Changes

→‎The Cactus Language : Syntax: set display as ordered list
Line 273: Line 273:  
The alphabet <math>\mathfrak{A} = \mathfrak{M} \cup \mathfrak{P}</math> is the disjoint union of two sets of symbols:
 
The alphabet <math>\mathfrak{A} = \mathfrak{M} \cup \mathfrak{P}</math> is the disjoint union of two sets of symbols:
   −
{| align="center" cellpadding="8" width="90%"
+
<ol style="list-style-type:decimal">
|-
+
 
| valign="top" | 1.
+
<li>
| <math>\mathfrak{M}</math> is the alphabet of ''measures'', the set of ''punctuation marks'', or the collection of ''syntactic constants'' that is common to all of the languages <math>\mathfrak{C}(\mathfrak{P}).</math>  This set of signs is given as follows:
+
<p><math>\mathfrak{M}</math> is the alphabet of ''measures'', the set of ''punctuation marks'', or the collection of ''syntactic constants'' that is common to all of the languages <math>\mathfrak{C}(\mathfrak{P}).</math>  This set of signs is given as follows:</p>
|-
+
 
| &nbsp;
+
<p><math>\begin{array}{lccccccccccc}
|
  −
<math>\begin{array}{lccccccccccc}
   
\mathfrak{M}
 
\mathfrak{M}
 
& = &
 
& = &
Line 303: Line 301:  
\operatorname{right} &
 
\operatorname{right} &
 
\} \\
 
\} \\
\end{array}</math>
+
\end{array}</math></p></li>
|-
+
 
| valign="top" | 2.
+
<li>
| <math>\mathfrak{P}</math> is the ''palette'', the alphabet of ''paints'', or the collection of ''syntactic variables'' that is peculiar to the language <math>\mathfrak{C}(\mathfrak{P}).</math>  This set of signs is given as follows:
+
<p><math>\mathfrak{P}</math> is the ''palette'', the alphabet of ''paints'', or the collection of ''syntactic variables'' that is peculiar to the language <math>\mathfrak{C}(\mathfrak{P}).</math>  This set of signs is given as follows:</p>
|-
+
 
| &nbsp;
+
<p><math>\mathfrak{P} = \{ \mathfrak{p}_j  :  j \in J \}.</math></p></li>
| <math>\mathfrak{P} = \{ \mathfrak{p}_j  :  j \in J \}.</math>
+
 
|}
+
</ol>
    
The easiest way to define the language <math>\mathfrak{C}(\mathfrak{P})</math> is to indicate the general sorts of operations that suffice to construct the greater share of its sentences from the specified few of its sentences that require a special election.  In accord with this manner of proceeding, I introduce a family of operations on strings of <math>\mathfrak{A}^*</math> that are called ''syntactic connectives''.  If the strings on which they operate are exclusively sentences of <math>\mathfrak{C}(\mathfrak{P}),</math> then these operations are tantamount to ''sentential connectives'', and if the syntactic sentences, considered as abstract strings of meaningless signs, are given a semantics in which they denote propositions, considered as indicator functions over some universe, then these operations amount to ''propositional connectives''.
 
The easiest way to define the language <math>\mathfrak{C}(\mathfrak{P})</math> is to indicate the general sorts of operations that suffice to construct the greater share of its sentences from the specified few of its sentences that require a special election.  In accord with this manner of proceeding, I introduce a family of operations on strings of <math>\mathfrak{A}^*</math> that are called ''syntactic connectives''.  If the strings on which they operate are exclusively sentences of <math>\mathfrak{C}(\mathfrak{P}),</math> then these operations are tantamount to ''sentential connectives'', and if the syntactic sentences, considered as abstract strings of meaningless signs, are given a semantics in which they denote propositions, considered as indicator functions over some universe, then these operations amount to ''propositional connectives''.
Line 320: Line 318:  
<ol style="list-style-type:decimal">
 
<ol style="list-style-type:decimal">
   −
<li><p>The ''concatenation'' of one string <math>s_1\!</math> is just the string <math>s_1.\!</math></p>
+
<li>
 +
<p>The ''concatenation'' of one string <math>s_1\!</math> is just the string <math>s_1.\!</math></p>
   −
    <p>The ''concatenation'' of two strings <math>s_1, s_2\!</math> is the string <math>s_1 \cdot s_2.\!</math></p>
+
<p>The ''concatenation'' of two strings <math>s_1, s_2\!</math> is the string <math>s_1 \cdot s_2.\!</math></p>
   −
    <p>The ''concatenation'' of the <math>k\!</math> strings <math>(s_j)_{j = 1}^k</math> is the string of the form <math>s_1 \cdot \ldots \cdot s_k.\!</math></p></li>
+
<p>The ''concatenation'' of the <math>k\!</math> strings <math>(s_j)_{j = 1}^k</math> is the string of the form <math>s_1 \cdot \ldots \cdot s_k.\!</math></p></li>
   −
<li><p>The ''surcatenation'' of one string <math>s_1\!</math> is the string <math>^{\backprime\backprime} \, \operatorname{(} \, ^{\prime\prime} \, \cdot \, s_1 \, \cdot \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime}.</math></p>
+
<li>
 +
<p>The ''surcatenation'' of one string <math>s_1\!</math> is the string <math>^{\backprime\backprime} \, \operatorname{(} \, ^{\prime\prime} \, \cdot \, s_1 \, \cdot \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime}.</math></p>
   −
    <p>The ''surcatenation'' of two strings <math>s_1, s_2\!</math> is <math>^{\backprime\backprime} \, \operatorname{(} \, ^{\prime\prime} \, \cdot \, s_1 \, \cdot \, ^{\backprime\backprime} \, \operatorname{,} \, ^{\prime\prime} \, \cdot \, s_2 \, \cdot \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime}.</math></p>
+
<p>The ''surcatenation'' of two strings <math>s_1, s_2\!</math> is <math>^{\backprime\backprime} \, \operatorname{(} \, ^{\prime\prime} \, \cdot \, s_1 \, \cdot \, ^{\backprime\backprime} \, \operatorname{,} \, ^{\prime\prime} \, \cdot \, s_2 \, \cdot \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime}.</math></p>
   −
    <p>The ''surcatenation'' of the <math>k\!</math> strings <math>(s_j)_{j = 1}^k</math> is the string of the form <math>^{\backprime\backprime} \, \operatorname{(} \, ^{\prime\prime} \, \cdot \, s_1 \, \cdot \, ^{\backprime\backprime} \, \operatorname{,} \, ^{\prime\prime} \, \cdot \, \ldots \, \cdot \, ^{\backprime\backprime} \, \operatorname{,} \, ^{\prime\prime} \, \cdot \, s_k \, \cdot \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime}.</math></p></li>
+
<p>The ''surcatenation'' of the <math>k\!</math> strings <math>(s_j)_{j = 1}^k</math> is the string of the form <math>^{\backprime\backprime} \, \operatorname{(} \, ^{\prime\prime} \, \cdot \, s_1 \, \cdot \, ^{\backprime\backprime} \, \operatorname{,} \, ^{\prime\prime} \, \cdot \, \ldots \, \cdot \, ^{\backprime\backprime} \, \operatorname{,} \, ^{\prime\prime} \, \cdot \, s_k \, \cdot \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime}.</math></p></li>
    
</ol>
 
</ol>
Line 344: Line 344:  
<li><math>\operatorname{Conc}_{j = 1}^1 (s_j)_{j = 1}^k \ = \ s_1.</math></li>
 
<li><math>\operatorname{Conc}_{j = 1}^1 (s_j)_{j = 1}^k \ = \ s_1.</math></li>
   −
<li><p>For <math>\ell > 1,\!</math></p>
+
<li>
 +
<p>For <math>\ell > 1,\!</math></p>
   −
    <p><math>\operatorname{Conc}_{j=1}^\ell (s_j)_{j = 1}^k \ = \ (\operatorname{Conc}_{j=1}^{\ell - 1} (s_j)_{j = 1}^k) \, \cdot \, s_\ell.</math></p></li>
+
<p><math>\operatorname{Conc}_{j=1}^\ell (s_j)_{j = 1}^k \ = \ (\operatorname{Conc}_{j=1}^{\ell - 1} (s_j)_{j = 1}^k) \, \cdot \, s_\ell.</math></p></li>
    
</ol>
 
</ol>
Line 356: Line 357:  
<li><math>\operatorname{Surc}_{j=1}^1 (s_j)_{j = 1}^k \ = \ ^{\backprime\backprime} \, \operatorname{(} \, ^{\prime\prime} \, \cdot \, s_1 \, \cdot \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime}.</math></li>
 
<li><math>\operatorname{Surc}_{j=1}^1 (s_j)_{j = 1}^k \ = \ ^{\backprime\backprime} \, \operatorname{(} \, ^{\prime\prime} \, \cdot \, s_1 \, \cdot \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime}.</math></li>
   −
<li><p>For <math>\ell > 1,\!</math></p>
+
<li>
 +
<p>For <math>\ell > 1,\!</math></p>
   −
    <p><math>\operatorname{Surc}_{j=1}^\ell (s_j)_{j = 1}^k \ = \ (\operatorname{Surc}_{j=1}^{\ell - 1} (s_j)_{j = 1}^k) \, \cdot \, ( \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime} \, )^{-1} \, \cdot \, ^{\backprime\backprime} \, \operatorname{,} \, ^{\prime\prime} \, \cdot \, s_\ell \, \cdot \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime}.</math></p></li>
+
<p><math>\operatorname{Surc}_{j=1}^\ell (s_j)_{j = 1}^k \ = \ (\operatorname{Surc}_{j=1}^{\ell - 1} (s_j)_{j = 1}^k) \, \cdot \, ( \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime} \, )^{-1} \, \cdot \, ^{\backprime\backprime} \, \operatorname{,} \, ^{\prime\prime} \, \cdot \, s_\ell \, \cdot \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime}.</math></p></li>
    
</ol></ol>
 
</ol></ol>
12,080

edits