Line 273: |
Line 273: |
| The alphabet <math>\mathfrak{A} = \mathfrak{M} \cup \mathfrak{P}</math> is the disjoint union of two sets of symbols: | | The alphabet <math>\mathfrak{A} = \mathfrak{M} \cup \mathfrak{P}</math> is the disjoint union of two sets of symbols: |
| | | |
− | {| align="center" cellpadding="8" width="90%"
| + | <ol style="list-style-type:decimal"> |
− | |-
| + | |
− | | valign="top" | 1.
| + | <li> |
− | | <math>\mathfrak{M}</math> is the alphabet of ''measures'', the set of ''punctuation marks'', or the collection of ''syntactic constants'' that is common to all of the languages <math>\mathfrak{C}(\mathfrak{P}).</math> This set of signs is given as follows:
| + | <p><math>\mathfrak{M}</math> is the alphabet of ''measures'', the set of ''punctuation marks'', or the collection of ''syntactic constants'' that is common to all of the languages <math>\mathfrak{C}(\mathfrak{P}).</math> This set of signs is given as follows:</p> |
− | |-
| + | |
− | |
| + | <p><math>\begin{array}{lccccccccccc} |
− | |
| |
− | <math>\begin{array}{lccccccccccc} | |
| \mathfrak{M} | | \mathfrak{M} |
| & = & | | & = & |
Line 303: |
Line 301: |
| \operatorname{right} & | | \operatorname{right} & |
| \} \\ | | \} \\ |
− | \end{array}</math> | + | \end{array}</math></p></li> |
− | |-
| + | |
− | | valign="top" | 2.
| + | <li> |
− | | <math>\mathfrak{P}</math> is the ''palette'', the alphabet of ''paints'', or the collection of ''syntactic variables'' that is peculiar to the language <math>\mathfrak{C}(\mathfrak{P}).</math> This set of signs is given as follows:
| + | <p><math>\mathfrak{P}</math> is the ''palette'', the alphabet of ''paints'', or the collection of ''syntactic variables'' that is peculiar to the language <math>\mathfrak{C}(\mathfrak{P}).</math> This set of signs is given as follows:</p> |
− | |-
| + | |
− | |
| + | <p><math>\mathfrak{P} = \{ \mathfrak{p}_j : j \in J \}.</math></p></li> |
− | | <math>\mathfrak{P} = \{ \mathfrak{p}_j : j \in J \}.</math>
| + | |
− | |}
| + | </ol> |
| | | |
| The easiest way to define the language <math>\mathfrak{C}(\mathfrak{P})</math> is to indicate the general sorts of operations that suffice to construct the greater share of its sentences from the specified few of its sentences that require a special election. In accord with this manner of proceeding, I introduce a family of operations on strings of <math>\mathfrak{A}^*</math> that are called ''syntactic connectives''. If the strings on which they operate are exclusively sentences of <math>\mathfrak{C}(\mathfrak{P}),</math> then these operations are tantamount to ''sentential connectives'', and if the syntactic sentences, considered as abstract strings of meaningless signs, are given a semantics in which they denote propositions, considered as indicator functions over some universe, then these operations amount to ''propositional connectives''. | | The easiest way to define the language <math>\mathfrak{C}(\mathfrak{P})</math> is to indicate the general sorts of operations that suffice to construct the greater share of its sentences from the specified few of its sentences that require a special election. In accord with this manner of proceeding, I introduce a family of operations on strings of <math>\mathfrak{A}^*</math> that are called ''syntactic connectives''. If the strings on which they operate are exclusively sentences of <math>\mathfrak{C}(\mathfrak{P}),</math> then these operations are tantamount to ''sentential connectives'', and if the syntactic sentences, considered as abstract strings of meaningless signs, are given a semantics in which they denote propositions, considered as indicator functions over some universe, then these operations amount to ''propositional connectives''. |
Line 320: |
Line 318: |
| <ol style="list-style-type:decimal"> | | <ol style="list-style-type:decimal"> |
| | | |
− | <li><p>The ''concatenation'' of one string <math>s_1\!</math> is just the string <math>s_1.\!</math></p> | + | <li> |
| + | <p>The ''concatenation'' of one string <math>s_1\!</math> is just the string <math>s_1.\!</math></p> |
| | | |
− | <p>The ''concatenation'' of two strings <math>s_1, s_2\!</math> is the string <math>s_1 \cdot s_2.\!</math></p>
| + | <p>The ''concatenation'' of two strings <math>s_1, s_2\!</math> is the string <math>s_1 \cdot s_2.\!</math></p> |
| | | |
− | <p>The ''concatenation'' of the <math>k\!</math> strings <math>(s_j)_{j = 1}^k</math> is the string of the form <math>s_1 \cdot \ldots \cdot s_k.\!</math></p></li>
| + | <p>The ''concatenation'' of the <math>k\!</math> strings <math>(s_j)_{j = 1}^k</math> is the string of the form <math>s_1 \cdot \ldots \cdot s_k.\!</math></p></li> |
| | | |
− | <li><p>The ''surcatenation'' of one string <math>s_1\!</math> is the string <math>^{\backprime\backprime} \, \operatorname{(} \, ^{\prime\prime} \, \cdot \, s_1 \, \cdot \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime}.</math></p> | + | <li> |
| + | <p>The ''surcatenation'' of one string <math>s_1\!</math> is the string <math>^{\backprime\backprime} \, \operatorname{(} \, ^{\prime\prime} \, \cdot \, s_1 \, \cdot \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime}.</math></p> |
| | | |
− | <p>The ''surcatenation'' of two strings <math>s_1, s_2\!</math> is <math>^{\backprime\backprime} \, \operatorname{(} \, ^{\prime\prime} \, \cdot \, s_1 \, \cdot \, ^{\backprime\backprime} \, \operatorname{,} \, ^{\prime\prime} \, \cdot \, s_2 \, \cdot \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime}.</math></p>
| + | <p>The ''surcatenation'' of two strings <math>s_1, s_2\!</math> is <math>^{\backprime\backprime} \, \operatorname{(} \, ^{\prime\prime} \, \cdot \, s_1 \, \cdot \, ^{\backprime\backprime} \, \operatorname{,} \, ^{\prime\prime} \, \cdot \, s_2 \, \cdot \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime}.</math></p> |
| | | |
− | <p>The ''surcatenation'' of the <math>k\!</math> strings <math>(s_j)_{j = 1}^k</math> is the string of the form <math>^{\backprime\backprime} \, \operatorname{(} \, ^{\prime\prime} \, \cdot \, s_1 \, \cdot \, ^{\backprime\backprime} \, \operatorname{,} \, ^{\prime\prime} \, \cdot \, \ldots \, \cdot \, ^{\backprime\backprime} \, \operatorname{,} \, ^{\prime\prime} \, \cdot \, s_k \, \cdot \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime}.</math></p></li>
| + | <p>The ''surcatenation'' of the <math>k\!</math> strings <math>(s_j)_{j = 1}^k</math> is the string of the form <math>^{\backprime\backprime} \, \operatorname{(} \, ^{\prime\prime} \, \cdot \, s_1 \, \cdot \, ^{\backprime\backprime} \, \operatorname{,} \, ^{\prime\prime} \, \cdot \, \ldots \, \cdot \, ^{\backprime\backprime} \, \operatorname{,} \, ^{\prime\prime} \, \cdot \, s_k \, \cdot \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime}.</math></p></li> |
| | | |
| </ol> | | </ol> |
Line 344: |
Line 344: |
| <li><math>\operatorname{Conc}_{j = 1}^1 (s_j)_{j = 1}^k \ = \ s_1.</math></li> | | <li><math>\operatorname{Conc}_{j = 1}^1 (s_j)_{j = 1}^k \ = \ s_1.</math></li> |
| | | |
− | <li><p>For <math>\ell > 1,\!</math></p> | + | <li> |
| + | <p>For <math>\ell > 1,\!</math></p> |
| | | |
− | <p><math>\operatorname{Conc}_{j=1}^\ell (s_j)_{j = 1}^k \ = \ (\operatorname{Conc}_{j=1}^{\ell - 1} (s_j)_{j = 1}^k) \, \cdot \, s_\ell.</math></p></li>
| + | <p><math>\operatorname{Conc}_{j=1}^\ell (s_j)_{j = 1}^k \ = \ (\operatorname{Conc}_{j=1}^{\ell - 1} (s_j)_{j = 1}^k) \, \cdot \, s_\ell.</math></p></li> |
| | | |
| </ol> | | </ol> |
Line 356: |
Line 357: |
| <li><math>\operatorname{Surc}_{j=1}^1 (s_j)_{j = 1}^k \ = \ ^{\backprime\backprime} \, \operatorname{(} \, ^{\prime\prime} \, \cdot \, s_1 \, \cdot \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime}.</math></li> | | <li><math>\operatorname{Surc}_{j=1}^1 (s_j)_{j = 1}^k \ = \ ^{\backprime\backprime} \, \operatorname{(} \, ^{\prime\prime} \, \cdot \, s_1 \, \cdot \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime}.</math></li> |
| | | |
− | <li><p>For <math>\ell > 1,\!</math></p> | + | <li> |
| + | <p>For <math>\ell > 1,\!</math></p> |
| | | |
− | <p><math>\operatorname{Surc}_{j=1}^\ell (s_j)_{j = 1}^k \ = \ (\operatorname{Surc}_{j=1}^{\ell - 1} (s_j)_{j = 1}^k) \, \cdot \, ( \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime} \, )^{-1} \, \cdot \, ^{\backprime\backprime} \, \operatorname{,} \, ^{\prime\prime} \, \cdot \, s_\ell \, \cdot \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime}.</math></p></li>
| + | <p><math>\operatorname{Surc}_{j=1}^\ell (s_j)_{j = 1}^k \ = \ (\operatorname{Surc}_{j=1}^{\ell - 1} (s_j)_{j = 1}^k) \, \cdot \, ( \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime} \, )^{-1} \, \cdot \, ^{\backprime\backprime} \, \operatorname{,} \, ^{\prime\prime} \, \cdot \, s_\ell \, \cdot \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime}.</math></p></li> |
| | | |
| </ol></ol> | | </ol></ol> |