Line 224: |
Line 224: |
| | | |
| :: '''<math>X = \{\!</math> <code>(u)(v)</code> , <code>(u)v</code> , <code>u(v)</code> , <code>uv</code> <math>\} \cong \mathbb{B}^2.</math>''' | | :: '''<math>X = \{\!</math> <code>(u)(v)</code> , <code>(u)v</code> , <code>u(v)</code> , <code>uv</code> <math>\} \cong \mathbb{B}^2.</math>''' |
| + | |
| + | ==Box Displays== |
| + | |
| + | {| align="center" cellpadding="10" cellspacing="0" width="90%" |
| + | |- |
| + | | width="90%" style="border-top:1px solid black; border-left:1px solid black;" | |
| + | <math>\mathfrak{C} (\mathfrak{P}).\ \text{Grammar 1}</math> |
| + | | width="10%" style="border-top:1px solid black; border-right:1px solid black;" | |
| + | <math>\mathfrak{Q} = \emptyset</math> |
| + | |- |
| + | | colspan="2" style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black;" | |
| + | <math>\begin{array}{llll} |
| + | 1. & S & :> & m_1 \ = \ ^{\backprime\backprime} \operatorname{~} ^{\prime\prime} \\ |
| + | 2. & S & :> & p_j, \text{for each}\ j \in J \\ |
| + | 3. & S & :> & \operatorname{Conc}^0 \ = \ ^{\backprime\backprime\prime\prime} \\ |
| + | 4. & S & :> & \operatorname{Surc}^0 \ = \ ^{\backprime\backprime} \, \operatorname{()} \, ^{\prime\prime} \\ |
| + | 5. & S & :> & S^* \\ |
| + | 6. & S & :> & ^{\backprime\backprime} \, \operatorname{(} \, ^{\prime\prime} \, \cdot \, S \, \cdot \, ( \, ^{\backprime\backprime} \operatorname{,} ^{\prime\prime} \, \cdot \, S \, )^* \, \cdot \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime} \\ |
| + | \end{array}</math> |
| + | |} |