Line 5,020: |
Line 5,020: |
| | <math>1 + 1 = 0\!</math> | | | <math>1 + 1 = 0\!</math> |
| | <math>1 + 1 = 0\!</math> | | | <math>1 + 1 = 0\!</math> |
| + | |} |
| + | <br> |
| + | |
| + | ==Differential Forms== |
| + | |
| + | ===Expanded on a Logical Basis=== |
| + | |
| + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| + | |+ '''Orbit Table Template''' |
| + | |- style="background:ghostwhite; height:36px" |
| + | | |
| + | | <math>f\!</math> |
| + | | <math>\operatorname{F}f|_{xy}</math> |
| + | | <math>\operatorname{F}f|_{x(y)}</math> |
| + | | <math>\operatorname{F}f|_{(x)y}</math> |
| + | | <math>\operatorname{F}f|_{(x)(y)}</math> |
| + | |- style="height:36px" |
| + | | <math>f_{0}\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | |- |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>f_{1}\!</math> |
| + | |- |
| + | | height="36px" | <math>f_{2}\!</math> |
| + | |- |
| + | | height="36px" | <math>f_{4}\!</math> |
| + | |- |
| + | | height="36px" | <math>f_{8}\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>(x)(y)\!</math> |
| + | |- |
| + | | height="36px" | <math>(x)\ y\!</math> |
| + | |- |
| + | | height="36px" | <math>x\ (y)\!</math> |
| + | |- |
| + | | height="36px" | <math>x\ y\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>f_{3}\!</math> |
| + | |- |
| + | | height="36px" | <math>f_{12}\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>(x)\!</math> |
| + | |- |
| + | | height="36px" | <math>x\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>f_{6}\!</math> |
| + | |- |
| + | | height="36px" | <math>f_{9}\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>(x,\ y)\!</math> |
| + | |- |
| + | | height="36px" | <math>((x,\ y))\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>f_{5}\!</math> |
| + | |- |
| + | | height="36px" | <math>f_{10}\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>(y)\!</math> |
| + | |- |
| + | | height="36px" | <math>y\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>f_{7}\!</math> |
| + | |- |
| + | | height="36px" | <math>f_{11}\!</math> |
| + | |- |
| + | | height="36px" | <math>f_{13}\!</math> |
| + | |- |
| + | | height="36px" | <math>f_{14}\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>(x\ y)\!</math> |
| + | |- |
| + | | height="36px" | <math>(x\ (y))\!</math> |
| + | |- |
| + | | height="36px" | <math>((x)\ y)\!</math> |
| + | |- |
| + | | height="36px" | <math>((x)(y))\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | |- style="height:36px" |
| + | | <math>f_{15}\!</math> |
| + | | <math>((~))\!</math> |
| + | | |
| + | | |
| + | | |
| + | | |
| + | |} |
| + | <br> |
| + | |
| + | ===Expanded on an Algebraic Basis=== |
| + | |
| + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| + | |+ '''Orbit Table Template''' |
| + | |- style="background:ghostwhite; height:36px" |
| + | | |
| + | | <math>f\!</math> |
| + | | <math>\operatorname{F}f|_{xy}</math> |
| + | | <math>\operatorname{F}f|_{x(y)}</math> |
| + | | <math>\operatorname{F}f|_{(x)y}</math> |
| + | | <math>\operatorname{F}f|_{(x)(y)}</math> |
| + | |- style="height:36px" |
| + | | <math>f_{0}\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | |- |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>f_{1}\!</math> |
| + | |- |
| + | | height="36px" | <math>f_{2}\!</math> |
| + | |- |
| + | | height="36px" | <math>f_{4}\!</math> |
| + | |- |
| + | | height="36px" | <math>f_{8}\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>(x)(y)\!</math> |
| + | |- |
| + | | height="36px" | <math>(x)\ y\!</math> |
| + | |- |
| + | | height="36px" | <math>x\ (y)\!</math> |
| + | |- |
| + | | height="36px" | <math>x\ y\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>f_{3}\!</math> |
| + | |- |
| + | | height="36px" | <math>f_{12}\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>(x)\!</math> |
| + | |- |
| + | | height="36px" | <math>x\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>f_{6}\!</math> |
| + | |- |
| + | | height="36px" | <math>f_{9}\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>(x,\ y)\!</math> |
| + | |- |
| + | | height="36px" | <math>((x,\ y))\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>f_{5}\!</math> |
| + | |- |
| + | | height="36px" | <math>f_{10}\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>(y)\!</math> |
| + | |- |
| + | | height="36px" | <math>y\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>f_{7}\!</math> |
| + | |- |
| + | | height="36px" | <math>f_{11}\!</math> |
| + | |- |
| + | | height="36px" | <math>f_{13}\!</math> |
| + | |- |
| + | | height="36px" | <math>f_{14}\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>(x\ y)\!</math> |
| + | |- |
| + | | height="36px" | <math>(x\ (y))\!</math> |
| + | |- |
| + | | height="36px" | <math>((x)\ y)\!</math> |
| + | |- |
| + | | height="36px" | <math>((x)(y))\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | |- style="height:36px" |
| + | | <math>f_{15}\!</math> |
| + | | <math>((~))\!</math> |
| + | | |
| + | | |
| + | | |
| + | | |
| |} | | |} |
| <br> | | <br> |