Changes

MyWikiBiz, Author Your Legacy — Thursday November 28, 2024
Jump to navigationJump to search
36 bytes added ,  20:10, 20 January 2009
mathematical markup
Line 5: Line 5:  
==Examples from mathematics==
 
==Examples from mathematics==
   −
For the sake of topics to be taken up later, it is useful to examine a pair of 3-adic relations in tandem, '''L'''<sub>0</sub> and '''L'''<sub>1</sub>, that can be described in the following manner.
+
For the sake of topics to be taken up later, it is useful to examine a pair of 3-adic relations in tandem, <math>L_0\!</math> and <math>L_1,\!</math> that can be described in the following manner.
   −
The first order of business is to define the space in which the relations '''L'''<sub>0</sub> and '''L'''<sub>1</sub> take up residence.  This space is constructed as a 3-fold [[cartesian power]] in the following way.
+
The first order of business is to define the space in which the relations <math>L_0\!</math> and <math>L_1\!</math> take up residence.  This space is constructed as a 3-fold [[cartesian power]] in the following way.
   −
The '''[[boolean domain]]''' is the set '''B''' = {0,&nbsp;1}.
+
The ''[[boolean domain]]'' is the set <math>\mathbb{B} = \{ 0, 1 \}.</math>  The plus sign <math>^{\backprime\backprime} + ^{\prime\prime},</math> used in the context of the boolean domain <math>\mathbb{B},</math> denotes addition mod 2.  Interpreted for logic, this amounts to the same thing as the boolean operation of ''[[exclusive disjunction|exclusive or]]'' or ''not equal to''.
The plus sign "+", used in the context of the boolean domain '''B''', denotes addition mod 2.  Interpreted for logic, this amounts to the same thing as the boolean operation of ''exclusive-or'' or ''not-equal-to''.
     −
The third cartesian power of '''B''' is '''B'''<sup>3</sup> = {(''x''<sub>1</sub>, ''x''<sub>2</sub>, ''x''<sub>3</sub>) : ''x''<sub>''j''</sub> in '''B''' for ''j'' = 1, 2, 3}= '''B''' &times; '''B''' &times; '''B'''.
+
The third cartesian power of <math>\mathbb{B}</math> is <math>\mathbb{B}^3 = \{ (x_1, x_2, x_3) : x_j \in \mathbb{B} ~\text{for}~ j = 1, 2, 3 \} = \mathbb{B} \times \mathbb{B} \times \mathbb{B}.</math>
   −
In what follows, the space '''X''' &times; '''Y''' &times; '''Z''' is isomorphic to '''B''' &times; '''B''' &times; '''B''' = '''B'''<sup>3</sup>.
+
In what follows, the space <math>X \times Y \times Z</math> is isomorphic to <math>\mathbb{B} \times \mathbb{B} \times \mathbb{B} ~=~ \mathbb{B}^3.</math>
   −
The relation '''L'''<sub>0</sub> is defined as follows:
+
The relation <math>L_0\!</math> is defined as follows:
   −
: '''L'''<sub>0</sub> = {(''x'', ''y'', ''z'') in '''B'''<sup>3</sup> : ''x'' + ''y'' + ''z'' = 0}.
+
: <math>L_0 = \{ (x, y, z) \in \mathbb{B}^3 : x + y + z = 0 \}.</math>
   −
The relation '''L'''<sub>0</sub> is the set of four triples enumerated here:
+
The relation <math>L_0\!</math> is the set of four triples enumerated here:
   −
: '''L'''<sub>0</sub> = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}.
+
: <math>L_0 = \{ (0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0) \}.\!</math>
   −
The relation '''L'''<sub>1</sub> is defined as follows:
+
The relation <math>L_1\!</math> is defined as follows:
   −
: '''L'''<sub>1</sub> = {(''x'', ''y'', ''z'') in '''B'''<sup>3</sup> : ''x'' + ''y'' + ''z'' = 1}.
+
: <math>L_1 = \{ (x, y, z) \in \mathbb{B}^3 : x + y + z = 1 \}.</math>
   −
The relation '''L'''<sub>1</sub> is the set of four triples enumerated here:
+
The relation <math>L_1\!</math> is the set of four triples enumerated here:
   −
: '''L'''<sub>1</sub> = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)}.
+
: <math>L_1 = \{ (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1) \}.\!</math>
   −
The triples that make up the relations '''L'''<sub>0</sub> and '''L'''<sub>1</sub> are conveniently arranged in the form of ''[[relational database|relational data tables]]'', as follows:
+
The triples that make up the relations <math>L_0\!</math> and <math>L_1\!</math> are conveniently arranged in the form of ''[[relational database|relational data tables]]'', as follows:
    
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%"
 
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%"
12,080

edits

Navigation menu