Changes

no edit summary
Line 465: Line 465:  
Previously I introduced a calculus for propositional logic, fixing its meaning according to what C.S. Peirce called the ''existential interpretation''.  As far as it concerns propositional calculus this interpretation settles the meanings that are associated with merely the most basic symbols and logical connectives.  Now we must extend and refine the existential interpretation to comprehend the analysis of ''quantifications'', that is, quantified propositions.  In doing so we recognize two additional aspects of logic that need to be developed, over and above the material of propositional logic.  At the formal extreme there is the aspect of higher order functional types, into which we have already ventured a little above.  At the level of the fundamental content of the available propositions we have to introduce a different interpretation for what we may call ''elemental'' or ''singular'' propositions.
 
Previously I introduced a calculus for propositional logic, fixing its meaning according to what C.S. Peirce called the ''existential interpretation''.  As far as it concerns propositional calculus this interpretation settles the meanings that are associated with merely the most basic symbols and logical connectives.  Now we must extend and refine the existential interpretation to comprehend the analysis of ''quantifications'', that is, quantified propositions.  In doing so we recognize two additional aspects of logic that need to be developed, over and above the material of propositional logic.  At the formal extreme there is the aspect of higher order functional types, into which we have already ventured a little above.  At the level of the fundamental content of the available propositions we have to introduce a different interpretation for what we may call ''elemental'' or ''singular'' propositions.
   −
Let us return to the 2-dimensional case <math>X^\circ = [x, y].</math>  In order to provide a bridge between propositions and quantifications it serves to define a set of qualifiers <math>L_{uv} : (\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}</math> that have the following characters:
+
Let us return to the 2-dimensional case <math>X^\circ = [x, y].</math>  In order to provide a bridge between propositions and quantifications it serves to define a set of qualifiers <math>\ell_{uv} : (\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}</math> that have the following characters:
    
{| cellpadding="4"
 
{| cellpadding="4"
| width="36" | &nbsp; || <math>L_{00} f\!</math>
+
| width="36" | &nbsp; || <math>\ell_{00} f\!</math>
 
|-
 
|-
| &nbsp; || = || <math>L_{(\!| x |\!)(\!| y |\!)} f</math>
+
| &nbsp; || = || <math>\ell_{(\!| x |\!)(\!| y |\!)} f</math>
 
|-
 
|-
 
| &nbsp; || = || <math>\alpha_1 f\!</math>
 
| &nbsp; || = || <math>\alpha_1 f\!</math>
Line 482: Line 482:     
{| cellpadding="4"
 
{| cellpadding="4"
| width="36" | &nbsp; || <math>L_{01} f\!</math>
+
| width="36" | &nbsp; || <math>\ell_{01} f\!</math>
 
|-
 
|-
| &nbsp; || = || <math>L_{(\!| x |\!)\ y} f</math>
+
| &nbsp; || = || <math>\ell_{(\!| x |\!)\ y} f</math>
 
|-
 
|-
 
| &nbsp; || = || <math>\alpha_2 f\!</math>
 
| &nbsp; || = || <math>\alpha_2 f\!</math>
Line 496: Line 496:     
{| cellpadding="4"
 
{| cellpadding="4"
| width="36" | &nbsp; || <math>L_{10} f\!</math>
+
| width="36" | &nbsp; || <math>\ell_{10} f\!</math>
 
|-
 
|-
| &nbsp; || = || <math>L_{x\ (\!| y |\!)} f</math>
+
| &nbsp; || = || <math>\ell_{x\ (\!| y |\!)} f</math>
 
|-
 
|-
 
| &nbsp; || = || <math>\alpha_4 f\!</math>
 
| &nbsp; || = || <math>\alpha_4 f\!</math>
Line 510: Line 510:     
{| cellpadding="4"
 
{| cellpadding="4"
| width="36" | &nbsp; || <math>L_{11} f\!</math>
+
| width="36" | &nbsp; || <math>\ell_{11} f\!</math>
 
|-
 
|-
| &nbsp; || = || <math>L_{x\ y} f</math>
+
| &nbsp; || = || <math>\ell_{x\ y} f</math>
 
|-
 
|-
 
| &nbsp; || = || <math>\alpha_8 f\!</math>
 
| &nbsp; || = || <math>\alpha_8 f\!</math>
Line 523: Line 523:  
|}
 
|}
   −
Intuitively, the <math>L_{uv}\!</math> operators may be thought of as qualifying propositions according to the elements of the universe of discourse that each proposition positively values.  Taken together, these measures provide us with the means to express many useful observations about the propositions in <math>X^\circ = [x, y],</math> and so they mediate a subtext <math>[L_{00}, L_{01}, L_{10}, L_{11}]\!</math> that takes place within the higher order universe of discourse <math>X^{\circ 2} = [X^\circ] = [[x, y]].\!</math>  Figure&nbsp;6 summarizes the action of the <math>L_{uv}\!</math> operators on the <math>f_i\!</math> within <math>X^{\circ 2}.\!</math>
+
Intuitively, the <math>\ell_{uv}\!</math> operators may be thought of as qualifying propositions according to the elements of the universe of discourse that each proposition positively values.  Taken together, these measures provide us with the means to express many useful observations about the propositions in <math>X^\circ = [x, y],</math> and so they mediate a subtext <math>[\ell_{00}, \ell_{01}, \ell_{10}, \ell_{11}]\!</math> that takes place within the higher order universe of discourse <math>X^{\circ 2} = [X^\circ] = [[x, y]].\!</math>  Figure&nbsp;6 summarizes the action of the <math>\ell_{uv}\!</math> operators on the <math>f_i\!</math> within <math>X^{\circ 2}.\!</math>
    
<pre>
 
<pre>
Line 621: Line 621:  
| align=left | &nbsp;
 
| align=left | &nbsp;
 
| align=left | No x is y
 
| align=left | No x is y
| <math>(\!| L_{11} |\!)</math>
+
| <math>(\!| \ell_{11} |\!)</math>
 
|-
 
|-
 
| <math>\mathrm{A}\!</math><br>Absolute
 
| <math>\mathrm{A}\!</math><br>Absolute
Line 628: Line 628:  
| align=left | &nbsp;
 
| align=left | &nbsp;
 
| align=left | No x is (y)
 
| align=left | No x is (y)
| <math>(\!| L_{10} |\!)</math>
+
| <math>(\!| \ell_{10} |\!)</math>
 
|-
 
|-
 
| &nbsp;
 
| &nbsp;
Line 635: Line 635:  
| align=left | No y is (x)
 
| align=left | No y is (x)
 
| align=left | No (x) is y
 
| align=left | No (x) is y
| <math>(\!| L_{01} |\!)</math>
+
| <math>(\!| \ell_{01} |\!)</math>
 
|-
 
|-
 
| &nbsp;
 
| &nbsp;
Line 642: Line 642:  
| align=left | No (y) is (x)
 
| align=left | No (y) is (x)
 
| align=left | No (x) is (y)
 
| align=left | No (x) is (y)
| <math>(\!| L_{00} |\!)</math>
+
| <math>(\!| \ell_{00} |\!)</math>
 
|-
 
|-
 
| &nbsp;
 
| &nbsp;
Line 649: Line 649:  
| align=left | &nbsp;
 
| align=left | &nbsp;
 
| align=left | Some (x) is (y)
 
| align=left | Some (x) is (y)
| <math>L_{00}\!</math>
+
| <math>\ell_{00}\!</math>
 
|-
 
|-
 
| &nbsp;
 
| &nbsp;
Line 656: Line 656:  
| align=left | &nbsp;
 
| align=left | &nbsp;
 
| align=left | Some (x) is y
 
| align=left | Some (x) is y
| <math>L_{01}\!</math>
+
| <math>\ell_{01}\!</math>
 
|-
 
|-
 
| <math>\mathrm{O}\!</math><br>Obtrusive
 
| <math>\mathrm{O}\!</math><br>Obtrusive
Line 663: Line 663:  
| align=left | &nbsp;
 
| align=left | &nbsp;
 
| align=left | Some x is (y)
 
| align=left | Some x is (y)
| <math>L_{10}\!</math>
+
| <math>\ell_{10}\!</math>
 
|-
 
|-
 
| <math>\mathrm{I}\!</math><br>Indefinite
 
| <math>\mathrm{I}\!</math><br>Indefinite
Line 670: Line 670:  
| align=left | &nbsp;
 
| align=left | &nbsp;
 
| align=left | Some x is y
 
| align=left | Some x is y
| <math>L_{11}\!</math>
+
| <math>\ell_{11}\!</math>
 
|}<br>
 
|}<br>
   Line 677: Line 677:  
|- style="background:ghostwhite"
 
|- style="background:ghostwhite"
 
| align="right" | ''x'' : || 1100 || ''f''
 
| align="right" | ''x'' : || 1100 || ''f''
| (''L''<sub>11</sub>)
+
| <math>(\!| \ell_{11} |\!)</math>
| (''L''<sub>10</sub>)
+
| <math>(\!| \ell_{10} |\!)</math>
| (''L''<sub>01</sub>)
+
| <math>(\!| \ell_{01} |\!)</math>
| (''L''<sub>00</sub>)
+
| <math>(\!| \ell_{00} |\!)</math>
| ''L''<sub>00</sub>
+
| <math>\ell_{00}</math>
| ''L''<sub>01</sub>
+
| <math>\ell_{01}</math>
| ''L''<sub>10</sub>
+
| <math>\ell_{10}</math>
| ''L''<sub>11</sub>
+
| <math>\ell_{11}</math>
 
|- style="background:ghostwhite"
 
|- style="background:ghostwhite"
 
| align="right" | ''y'' : || 1010 || &nbsp;
 
| align="right" | ''y'' : || 1010 || &nbsp;
12,080

edits