.
| |
− |
| |
− | G2b11. {~(X n ~Y)} = ({X}({Y})) = (P (Q)).
| |
− |
| |
− | G2b12. {X} = {X} = P.
| |
− |
| |
− | G2b13. {~(~X n Y)} = (({X}) {Y}) = ((P) Q).
| |
− |
| |
− | G2b14. {X u Y} = (({X})({Y})) = ((P)(Q)).
| |
− |
| |
− | G2b15. {U} = (()) = 1 : U->B.
| |
− | </pre>
| |
| | | |
| <br> | | <br> |
Line 1,471: |
Line 1,427: |
| | | | | |
| | align="left" | <math>\text{G2b}_{1}.\!</math> | | | align="left" | <math>\text{G2b}_{1}.\!</math> |
− | | <math>\upharpoonleft {}^{_\sim} P ~\cap~ {}^{_\sim} Q \upharpoonright</math> | + | | <math>\upharpoonleft \overline{P} ~\cap~ \overline{Q} \upharpoonright</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
− | | <math>(\upharpoonleft {}^{_\sim} P \upharpoonright)(\upharpoonleft {}^{_\sim} Q \upharpoonright)</math> | + | | <math>(\upharpoonleft P \upharpoonright)(\upharpoonleft Q \upharpoonright)</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
| | <math>(p)(q)\!</math> | | | <math>(p)(q)\!</math> |
Line 1,479: |
Line 1,435: |
| | | | | |
| | align="left" | <math>\text{G2b}_{2}.\!</math> | | | align="left" | <math>\text{G2b}_{2}.\!</math> |
− | | <math>\upharpoonleft \operatorname{not}~ s ~\operatorname{but}~ t \upharpoonright</math> | + | | <math>\upharpoonleft \overline{P} ~\cap~ Q \upharpoonright</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
− | | <math>(\upharpoonleft s \upharpoonright) \upharpoonleft t \upharpoonright</math> | + | | <math>(\upharpoonleft P \upharpoonright) \upharpoonleft Q \upharpoonright</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
| | <math>(p) q\!</math> | | | <math>(p) q\!</math> |
Line 1,487: |
Line 1,443: |
| | | | | |
| | align="left" | <math>\text{G2b}_{3}.\!</math> | | | align="left" | <math>\text{G2b}_{3}.\!</math> |
− | | <math>\upharpoonleft \operatorname{not}~ s \upharpoonright</math> | + | | <math>\upharpoonleft \overline{P} \upharpoonright</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
− | | <math>(\upharpoonleft s \upharpoonright)</math> | + | | <math>(\upharpoonleft P \upharpoonright)</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
| | <math>(p)\!</math> | | | <math>(p)\!</math> |
Line 1,495: |
Line 1,451: |
| | | | | |
| | align="left" | <math>\text{G2b}_{4}.\!</math> | | | align="left" | <math>\text{G2b}_{4}.\!</math> |
− | | <math>\upharpoonleft s ~\operatorname{and~not}~ t \upharpoonright</math> | + | | <math>\upharpoonleft P ~\cap~ \overline{Q} \upharpoonright</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
− | | <math>\upharpoonleft s \upharpoonright (\upharpoonleft t \upharpoonright)</math> | + | | <math>\upharpoonleft P \upharpoonright (\upharpoonleft Q \upharpoonright)</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
| | <math>p (q)\!</math> | | | <math>p (q)\!</math> |
Line 1,503: |
Line 1,459: |
| | | | | |
| | align="left" | <math>\text{G2b}_{5}.\!</math> | | | align="left" | <math>\text{G2b}_{5}.\!</math> |
− | | <math>\upharpoonleft \operatorname{not}~ t \upharpoonright</math> | + | | <math>\upharpoonleft \overline{Q} \upharpoonright</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
− | | <math>(\upharpoonleft t \upharpoonright)</math> | + | | <math>(\upharpoonleft Q \upharpoonright)</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
| | <math>(q)\!</math> | | | <math>(q)\!</math> |
Line 1,511: |
Line 1,467: |
| | | | | |
| | align="left" | <math>\text{G2b}_{6}.\!</math> | | | align="left" | <math>\text{G2b}_{6}.\!</math> |
− | | <math>\upharpoonleft s ~\operatorname{or}~ t, ~\operatorname{not~both} \upharpoonright</math> | + | | <math>\upharpoonleft P ~+~ Q \upharpoonright</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
− | | <math>(\upharpoonleft s \upharpoonright ~,~ \upharpoonleft t \upharpoonright)</math> | + | | <math>(\upharpoonleft P \upharpoonright ~,~ \upharpoonleft Q \upharpoonright)</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
| | <math>(p, q)\!</math> | | | <math>(p, q)\!</math> |
Line 1,519: |
Line 1,475: |
| | | | | |
| | align="left" | <math>\text{G2b}_{7}.\!</math> | | | align="left" | <math>\text{G2b}_{7}.\!</math> |
− | | <math>\upharpoonleft \operatorname{not~both}~ s ~\operatorname{and}~ t \upharpoonright</math> | + | | <math>\upharpoonleft \overline{P ~\cap~ Q} \upharpoonright</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
− | | <math>(\upharpoonleft s \upharpoonright ~ \upharpoonleft t \upharpoonright)</math> | + | | <math>(\upharpoonleft P \upharpoonright ~ \upharpoonleft Q \upharpoonright)</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
| | <math>(p q)\!</math> | | | <math>(p q)\!</math> |
Line 1,527: |
Line 1,483: |
| | | | | |
| | align="left" | <math>\text{G2b}_{8}.\!</math> | | | align="left" | <math>\text{G2b}_{8}.\!</math> |
− | | <math>\upharpoonleft s ~\operatorname{and}~ t \upharpoonright</math> | + | | <math>\upharpoonleft P ~\cap~ Q \upharpoonright</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
− | | <math>\upharpoonleft s \upharpoonright ~ \upharpoonleft t \upharpoonright</math> | + | | <math>\upharpoonleft P \upharpoonright ~ \upharpoonleft Q \upharpoonright</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
| | <math>p q\!</math> | | | <math>p q\!</math> |
Line 1,535: |
Line 1,491: |
| | | | | |
| | align="left" | <math>\text{G2b}_{9}.\!</math> | | | align="left" | <math>\text{G2b}_{9}.\!</math> |
− | | <math>\upharpoonleft s ~\operatorname{is~equivalent~to}~ t \upharpoonright</math> | + | | <math>\upharpoonleft \overline{P ~+~ Q} \upharpoonright</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
− | | <math>((\upharpoonleft s \upharpoonright ~,~ \upharpoonleft t \upharpoonright))</math> | + | | <math>((\upharpoonleft P \upharpoonright ~,~ \upharpoonleft Q \upharpoonright))</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
| | <math>((p, q))\!</math> | | | <math>((p, q))\!</math> |
Line 1,543: |
Line 1,499: |
| | | | | |
| | align="left" | <math>\text{G2b}_{10}.\!</math> | | | align="left" | <math>\text{G2b}_{10}.\!</math> |
− | | <math>\upharpoonleft t \upharpoonright</math> | + | | <math>\upharpoonleft Q \upharpoonright</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
− | | <math>\upharpoonleft t \upharpoonright</math> | + | | <math>\upharpoonleft Q \upharpoonright</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
| | <math>q\!</math> | | | <math>q\!</math> |
Line 1,551: |
Line 1,507: |
| | | | | |
| | align="left" | <math>\text{G2b}_{11}.\!</math> | | | align="left" | <math>\text{G2b}_{11}.\!</math> |
− | | <math>\upharpoonleft s ~\operatorname{implies}~ t \upharpoonright</math> | + | | <math>\upharpoonleft \overline{P ~\cap~ \overline{Q}} \upharpoonright</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
− | | <math>(\upharpoonleft s \upharpoonright (\upharpoonleft t \upharpoonright))</math> | + | | <math>(\upharpoonleft P \upharpoonright (\upharpoonleft Q \upharpoonright))</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
| | <math>(p (q))\!</math> | | | <math>(p (q))\!</math> |
Line 1,559: |
Line 1,515: |
| | | | | |
| | align="left" | <math>\text{G2b}_{12}.\!</math> | | | align="left" | <math>\text{G2b}_{12}.\!</math> |
− | | <math>\upharpoonleft s \upharpoonright</math> | + | | <math>\upharpoonleft P \upharpoonright</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
− | | <math>\upharpoonleft s \upharpoonright</math> | + | | <math>\upharpoonleft P \upharpoonright</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
| | <math>p\!</math> | | | <math>p\!</math> |
Line 1,567: |
Line 1,523: |
| | | | | |
| | align="left" | <math>\text{G2b}_{13}.\!</math> | | | align="left" | <math>\text{G2b}_{13}.\!</math> |
− | | <math>\upharpoonleft s ~\operatorname{is~implied~by}~ t \upharpoonright</math> | + | | <math>\upharpoonleft \overline{\overline{P} ~\cap~ Q} \upharpoonright</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
− | | <math>((\upharpoonleft s \upharpoonright) \upharpoonleft t \upharpoonright)</math> | + | | <math>((\upharpoonleft P \upharpoonright) \upharpoonleft Q \upharpoonright)</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
| | <math>((p) q)\!</math> | | | <math>((p) q)\!</math> |
Line 1,575: |
Line 1,531: |
| | | | | |
| | align="left" | <math>\text{G2b}_{14}.\!</math> | | | align="left" | <math>\text{G2b}_{14}.\!</math> |
− | | <math>\upharpoonleft s ~\operatorname{or}~ t \upharpoonright</math> | + | | <math>\upharpoonleft P ~\cup~ Q \upharpoonright</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
− | | <math>((\upharpoonleft s \upharpoonright)(\upharpoonleft t \upharpoonright))</math> | + | | <math>((\upharpoonleft P \upharpoonright)(\upharpoonleft Q \upharpoonright))</math> |
| | <math>=\!</math> | | | <math>=\!</math> |
| | <math>((p)(q))\!</math> | | | <math>((p)(q))\!</math> |