| Line 1,141: |
Line 1,141: |
| | Figure 12. The Anchor | | Figure 12. The Anchor |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 12 -- The Anchor.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 12. The Anchor'''</font></center></p> |
| | | | |
| | ===Figure 13. The Tiller=== | | ===Figure 13. The Tiller=== |
| Line 1,174: |
Line 1,178: |
| | Figure 13. The Tiller | | Figure 13. The Tiller |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 13 -- The Tiller.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 13. The Tiller'''</font></center></p> |
| | | | |
| | ===Table 14. Differential Propositions=== | | ===Table 14. Differential Propositions=== |
| Line 1,667: |
Line 1,675: |
| | |} | | |} |
| | </font><br> | | </font><br> |
| | + | |
| | + | ===Figure 16. A Couple of Fourth Gear Orbits=== |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 16 -- A Couple of Fourth Gear Orbits.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 16. A Couple of Fourth Gear Orbits'''</font></center></p> |
| | | | |
| | ===Figure 16-a. A Couple of Fourth Gear Orbits: 1=== | | ===Figure 16-a. A Couple of Fourth Gear Orbits: 1=== |
| Line 2,064: |
Line 2,078: |
| | Figure 18-a. Extension from 1 to 2 Dimensions: Areal | | Figure 18-a. Extension from 1 to 2 Dimensions: Areal |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 18-a -- Extension from 1 to 2 Dimensions.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 18-a. Extension from 1 to 2 Dimensions: Areal'''</font></center></p> |
| | | | |
| | ===Figure 18-b. Extension from 1 to 2 Dimensions: Bundle=== | | ===Figure 18-b. Extension from 1 to 2 Dimensions: Bundle=== |
| Line 2,093: |
Line 2,111: |
| | Figure 18-b. Extension from 1 to 2 Dimensions: Bundle | | Figure 18-b. Extension from 1 to 2 Dimensions: Bundle |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 18-b -- Extension from 1 to 2 Dimensions.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 18-b. Extension from 1 to 2 Dimensions: Bundle'''</font></center></p> |
| | | | |
| | ===Figure 18-c. Extension from 1 to 2 Dimensions: Compact=== | | ===Figure 18-c. Extension from 1 to 2 Dimensions: Compact=== |
| Line 2,124: |
Line 2,146: |
| | Figure 18-c. Extension from 1 to 2 Dimensions: Compact | | Figure 18-c. Extension from 1 to 2 Dimensions: Compact |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 18-c -- Extension from 1 to 2 Dimensions.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 18-c. Extension from 1 to 2 Dimensions: Compact'''</font></center></p> |
| | | | |
| | ===Figure 18-d. Extension from 1 to 2 Dimensions: Digraph=== | | ===Figure 18-d. Extension from 1 to 2 Dimensions: Digraph=== |
| Line 2,143: |
Line 2,169: |
| | Figure 18-d. Extension from 1 to 2 Dimensions: Digraph | | Figure 18-d. Extension from 1 to 2 Dimensions: Digraph |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 18-d -- Extension from 1 to 2 Dimensions.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 18-d. Extension from 1 to 2 Dimensions: Digraph'''</font></center></p> |
| | | | |
| | ===Figure 19-a. Extension from 2 to 4 Dimensions: Areal=== | | ===Figure 19-a. Extension from 2 to 4 Dimensions: Areal=== |
| Line 2,186: |
Line 2,216: |
| | Figure 19-a. Extension from 2 to 4 Dimensions: Areal | | Figure 19-a. Extension from 2 to 4 Dimensions: Areal |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 19-a -- Extension from 2 to 4 Dimensions.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 19-a. Extension from 2 to 4 Dimensions: Areal'''</font></center></p> |
| | | | |
| | ===Figure 19-b. Extension from 2 to 4 Dimensions: Bundle=== | | ===Figure 19-b. Extension from 2 to 4 Dimensions: Bundle=== |
| Line 2,247: |
Line 2,281: |
| | Figure 19-b. Extension from 2 to 4 Dimensions: Bundle | | Figure 19-b. Extension from 2 to 4 Dimensions: Bundle |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 19-b -- Extension from 2 to 4 Dimensions.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 19-b. Extension from 2 to 4 Dimensions: Bundle'''</font></center></p> |
| | | | |
| | ===Figure 19-c. Extension from 2 to 4 Dimensions: Compact=== | | ===Figure 19-c. Extension from 2 to 4 Dimensions: Compact=== |
| Line 2,287: |
Line 2,325: |
| | Figure 19-c. Extension from 2 to 4 Dimensions: Compact | | Figure 19-c. Extension from 2 to 4 Dimensions: Compact |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 19-c -- Extension from 2 to 4 Dimensions.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 19-c. Extension from 2 to 4 Dimensions: Compact'''</font></center></p> |
| | | | |
| | ===Figure 19-d. Extension from 2 to 4 Dimensions: Digraph=== | | ===Figure 19-d. Extension from 2 to 4 Dimensions: Digraph=== |
| Line 2,330: |
Line 2,372: |
| | Figure 19-d. Extension from 2 to 4 Dimensions: Digraph | | Figure 19-d. Extension from 2 to 4 Dimensions: Digraph |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 19-d -- Extension from 2 to 4 Dimensions.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 19-d. Extension from 2 to 4 Dimensions: Digraph'''</font></center></p> |
| | | | |
| | ===Figure 20-i. Thematization of Conjunction (Stage 1)=== | | ===Figure 20-i. Thematization of Conjunction (Stage 1)=== |
| Line 2,360: |
Line 2,406: |
| | Figure 20-i. Thematization of Conjunction (Stage 1) | | Figure 20-i. Thematization of Conjunction (Stage 1) |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 20-i -- Thematization of Conjunction (Stage 1).gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 20-i. Thematization of Conjunction (Stage 1)'''</font></center></p> |
| | | | |
| | ===Figure 20-ii. Thematization of Conjunction (Stage 2)=== | | ===Figure 20-ii. Thematization of Conjunction (Stage 2)=== |
| Line 2,407: |
Line 2,457: |
| | Figure 20-ii. Thematization of Conjunction (Stage 2) | | Figure 20-ii. Thematization of Conjunction (Stage 2) |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 20-ii -- Thematization of Conjunction (Stage 2).gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 20-ii. Thematization of Conjunction (Stage 2)'''</font></center></p> |
| | | | |
| | ===Figure 20-iii. Thematization of Conjunction (Stage 3)=== | | ===Figure 20-iii. Thematization of Conjunction (Stage 3)=== |
| Line 2,450: |
Line 2,504: |
| | Figure 20-iii. Thematization of Conjunction (Stage 3) | | Figure 20-iii. Thematization of Conjunction (Stage 3) |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 20-iii -- Thematization of Conjunction (Stage 3).gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 20-iii. Thematization of Conjunction (Stage 3)'''</font></center></p> |
| | | | |
| | ===Figure 21. Thematization of Disjunction and Equality=== | | ===Figure 21. Thematization of Disjunction and Equality=== |
| Line 2,516: |
Line 2,574: |
| | Figure 21. Thematization of Disjunction and Equality | | Figure 21. Thematization of Disjunction and Equality |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 21 -- Thematization of Disjunction and Equality.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 21. Thematization of Disjunction and Equality'''</font></center></p> |
| | | | |
| | ===Table 22. Disjunction ''f'' and Equality ''g''=== | | ===Table 22. Disjunction ''f'' and Equality ''g''=== |
| Line 3,673: |
Line 3,735: |
| | Figure 30. Generic Frame of a Logical Transformation | | Figure 30. Generic Frame of a Logical Transformation |
| | </pre> | | </pre> |
| | + | |
| | + | '''Note.''' The following image was corrupted in transit between software platforms. |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 30 -- Generic Frame of a Logical Transformation.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 30. Generic Frame of a Logical Transformation'''</font></center></p> |
| | | | |
| | ===Formula Display 3=== | | ===Formula Display 3=== |
| Line 3,729: |
Line 3,797: |
| | Figure 31. Operator Diagram (1) | | Figure 31. Operator Diagram (1) |
| | </pre> | | </pre> |
| | + | |
| | + | '''Note.''' The following image was corrupted in transit between software platforms. |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 31 -- Operator Diagram (1).gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 31. Operator Diagram (1)'''</font></center></p> |
| | | | |
| | ===Figure 32. Operator Diagram (2)=== | | ===Figure 32. Operator Diagram (2)=== |
| Line 3,754: |
Line 3,828: |
| | Figure 32. Operator Diagram (2) | | Figure 32. Operator Diagram (2) |
| | </pre> | | </pre> |
| | + | |
| | + | '''Note.''' The following image was corrupted in transit between software platforms. |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 32 -- Operator Diagram (2).gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 32. Operator Diagram (2)'''</font></center></p> |
| | | | |
| | ===Figure 33-i. Analytic Diagram (1)=== | | ===Figure 33-i. Analytic Diagram (1)=== |
| Line 3,774: |
Line 3,854: |
| | Figure 33-i. Analytic Diagram (1) | | Figure 33-i. Analytic Diagram (1) |
| | </pre> | | </pre> |
| | + | |
| | + | '''Note.''' The following image was corrupted in transit between software platforms. |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 33-i -- Analytic Diagram (1).gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 33-i. Analytic Diagram (1)'''</font></center></p> |
| | | | |
| | ===Figure 33-ii. Analytic Diagram (2)=== | | ===Figure 33-ii. Analytic Diagram (2)=== |
| Line 3,794: |
Line 3,880: |
| | Figure 33-ii. Analytic Diagram (2) | | Figure 33-ii. Analytic Diagram (2) |
| | </pre> | | </pre> |
| | + | |
| | + | '''Note.''' The following image was corrupted in transit between software platforms. |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 33-ii -- Analytic Diagram (2).gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 33-ii. Analytic Diagram (2)'''</font></center></p> |
| | | | |
| | ===Formula Display 4=== | | ===Formula Display 4=== |
| Line 4,012: |
Line 4,104: |
| | Figure 34. Tangent Functor Diagram | | Figure 34. Tangent Functor Diagram |
| | </pre> | | </pre> |
| | + | |
| | + | '''Note.''' The following image was corrupted in transit between software platforms. |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 34 -- Tangent Functor Diagram.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 34. Tangent Functor Diagram'''</font></center></p> |
| | | | |
| | ===Figure 35. Conjunction as Transformation=== | | ===Figure 35. Conjunction as Transformation=== |
| Line 4,067: |
Line 4,165: |
| | Figure 35. Conjunction as Transformation | | Figure 35. Conjunction as Transformation |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 35 -- A Conjunction Viewed as a Transformation.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 35. Conjunction as Transformation'''</font></center></p> |
| | | | |
| | ===Table 36. Computation of !e!J=== | | ===Table 36. Computation of !e!J=== |
| Line 4,140: |
Line 4,242: |
| | </font><br> | | </font><br> |
| | | | |
| − | ===Figure 37-a. Tacit Extension of J (Areal)=== | + | ===Figure 37-a. Tacit Extension of ''J'' (Areal)=== |
| | | | |
| | <pre> | | <pre> |
| Line 4,183: |
Line 4,285: |
| | </pre> | | </pre> |
| | | | |
| − | ===Figure 37-b. Tacit Extension of J (Bundle)=== | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 37-a -- Tacit Extension of J.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 37-a. Tacit Extension of ''J'' (Areal)'''</font></center></p> |
| | + | |
| | + | ===Figure 37-b. Tacit Extension of ''J'' (Bundle)=== |
| | | | |
| | <pre> | | <pre> |
| Line 4,252: |
Line 4,358: |
| | </pre> | | </pre> |
| | | | |
| − | ===Figure 37-c. Tacit Extension of J (Compact)=== | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 37-b -- Tacit Extension of J.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 37-b. Tacit Extension of ''J'' (Bundle)'''</font></center></p> |
| | + | |
| | + | ===Figure 37-c. Tacit Extension of ''J'' (Compact)=== |
| | | | |
| | <pre> | | <pre> |
| Line 4,292: |
Line 4,402: |
| | </pre> | | </pre> |
| | | | |
| − | ===Figure 37-d. Tacit Extension of J (Digraph)=== | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 37-c -- Tacit Extension of J.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 37-c. Tacit Extension of ''J'' (Compact)'''</font></center></p> |
| | + | |
| | + | ===Figure 37-d. Tacit Extension of ''J'' (Digraph)=== |
| | | | |
| | <pre> | | <pre> |
| Line 4,333: |
Line 4,447: |
| | Figure 37-d. Tacit Extension of J (Digraph) | | Figure 37-d. Tacit Extension of J (Digraph) |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 37-d -- Tacit Extension of J.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 37-d. Tacit Extension of ''J'' (Digraph)'''</font></center></p> |
| | | | |
| | ===Table 38. Computation of EJ (Method 1)=== | | ===Table 38. Computation of EJ (Method 1)=== |
| Line 4,504: |
Line 4,622: |
| | </font><br> | | </font><br> |
| | | | |
| − | ===Figure 40-a. Enlargement of J (Areal)=== | + | ===Figure 40-a. Enlargement of ''J'' (Areal)=== |
| | | | |
| | <pre> | | <pre> |
| Line 4,547: |
Line 4,665: |
| | </pre> | | </pre> |
| | | | |
| − | ===Figure 40-b. Enlargement of J (Bundle)=== | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 40-a -- Enlargement of J.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 40-a. Enlargement of ''J'' (Areal)'''</font></center></p> |
| | + | |
| | + | ===Figure 40-b. Enlargement of ''J'' (Bundle)=== |
| | | | |
| | <pre> | | <pre> |
| Line 4,616: |
Line 4,738: |
| | </pre> | | </pre> |
| | | | |
| − | ===Figure 40-c. Enlargement of J (Compact)=== | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 40-b -- Enlargement of J.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 40-b. Enlargement of ''J'' (Bundle)'''</font></center></p> |
| | + | |
| | + | ===Figure 40-c. Enlargement of ''J'' (Compact)=== |
| | | | |
| | <pre> | | <pre> |
| Line 4,656: |
Line 4,782: |
| | </pre> | | </pre> |
| | | | |
| − | ===Figure 40-d. Enlargement of J (Digraph)=== | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 40-c -- Enlargement of J.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 40-c. Enlargement of ''J'' (Compact)'''</font></center></p> |
| | + | |
| | + | ===Figure 40-d. Enlargement of ''J'' (Digraph)=== |
| | | | |
| | <pre> | | <pre> |
| Line 4,697: |
Line 4,827: |
| | Figure 40-d. Enlargement of J (Digraph) | | Figure 40-d. Enlargement of J (Digraph) |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 40-d -- Enlargement of J.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 40-d. Enlargement of ''J'' (Digraph)'''</font></center></p> |
| | | | |
| | ===Table 41. Computation of DJ (Method 1)=== | | ===Table 41. Computation of DJ (Method 1)=== |
| Line 4,964: |
Line 5,098: |
| | </font><br> | | </font><br> |
| | | | |
| − | ===Figure 44-a. Difference Map of J (Areal)=== | + | ===Figure 44-a. Difference Map of ''J'' (Areal)=== |
| | | | |
| | <pre> | | <pre> |
| Line 5,007: |
Line 5,141: |
| | </pre> | | </pre> |
| | | | |
| − | ===Figure 44-b. Difference Map of J (Bundle)=== | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 44-a -- Difference Map of J.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 44-a. Difference Map of ''J'' (Areal)'''</font></center></p> |
| | + | |
| | + | ===Figure 44-b. Difference Map of ''J'' (Bundle)=== |
| | | | |
| | <pre> | | <pre> |
| Line 5,076: |
Line 5,214: |
| | </pre> | | </pre> |
| | | | |
| − | ===Figure 44-c. Difference Map of J (Compact)=== | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 44-b -- Difference Map of J.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 44-b. Difference Map of ''J'' (Bundle)'''</font></center></p> |
| | + | |
| | + | ===Figure 44-c. Difference Map of ''J'' (Compact)=== |
| | | | |
| | <pre> | | <pre> |
| Line 5,117: |
Line 5,259: |
| | </pre> | | </pre> |
| | | | |
| − | ===Figure 44-d. Difference Map of J (Digraph)=== | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 44-c -- Difference Map of J.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 44-c. Difference Map of ''J'' (Compact)'''</font></center></p> |
| | + | |
| | + | ===Figure 44-d. Difference Map of ''J'' (Digraph)=== |
| | | | |
| | <pre> | | <pre> |
| Line 5,155: |
Line 5,301: |
| | Figure 44-d. Difference Map of J (Digraph) | | Figure 44-d. Difference Map of J (Digraph) |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 44-d -- Difference Map of J.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 44-d. Difference Map of ''J'' (Digraph)'''</font></center></p> |
| | | | |
| | ===Table 45. Computation of dJ=== | | ===Table 45. Computation of dJ=== |
| Line 5,193: |
Line 5,343: |
| | </font><br> | | </font><br> |
| | | | |
| − | ===Figure 46-a. Differential of J (Areal)=== | + | ===Figure 46-a. Differential of ''J'' (Areal)=== |
| | | | |
| | <pre> | | <pre> |
| Line 5,236: |
Line 5,386: |
| | </pre> | | </pre> |
| | | | |
| − | ===Figure 46-b. Differential of J (Bundle)=== | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 46-a -- Differential of J.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 46-a. Differential of ''J'' (Areal)'''</font></center></p> |
| | + | |
| | + | ===Figure 46-b. Differential of ''J'' (Bundle)=== |
| | | | |
| | <pre> | | <pre> |
| Line 5,305: |
Line 5,459: |
| | </pre> | | </pre> |
| | | | |
| − | ===Figure 46-c. Differential of J (Compact)=== | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 46-b -- Differential of J.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 46-b. Differential of ''J'' (Bundle)'''</font></center></p> |
| | + | |
| | + | ===Figure 46-c. Differential of ''J'' (Compact)=== |
| | | | |
| | <pre> | | <pre> |
| Line 5,342: |
Line 5,500: |
| | </pre> | | </pre> |
| | | | |
| − | ===Figure 46-d. Differential of J (Digraph)=== | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 46-c -- Differential of J.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 46-c. Differential of ''J'' (Compact)'''</font></center></p> |
| | + | |
| | + | ===Figure 46-d. Differential of ''J'' (Digraph)=== |
| | | | |
| | <pre> | | <pre> |
| Line 5,378: |
Line 5,540: |
| | Figure 46-d. Differential of J (Digraph) | | Figure 46-d. Differential of J (Digraph) |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 46-d -- Differential of J.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 46-d. Differential of ''J'' (Digraph)'''</font></center></p> |
| | | | |
| | ===Table 47. Computation of rJ=== | | ===Table 47. Computation of rJ=== |
| Line 5,439: |
Line 5,605: |
| | </font><br> | | </font><br> |
| | | | |
| − | ===Figure 48-a. Remainder of J (Areal)=== | + | ===Figure 48-a. Remainder of ''J'' (Areal)=== |
| | | | |
| | <pre> | | <pre> |
| Line 5,482: |
Line 5,648: |
| | </pre> | | </pre> |
| | | | |
| − | ===Figure 48-b. Remainder of J (Bundle)=== | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 48-a -- Remainder of J.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 48-a. Remainder of ''J'' (Areal)'''</font></center></p> |
| | + | |
| | + | ===Figure 48-b. Remainder of ''J'' (Bundle)=== |
| | | | |
| | <pre> | | <pre> |
| Line 5,551: |
Line 5,721: |
| | </pre> | | </pre> |
| | | | |
| − | ===Figure 48-c. Remainder of J (Compact)=== | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 48-b -- Remainder of J.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 48-b. Remainder of ''J'' (Bundle)'''</font></center></p> |
| | + | |
| | + | ===Figure 48-c. Remainder of ''J'' (Compact)=== |
| | | | |
| | <pre> | | <pre> |
| Line 5,591: |
Line 5,765: |
| | </pre> | | </pre> |
| | | | |
| − | ===Figure 48-d. Remainder of J (Digraph)=== | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 48-c -- Remainder of J.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 48-c. Remainder of ''J'' (Compact)'''</font></center></p> |
| | + | |
| | + | ===Figure 48-d. Remainder of ''J'' (Digraph)=== |
| | | | |
| | <pre> | | <pre> |
| Line 5,627: |
Line 5,805: |
| | Figure 48-d. Remainder of J (Digraph) | | Figure 48-d. Remainder of J (Digraph) |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 48-d -- Remainder of J.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 48-d. Remainder of ''J'' (Digraph)'''</font></center></p> |
| | | | |
| | ===Table 49. Computation Summary for J=== | | ===Table 49. Computation Summary for J=== |
| Line 6,228: |
Line 6,410: |
| | Figure 52. Decomposition of the Enlarged Conjunction EJ = (J, DJ) | | Figure 52. Decomposition of the Enlarged Conjunction EJ = (J, DJ) |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 52 -- Decomposition of EJ.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 52. Decomposition of E''J'''''</font></center></p> |
| | | | |
| | ===Figure 53. Decomposition of the Differed Conjunction DJ = (dJ, ddJ)=== | | ===Figure 53. Decomposition of the Differed Conjunction DJ = (dJ, ddJ)=== |
| Line 6,279: |
Line 6,465: |
| | Figure 53. Decomposition of the Differed Conjunction DJ = (dJ, ddJ) | | Figure 53. Decomposition of the Differed Conjunction DJ = (dJ, ddJ) |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 53 -- Decomposition of DJ.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 53. Decomposition of D''J'''''</font></center></p> |
| | | | |
| | ===Table 54. Cast of Characters: Expansive Subtypes of Objects and Operators=== | | ===Table 54. Cast of Characters: Expansive Subtypes of Objects and Operators=== |
| Line 6,981: |
Line 7,171: |
| | Figure 56-a1. Radius Map of the Conjunction J = uv | | Figure 56-a1. Radius Map of the Conjunction J = uv |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 56-a1 -- Radius Map of J.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 56-a1. Radius Map of the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | | |
| | ===Figure 56-a2. Secant Map of the Conjunction J = uv=== | | ===Figure 56-a2. Secant Map of the Conjunction J = uv=== |
| Line 7,049: |
Line 7,243: |
| | Figure 56-a2. Secant Map of the Conjunction J = uv | | Figure 56-a2. Secant Map of the Conjunction J = uv |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 56-a2 -- Secant Map of J.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 56-a2. Secant Map of the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | | |
| | ===Figure 56-a3. Chord Map of the Conjunction J = uv=== | | ===Figure 56-a3. Chord Map of the Conjunction J = uv=== |
| Line 7,117: |
Line 7,315: |
| | Figure 56-a3. Chord Map of the Conjunction J = uv | | Figure 56-a3. Chord Map of the Conjunction J = uv |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 56-a3 -- Chord Map of J.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 56-a3. Chord Map of the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | | |
| | ===Figure 56-a4. Tangent Map of the Conjunction J = uv=== | | ===Figure 56-a4. Tangent Map of the Conjunction J = uv=== |
| Line 7,185: |
Line 7,387: |
| | Figure 56-a4. Tangent Map of the Conjunction J = uv | | Figure 56-a4. Tangent Map of the Conjunction J = uv |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 56-a4 -- Tangent Map of J.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 56-a4. Tangent Map of the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | | |
| | ===Figure 56-b1. Radius Map of the Conjunction J = uv=== | | ===Figure 56-b1. Radius Map of the Conjunction J = uv=== |
| Line 7,285: |
Line 7,491: |
| | Figure 56-b1. Radius Map of the Conjunction J = uv | | Figure 56-b1. Radius Map of the Conjunction J = uv |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 56-b1 -- Radius Map of J.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 56-b1. Radius Map of the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | | |
| | ===Figure 56-b2. Secant Map of the Conjunction J = uv=== | | ===Figure 56-b2. Secant Map of the Conjunction J = uv=== |
| Line 7,385: |
Line 7,595: |
| | Figure 56-b2. Secant Map of the Conjunction J = uv | | Figure 56-b2. Secant Map of the Conjunction J = uv |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 56-b2 -- Secant Map of J.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 56-b2. Secant Map of the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | | |
| | ===Figure 56-b3. Chord Map of the Conjunction J = uv=== | | ===Figure 56-b3. Chord Map of the Conjunction J = uv=== |
| Line 7,485: |
Line 7,699: |
| | Figure 56-b3. Chord Map of the Conjunction J = uv | | Figure 56-b3. Chord Map of the Conjunction J = uv |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 56-b3 -- Chord Map of J.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 56-b3. Chord Map of the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | | |
| | ===Figure 56-b4. Tangent Map of the Conjunction J = uv=== | | ===Figure 56-b4. Tangent Map of the Conjunction J = uv=== |
| Line 7,585: |
Line 7,803: |
| | Figure 56-b4. Tangent Map of the Conjunction J = uv | | Figure 56-b4. Tangent Map of the Conjunction J = uv |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 56-b4 -- Tangent Map of J.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 56-b4. Tangent Map of the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | | |
| | ===Figure 57-1. Radius Operator Diagram for the Conjunction J = uv=== | | ===Figure 57-1. Radius Operator Diagram for the Conjunction J = uv=== |
| Line 7,655: |
Line 7,877: |
| | Figure 57-1. Radius Operator Diagram for the Conjunction J = uv | | Figure 57-1. Radius Operator Diagram for the Conjunction J = uv |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 57-1 -- Radius Operator Diagram for J.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 57-1. Radius Operator Diagram for the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | | |
| | ===Figure 57-2. Secant Operator Diagram for the Conjunction J = uv=== | | ===Figure 57-2. Secant Operator Diagram for the Conjunction J = uv=== |
| Line 7,725: |
Line 7,951: |
| | Figure 57-2. Secant Operator Diagram for the Conjunction J = uv | | Figure 57-2. Secant Operator Diagram for the Conjunction J = uv |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 57-2 -- Secant Operator Diagram for J.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 57-2. Secant Operator Diagram for the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | | |
| | ===Figure 57-3. Chord Operator Diagram for the Conjunction J = uv=== | | ===Figure 57-3. Chord Operator Diagram for the Conjunction J = uv=== |
| Line 7,795: |
Line 8,025: |
| | Figure 57-3. Chord Operator Diagram for the Conjunction J = uv | | Figure 57-3. Chord Operator Diagram for the Conjunction J = uv |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 57-3 -- Chord Operator Diagram for J.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 57-3. Chord Operator Diagram for the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | | |
| | ===Figure 57-4. Tangent Functor Diagram for the Conjunction J = uv=== | | ===Figure 57-4. Tangent Functor Diagram for the Conjunction J = uv=== |
| Line 7,865: |
Line 8,099: |
| | Figure 57-4. Tangent Functor Diagram for the Conjunction J = uv | | Figure 57-4. Tangent Functor Diagram for the Conjunction J = uv |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 57-4 -- Tangent Functor Diagram for J.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 57-4. Tangent Functor Diagram for the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | | |
| | ===Formula Display 11=== | | ===Formula Display 11=== |
| Line 8,902: |
Line 9,140: |
| | Figure 61. Propositional Transformation | | Figure 61. Propositional Transformation |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 61 -- Propositional Transformation.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 61. Propositional Transformation'''</font></center></p> |
| | | | |
| | ===Figure 62. Propositional Transformation (Short Form)=== | | ===Figure 62. Propositional Transformation (Short Form)=== |
| Line 8,953: |
Line 9,195: |
| | Figure 62. Propositional Transformation (Short Form) | | Figure 62. Propositional Transformation (Short Form) |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 62 -- Propositional Transformation (Short Form).gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 62. Propositional Transformation (Short Form)'''</font></center></p> |
| | | | |
| | ===Figure 63. Transformation of Positions=== | | ===Figure 63. Transformation of Positions=== |
| Line 9,030: |
Line 9,276: |
| | Figure 63. Transformation of Positions | | Figure 63. Transformation of Positions |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 63 -- Transformation of Positions.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 63. Transformation of Positions'''</font></center></p> |
| | | | |
| | ===Table 64. Transformation of Positions=== | | ===Table 64. Transformation of Positions=== |
| Line 9,220: |
Line 9,470: |
| | | ''U''<sup> •</sup> | | | ''U''<sup> •</sup> |
| | |- style="background:paleturquoise" | | |- style="background:paleturquoise" |
| − | | ''f''<sub>''i''</sub>‹''x'', ''y''› | + | | rowspan="2" | ''f''<sub>''i''</sub>‹''x'', ''y''› |
| | | | | | |
| − | {| | + | {| align="right" style="background:paleturquoise; text-align:right" |
| | + | | ''u'' = |
| | + | |- |
| | + | | ''v'' = |
| | + | |} |
| | | | | | |
| − | {| | + | {| align="center" style="background:paleturquoise; text-align:center" |
| − | | u = | + | | 1 1 0 0 |
| | |- | | |- |
| − | | v = | + | | 1 0 1 0 |
| | |} | | |} |
| − | |-
| |
| | | | | | |
| − | {| | + | {| align="left" style="background:paleturquoise; text-align:left" |
| − | | x = | + | | = ''u'' |
| | |- | | |- |
| − | | y = | + | | = ''v'' |
| − | |}
| |
| | |} | | |} |
| | + | | rowspan="2" | ''f''<sub>''j''</sub>‹''u'', ''v''› |
| | + | |- style="background:paleturquoise" |
| | | | | | |
| − | {| | + | {| align="right" style="background:paleturquoise; text-align:right" |
| − | | | + | | ''x'' = |
| − | {|
| |
| − | | 1 1 0 0
| |
| | |- | | |- |
| − | | 1 0 1 0 | + | | ''y'' = |
| | |} | | |} |
| − | |-
| |
| | | | | | |
| − | {| | + | {| align="center" style="background:paleturquoise; text-align:center" |
| | | 1 1 1 0 | | | 1 1 1 0 |
| | |- | | |- |
| | | 1 0 0 1 | | | 1 0 0 1 |
| | |} | | |} |
| − | |}
| |
| − | |
| |
| − | {|
| |
| − | |
| |
| − | {|
| |
| − | | = u
| |
| − | |-
| |
| − | | = v
| |
| − | |}
| |
| − | |-
| |
| | | | | | |
| − | {| | + | {| align="left" style="background:paleturquoise; text-align:left" |
| − | | = f‹u, v› | + | | = ''f''‹''u'', ''v''› |
| | |- | | |- |
| − | | = g‹u, v› | + | | = ''g''‹''u'', ''v''› |
| − | |}
| |
| | |} | | |} |
| − | | ''f''<sub>''j''</sub>‹''u'', ''v''›
| |
| | |- | | |- |
| | | | | | |
| | {| cellpadding="2" style="background:lightcyan" | | {| cellpadding="2" style="background:lightcyan" |
| − | | f<sub>0</sub> | + | | ''f''<sub>0</sub> |
| | |- | | |- |
| − | | f<sub>1</sub> | + | | ''f''<sub>1</sub> |
| | |- | | |- |
| − | | f<sub>2</sub> | + | | ''f''<sub>2</sub> |
| | |- | | |- |
| − | | f<sub>3</sub> | + | | ''f''<sub>3</sub> |
| | |- | | |- |
| − | | f<sub>4</sub> | + | | ''f''<sub>4</sub> |
| | |- | | |- |
| − | | f<sub>5</sub> | + | | ''f''<sub>5</sub> |
| | |- | | |- |
| − | | f<sub>6</sub> | + | | ''f''<sub>6</sub> |
| | |- | | |- |
| − | | f<sub>7</sub> | + | | ''f''<sub>7</sub> |
| | |} | | |} |
| | | | | | |
| Line 9,293: |
Line 9,532: |
| | | () | | | () |
| | |- | | |- |
| − | | (x)(y) | + | | (''x'')(''y'') |
| | |- | | |- |
| − | | (x) y | + | | (''x'') ''y'' |
| | |- | | |- |
| − | | (x) | + | | (''x'') |
| | |- | | |- |
| − | | x (y) | + | | ''x'' (''y'') |
| | |- | | |- |
| − | | (y) | + | | (''y'') |
| | |- | | |- |
| − | | (x, y) | + | | (''x'', ''y'') |
| | |- | | |- |
| − | | (x y) | + | | (''x'' ''y'') |
| | |} | | |} |
| | | | | | |
| Line 9,331: |
Line 9,570: |
| | | () | | | () |
| | |- | | |- |
| − | | (u)(v) | + | | (''u'')(''v'') |
| | |- | | |- |
| − | | (u)(v) | + | | (''u'')(''v'') |
| | |- | | |- |
| − | | (u, v) | + | | (''u'', ''v'') |
| | |- | | |- |
| − | | (u, v) | + | | (''u'', ''v'') |
| | |- | | |- |
| − | | (u v) | + | | (''u'' ''v'') |
| | |- | | |- |
| − | | (u v) | + | | (''u'' ''v'') |
| | |} | | |} |
| | | | | | |
| | {| cellpadding="2" style="background:lightcyan" | | {| cellpadding="2" style="background:lightcyan" |
| − | | f<sub>0</sub> | + | | ''f''<sub>0</sub> |
| | |- | | |- |
| − | | f<sub>0</sub> | + | | ''f''<sub>0</sub> |
| | |- | | |- |
| − | | f<sub>1</sub> | + | | ''f''<sub>1</sub> |
| | |- | | |- |
| − | | f<sub>1</sub> | + | | ''f''<sub>1</sub> |
| | |- | | |- |
| − | | f<sub>6</sub> | + | | ''f''<sub>6</sub> |
| | |- | | |- |
| − | | f<sub>6</sub> | + | | ''f''<sub>6</sub> |
| | |- | | |- |
| − | | f<sub>7</sub> | + | | ''f''<sub>7</sub> |
| | |- | | |- |
| − | | f<sub>7</sub> | + | | ''f''<sub>7</sub> |
| | |} | | |} |
| | |- | | |- |
| | | | | | |
| | {| cellpadding="2" style="background:lightcyan" | | {| cellpadding="2" style="background:lightcyan" |
| − | | f<sub>8</sub> | + | | ''f''<sub>8</sub> |
| | |- | | |- |
| − | | f<sub>9</sub> | + | | ''f''<sub>9</sub> |
| | |- | | |- |
| − | | f<sub>10</sub> | + | | ''f''<sub>10</sub> |
| | |- | | |- |
| − | | f<sub>11</sub> | + | | ''f''<sub>11</sub> |
| | |- | | |- |
| − | | f<sub>12</sub> | + | | ''f''<sub>12</sub> |
| | |- | | |- |
| − | | f<sub>13</sub> | + | | ''f''<sub>13</sub> |
| | |- | | |- |
| − | | f<sub>14</sub> | + | | ''f''<sub>14</sub> |
| | |- | | |- |
| − | | f<sub>15</sub> | + | | ''f''<sub>15</sub> |
| | |} | | |} |
| | | | | | |
| | {| cellpadding="2" style="background:lightcyan" | | {| cellpadding="2" style="background:lightcyan" |
| − | | x y | + | | ''x'' ''y'' |
| | |- | | |- |
| − | | ((x, y)) | + | | ((''x'', ''y'')) |
| | |- | | |- |
| − | | y | + | | ''y'' |
| | |- | | |- |
| − | | (x (y)) | + | | (''x'' (''y'')) |
| | |- | | |- |
| − | | x | + | | ''x'' |
| | |- | | |- |
| − | | ((x) y) | + | | ((''x'') ''y'') |
| | |- | | |- |
| − | | ((x)(y)) | + | | ((''x'')(''y'')) |
| | |- | | |- |
| | | (()) | | | (()) |
| Line 9,418: |
Line 9,657: |
| | | | | | |
| | {| cellpadding="2" style="background:lightcyan" | | {| cellpadding="2" style="background:lightcyan" |
| − | | u v | + | | ''u'' ''v'' |
| | |- | | |- |
| − | | u v | + | | ''u'' ''v'' |
| | |- | | |- |
| − | | ((u, v)) | + | | ((''u'', ''v'')) |
| | |- | | |- |
| − | | ((u, v)) | + | | ((''u'', ''v'')) |
| | |- | | |- |
| − | | ((u)(v)) | + | | ((''u'')(''v'')) |
| | |- | | |- |
| − | | ((u)(v)) | + | | ((''u'')(''v'')) |
| | |- | | |- |
| | | (()) | | | (()) |
| Line 9,436: |
Line 9,675: |
| | | | | | |
| | {| cellpadding="2" style="background:lightcyan" | | {| cellpadding="2" style="background:lightcyan" |
| − | | f<sub>8</sub> | + | | ''f''<sub>8</sub> |
| | |- | | |- |
| − | | f<sub>8</sub> | + | | ''f''<sub>8</sub> |
| | |- | | |- |
| − | | f<sub>9</sub> | + | | ''f''<sub>9</sub> |
| | |- | | |- |
| − | | f<sub>9</sub> | + | | ''f''<sub>9</sub> |
| | |- | | |- |
| − | | f<sub>14</sub> | + | | ''f''<sub>14</sub> |
| | |- | | |- |
| − | | f<sub>14</sub> | + | | ''f''<sub>14</sub> |
| | |- | | |- |
| − | | f<sub>15</sub> | + | | ''f''<sub>15</sub> |
| | |- | | |- |
| − | | f<sub>15</sub> | + | | ''f''<sub>15</sub> |
| | |} | | |} |
| | |} | | |} |
| | </font><br> | | </font><br> |
| | + | |
| | + | ===Formula Display 14=== |
| | + | |
| | + | <pre> |
| | + | o-------------------------------------------------o |
| | + | | | |
| | + | | EG_i = G_i <u + du, v + dv> | |
| | + | | | |
| | + | o-------------------------------------------------o |
| | + | </pre> |
| | | | |
| | <br><font face="courier new"> | | <br><font face="courier new"> |
| − | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" |
| − | |+ Table 65. Induced Transformation on Propositions
| |
| − | |- style="background:paleturquoise"
| |
| − | | ''X''<sup> •</sup>
| |
| − | | colspan="3" |
| |
| − | {| align="center" border="0" cellpadding="4" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:80%"
| |
| − | | ←
| |
| − | | ''F'' = ‹''f'' , ''g''›
| |
| − | | ←
| |
| − | |}
| |
| − | | ''U''<sup> •</sup>
| |
| − | |- style="background:paleturquoise"
| |
| − | | ''f''<sub>''i''</sub>‹''x'', ''y''›
| |
| | | | | | |
| − | {| | + | {| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" |
| − | |
| + | | width="8%" | E''G''<sub>''i''</sub> |
| − | {|
| + | | width="4%" | = |
| − | | u =
| + | | width="88%" | ''G''<sub>''i''</sub>‹''u'' + d''u'', ''v'' + d''v''› |
| − | |-
| |
| − | | v = | |
| − | |} | |
| − | |- | |
| − | |
| |
| − | {|
| |
| − | | x = | |
| − | |- | |
| − | | y =
| |
| | |} | | |} |
| | |} | | |} |
| | + | </font><br> |
| | + | |
| | + | ===Formula Display 15=== |
| | + | |
| | + | <pre> |
| | + | o-------------------------------------------------o |
| | + | | | |
| | + | | DG_i = G_i <u, v> + EG_i <u, v, du, dv> | |
| | + | | | |
| | + | | = G_i <u, v> + G_i <u + du, v + dv> | |
| | + | | | |
| | + | o-------------------------------------------------o |
| | + | </pre> |
| | + | |
| | + | <br><font face="courier new"> |
| | + | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" |
| | | | | | |
| − | {| | + | {| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" |
| − | | | + | | width="8%" | D''G''<sub>''i''</sub> |
| − | {|
| + | | width="4%" | = |
| − | | 1 1 0 0 | + | | width="20%" | ''G''<sub>''i''</sub>‹''u'', ''v''› |
| | + | | width="4%" | + |
| | + | | width="64%" | E''G''<sub>''i''</sub>‹''u'', ''v'', d''u'', d''v''› |
| | |- | | |- |
| − | | 1 0 1 0 | + | | width="8%" | |
| − | |} | + | | width="4%" | = |
| − | |- | + | | width="20%" | ''G''<sub>''i''</sub>‹''u'', ''v''› |
| − | | | + | | width="4%" | + |
| − | {|
| + | | width="64%" | ''G''<sub>''i''</sub>‹''u'' + d''u'', ''v'' + d''v''› |
| − | | 1 1 1 0 | |
| − | |- | |
| − | | 1 0 0 1 | |
| | |} | | |} |
| | |} | | |} |
| | + | </font><br> |
| | + | |
| | + | ===Formula Display 16=== |
| | + | |
| | + | <pre> |
| | + | o-------------------------------------------------o |
| | + | | | |
| | + | | Ef = ((u + du)(v + dv)) | |
| | + | | | |
| | + | | Eg = ((u + du, v + dv)) | |
| | + | | | |
| | + | o-------------------------------------------------o |
| | + | </pre> |
| | + | |
| | + | <br><font face="courier new"> |
| | + | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" |
| | | | | | |
| − | {| | + | {| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" |
| − | | | + | | width="8%" | E''f'' |
| − | {|
| + | | width="4%" | = |
| − | | = u | + | | width="88%" | ((''u'' + d''u'')(''v'' + d''v'')) |
| | |- | | |- |
| − | | = v | + | | width="8%" | E''g'' |
| | + | | width="4%" | = |
| | + | | width="88%" | ((''u'' + d''u'', ''v'' + d''v'')) |
| | |} | | |} |
| − | |-
| |
| − | |
| |
| − | {|
| |
| − | | = f‹u, v›
| |
| − | |-
| |
| − | | = g‹u, v›
| |
| − | |}
| |
| − | |}
| |
| − | | ''f''<sub>''j''</sub>‹''u'', ''v''›
| |
| − | |-
| |
| − | |
| |
| − | {| cellpadding="2" style="background:lightcyan"
| |
| − | | f<sub>0</sub>
| |
| − | |-
| |
| − | | f<sub>1</sub>
| |
| − | |-
| |
| − | | f<sub>2</sub>
| |
| − | |-
| |
| − | | f<sub>3</sub>
| |
| − | |-
| |
| − | | f<sub>4</sub>
| |
| − | |-
| |
| − | | f<sub>5</sub>
| |
| − | |-
| |
| − | | f<sub>6</sub>
| |
| − | |-
| |
| − | | f<sub>7</sub>
| |
| | |} | | |} |
| | + | </font><br> |
| | + | |
| | + | ===Formula Display 17=== |
| | + | |
| | + | <pre> |
| | + | o-------------------------------------------------o |
| | + | | | |
| | + | | Df = ((u)(v)) + ((u + du)(v + dv)) | |
| | + | | | |
| | + | | Dg = ((u, v)) + ((u + du, v + dv)) | |
| | + | | | |
| | + | o-------------------------------------------------o |
| | + | </pre> |
| | + | |
| | + | <br><font face="courier new"> |
| | + | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" |
| | | | | | |
| − | {| cellpadding="2" style="background:lightcyan" | + | {| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" |
| − | | () | + | | width="8%" | D''f'' |
| | + | | width="4%" | = |
| | + | | width="20%" | ((''u'')(''v'')) |
| | + | | width="4%" | + |
| | + | | width="64%" | ((''u'' + d''u'')(''v'' + d''v'')) |
| | |- | | |- |
| − | | (x)(y) | + | | width="8%" | D''g'' |
| − | |- | + | | width="4%" | = |
| − | | (x) y | + | | width="20%" | ((''u'', ''v'')) |
| − | |- | + | | width="4%" | + |
| − | | (x) | + | | width="64%" | ((''u'' + d''u'', ''v'' + d''v'')) |
| − | |- | |
| − | | x (y) | |
| − | |- | |
| − | | (y) | |
| − | |-
| |
| − | | (x, y)
| |
| − | |-
| |
| − | | (x y)
| |
| | |} | | |} |
| − | |
| |
| − | {| cellpadding="2" style="background:lightcyan"
| |
| − | | 0 0 0 0
| |
| − | |-
| |
| − | | 0 0 0 1
| |
| − | |-
| |
| − | | 0 0 1 0
| |
| − | |-
| |
| − | | 0 0 1 1
| |
| − | |-
| |
| − | | 0 1 0 0
| |
| − | |-
| |
| − | | 0 1 0 1
| |
| − | |-
| |
| − | | 0 1 1 0
| |
| − | |-
| |
| − | | 0 1 1 1
| |
| | |} | | |} |
| − | | | + | </font><br> |
| − | {| cellpadding="2" style="background:lightcyan" | + | |
| − | | () | + | ===Table 66-i. Computation Summary for f‹u, v› = ((u)(v))=== |
| | + | |
| | + | <pre> |
| | + | Table 66-i. Computation Summary for f<u, v> = ((u)(v)) |
| | + | o--------------------------------------------------------------------------------o |
| | + | | | |
| | + | | !e!f = uv. 1 + u(v). 1 + (u)v. 1 + (u)(v). 0 | |
| | + | | | |
| | + | | Ef = uv. (du dv) + u(v). (du (dv)) + (u)v.((du) dv) + (u)(v).((du)(dv)) | |
| | + | | | |
| | + | | Df = uv. du dv + u(v). du (dv) + (u)v. (du) dv + (u)(v).((du)(dv)) | |
| | + | | | |
| | + | | df = uv. 0 + u(v). du + (u)v. dv + (u)(v). (du, dv) | |
| | + | | | |
| | + | | rf = uv. du dv + u(v). du dv + (u)v. du dv + (u)(v). du dv | |
| | + | | | |
| | + | o--------------------------------------------------------------------------------o |
| | + | </pre> |
| | + | |
| | + | <font face="courier new"> |
| | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
| | + | |+ Table 66-i. Computation Summary for ''f''‹''u'', ''v''› = ((''u'')(''v'')) |
| | + | | |
| | + | {| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| | + | | <math>\epsilon</math>''f'' |
| | + | | = || ''uv'' || <math>\cdot</math> || 1 |
| | + | | + || ''u''(''v'') || <math>\cdot</math> || 1 |
| | + | | + || (''u'')''v'' || <math>\cdot</math> || 1 |
| | + | | + || (''u'')(''v'') || <math>\cdot</math> || 0 |
| | |- | | |- |
| − | | () | + | | E''f'' |
| | + | | = || ''uv'' || <math>\cdot</math> || (d''u'' d''v'') |
| | + | | + || ''u''(''v'') || <math>\cdot</math> || (d''u (d''v'')) |
| | + | | + || (''u'')''v'' || <math>\cdot</math> || ((d''u'') d''v'') |
| | + | | + || (''u'')(''v'') || <math>\cdot</math> || ((d''u'')(d''v'')) |
| | |- | | |- |
| − | | (u)(v) | + | | D''f'' |
| | + | | = || ''uv'' || <math>\cdot</math> || d''u'' d''v'' |
| | + | | + || ''u''(''v'') || <math>\cdot</math> || d''u'' (d''v'') |
| | + | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'') d''v'' |
| | + | | + || (''u'')(''v'') || <math>\cdot</math> || ((d''u'')(d''v'')) |
| | |- | | |- |
| − | | (u)(v) | + | | d''f'' |
| | + | | = || ''uv'' || <math>\cdot</math> || 0 |
| | + | | + || ''u''(''v'') || <math>\cdot</math> || d''u'' |
| | + | | + || (''u'')''v'' || <math>\cdot</math> || d''v'' |
| | + | | + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| | |- | | |- |
| − | | (u, v) | + | | r''f'' |
| − | |- | + | | = || ''uv'' || <math>\cdot</math> || d''u'' d''v'' |
| − | | (u, v) | + | | + || ''u''(''v'') || <math>\cdot</math> || d''u'' d''v'' |
| − | |- | + | | + || (''u'')''v'' || <math>\cdot</math> || d''u'' d''v'' |
| − | | (u v) | + | | + || (''u'')(''v'') || <math>\cdot</math> || d''u'' d''v'' |
| − | |- | + | |} |
| − | | (u v) | |
| | |} | | |} |
| − | | | + | </font><br> |
| − | {| cellpadding="2" style="background:lightcyan" | + | |
| − | | f<sub>0</sub> | + | ===Table 66-ii. Computation Summary for g‹u, v› = ((u, v))=== |
| | + | |
| | + | <pre> |
| | + | Table 66-ii. Computation Summary for g<u, v> = ((u, v)) |
| | + | o--------------------------------------------------------------------------------o |
| | + | | | |
| | + | | !e!g = uv. 1 + u(v). 0 + (u)v. 0 + (u)(v). 1 | |
| | + | | | |
| | + | | Eg = uv.((du, dv)) + u(v). (du, dv) + (u)v. (du, dv) + (u)(v).((du, dv)) | |
| | + | | | |
| | + | | Dg = uv. (du, dv) + u(v). (du, dv) + (u)v. (du, dv) + (u)(v). (du, dv) | |
| | + | | | |
| | + | | dg = uv. (du, dv) + u(v). (du, dv) + (u)v. (du, dv) + (u)(v). (du, dv) | |
| | + | | | |
| | + | | rg = uv. 0 + u(v). 0 + (u)v. 0 + (u)(v). 0 | |
| | + | | | |
| | + | o--------------------------------------------------------------------------------o |
| | + | </pre> |
| | + | |
| | + | <font face="courier new"> |
| | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
| | + | |+ Table 66-ii. Computation Summary for g‹''u'', ''v''› = ((''u'', ''v'')) |
| | + | | |
| | + | {| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| | + | | <math>\epsilon</math>''g'' |
| | + | | = || ''uv'' || <math>\cdot</math> || 1 |
| | + | | + || ''u''(''v'') || <math>\cdot</math> || 0 |
| | + | | + || (''u'')''v'' || <math>\cdot</math> || 0 |
| | + | | + || (''u'')(''v'') || <math>\cdot</math> || 1 |
| | |- | | |- |
| − | | f<sub>0</sub> | + | | E''g'' |
| | + | | = || ''uv'' || <math>\cdot</math> || ((d''u'', d''v'')) |
| | + | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| | + | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'') |
| | + | | + || (''u'')(''v'') || <math>\cdot</math> || ((d''u'', d''v'')) |
| | |- | | |- |
| − | | f<sub>1</sub> | + | | D''g'' |
| | + | | = || ''uv'' || <math>\cdot</math> || (d''u'', d''v'') |
| | + | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| | + | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'') |
| | + | | + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| | |- | | |- |
| − | | f<sub>1</sub> | + | | d''g'' |
| | + | | = || ''uv'' || <math>\cdot</math> || (d''u'', d''v'') |
| | + | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| | + | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'') |
| | + | | + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| | |- | | |- |
| − | | f<sub>6</sub> | + | | r''g'' |
| − | |- | + | | = || ''uv'' || <math>\cdot</math> || 0 |
| − | | f<sub>6</sub> | + | | + || ''u''(''v'') || <math>\cdot</math> || 0 |
| − | |- | + | | + || (''u'')''v'' || <math>\cdot</math> || 0 |
| − | | f<sub>7</sub> | + | | + || (''u'')(''v'') || <math>\cdot</math> || 0 |
| − | |- | |
| − | | f<sub>7</sub> | |
| | |} | | |} |
| − | |-
| |
| − | |
| |
| − | {| cellpadding="2" style="background:lightcyan"
| |
| − | | f<sub>8</sub>
| |
| − | |-
| |
| − | | f<sub>9</sub>
| |
| − | |-
| |
| − | | f<sub>10</sub>
| |
| − | |-
| |
| − | | f<sub>11</sub>
| |
| − | |-
| |
| − | | f<sub>12</sub>
| |
| − | |-
| |
| − | | f<sub>13</sub>
| |
| − | |-
| |
| − | | f<sub>14</sub>
| |
| − | |-
| |
| − | | f<sub>15</sub>
| |
| | |} | | |} |
| − | | | + | </font><br> |
| − | {| cellpadding="2" style="background:lightcyan"
| + | |
| − | | x y | + | ===Table 67. Computation of an Analytic Series in Terms of Coordinates=== |
| − | |- | + | |
| − | | ((x, y)) | + | <pre> |
| − | |- | + | Table 67. Computation of an Analytic Series in Terms of Coordinates |
| − | | y | + | o--------o-------o-------o--------o-------o-------o-------o-------o |
| − | |- | + | | u v | du dv | u' v' | f g | Ef Eg | Df Dg | df dg | rf rg | |
| − | | (x (y)) | + | o--------o-------o-------o--------o-------o-------o-------o-------o |
| − | |- | + | | | | | | | | | | |
| − | | x | + | | 0 0 | 0 0 | 0 0 | 0 1 | 0 1 | 0 0 | 0 0 | 0 0 | |
| − | |- | + | | | | | | | | | | |
| − | | ((x) y) | + | | | 0 1 | 0 1 | | 1 0 | 1 1 | 1 1 | 0 0 | |
| − | |-
| + | | | | | | | | | | |
| − | | ((x)(y)) | + | | | 1 0 | 1 0 | | 1 0 | 1 1 | 1 1 | 0 0 | |
| − | |-
| + | | | | | | | | | | |
| − | | (()) | + | | | 1 1 | 1 1 | | 1 1 | 1 0 | 0 0 | 1 0 | |
| − | |} | + | | | | | | | | | | |
| − | | | + | o--------o-------o-------o--------o-------o-------o-------o-------o |
| − | {| cellpadding="2" style="background:lightcyan" | + | | | | | | | | | | |
| − | | 1 0 0 0 | + | | 0 1 | 0 0 | 0 1 | 1 0 | 1 0 | 0 0 | 0 0 | 0 0 | |
| − | |- | + | | | | | | | | | | |
| − | | 1 0 0 1 | + | | | 0 1 | 0 0 | | 0 1 | 1 1 | 1 1 | 0 0 | |
| − | |- | + | | | | | | | | | | |
| − | | 1 0 1 0 | + | | | 1 0 | 1 1 | | 1 1 | 0 1 | 0 1 | 0 0 | |
| | + | | | | | | | | | | |
| | + | | | 1 1 | 1 0 | | 1 0 | 0 0 | 1 0 | 1 0 | |
| | + | | | | | | | | | | |
| | + | o--------o-------o-------o--------o-------o-------o-------o-------o |
| | + | | | | | | | | | | |
| | + | | 1 0 | 0 0 | 1 0 | 1 0 | 1 0 | 0 0 | 0 0 | 0 0 | |
| | + | | | | | | | | | | |
| | + | | | 0 1 | 1 1 | | 1 1 | 0 1 | 0 1 | 0 0 | |
| | + | | | | | | | | | | |
| | + | | | 1 0 | 0 0 | | 0 1 | 1 1 | 1 1 | 0 0 | |
| | + | | | | | | | | | | |
| | + | | | 1 1 | 0 1 | | 1 0 | 0 0 | 1 0 | 1 0 | |
| | + | | | | | | | | | | |
| | + | o--------o-------o-------o--------o-------o-------o-------o-------o |
| | + | | | | | | | | | | |
| | + | | 1 1 | 0 0 | 1 1 | 1 1 | 1 1 | 0 0 | 0 0 | 0 0 | |
| | + | | | | | | | | | | |
| | + | | | 0 1 | 1 0 | | 1 0 | 0 1 | 0 1 | 0 0 | |
| | + | | | | | | | | | | |
| | + | | | 1 0 | 0 1 | | 1 0 | 0 1 | 0 1 | 0 0 | |
| | + | | | | | | | | | | |
| | + | | | 1 1 | 0 0 | | 0 1 | 1 0 | 0 0 | 1 0 | |
| | + | | | | | | | | | | |
| | + | o--------o-------o-------o--------o-------o-------o-------o-------o |
| | + | </pre> |
| | + | |
| | + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
| | + | |+ Table 67. Computation of an Analytic Series in Terms of Coordinates |
| | + | | |
| | + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| | + | | |
| | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| | + | | ''u'' |
| | + | | ''v'' |
| | + | |} |
| | + | | |
| | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| | + | | d''u'' |
| | + | | d''v'' |
| | + | |} |
| | + | | |
| | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| | + | | ''u''<font face="courier new">’</font> |
| | + | | ''v''<font face="courier new">’</font> |
| | + | |} |
| | |- | | |- |
| − | | 1 0 1 1 | + | | valign="top" | |
| | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| | + | | 0 || 0 |
| | + | |} |
| | + | | |
| | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| | + | | 0 || 0 |
| | |- | | |- |
| − | | 1 1 0 0 | + | | 0 || 1 |
| | |- | | |- |
| − | | 1 1 0 1 | + | | 1 || 0 |
| | |- | | |- |
| − | | 1 1 1 0 | + | | 1 || 1 |
| − | |- | |
| − | | 1 1 1 1 | |
| | |} | | |} |
| | | | | | |
| − | {| cellpadding="2" style="background:lightcyan" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| − | | u v | + | | 0 || 0 |
| | |- | | |- |
| − | | u v | + | | 0 || 1 |
| | |- | | |- |
| − | | ((u, v)) | + | | 1 || 0 |
| | |- | | |- |
| − | | ((u, v)) | + | | 1 || 1 |
| | + | |} |
| | |- | | |- |
| − | | ((u)(v)) | + | | valign="top" | |
| | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| | + | | 0 || 1 |
| | + | |} |
| | + | | |
| | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| | + | | 0 || 0 |
| | |- | | |- |
| − | | ((u)(v)) | + | | 0 || 1 |
| | |- | | |- |
| − | | (()) | + | | 1 || 0 |
| | |- | | |- |
| − | | (()) | + | | 1 || 1 |
| | |} | | |} |
| | | | | | |
| − | {| cellpadding="2" style="background:lightcyan" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| − | | f<sub>8</sub> | + | | 0 || 1 |
| | |- | | |- |
| − | | f<sub>8</sub> | + | | 0 || 0 |
| | |- | | |- |
| − | | f<sub>9</sub> | + | | 1 || 1 |
| | |- | | |- |
| − | | f<sub>9</sub> | + | | 1 || 0 |
| | + | |} |
| | |- | | |- |
| − | | f<sub>14</sub> | + | | valign="top" | |
| | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| | + | | 1 || 0 |
| | + | |} |
| | + | | |
| | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| | + | | 0 || 0 |
| | |- | | |- |
| − | | f<sub>14</sub> | + | | 0 || 1 |
| | |- | | |- |
| − | | f<sub>15</sub> | + | | 1 || 0 |
| | |- | | |- |
| − | | f<sub>15</sub> | + | | 1 || 1 |
| | |} | | |} |
| | + | | |
| | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| | + | | 1 || 0 |
| | + | |- |
| | + | | 1 || 1 |
| | + | |- |
| | + | | 0 || 0 |
| | + | |- |
| | + | | 0 || 1 |
| | + | |} |
| | + | |- |
| | + | | valign="top" | |
| | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| | + | | 1 || 1 |
| | |} | | |} |
| − | </font><br>
| |
| − |
| |
| − | ===Formula Display 14===
| |
| − |
| |
| − | <pre>
| |
| − | o-------------------------------------------------o
| |
| − | | |
| |
| − | | EG_i = G_i <u + du, v + dv> |
| |
| − | | |
| |
| − | o-------------------------------------------------o
| |
| − | </pre>
| |
| − |
| |
| − | <br><font face="courier new">
| |
| − | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
| |
| | | | | | |
| − | {| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| − | | width="8%" | E''G''<sub>''i''</sub> | + | | 1 || 1 |
| − | | width="4%" | = | + | |- |
| − | | width="88%" | ''G''<sub>''i''</sub>‹''u'' + d''u'', ''v'' + d''v''› | + | | 1 || 0 |
| | + | |- |
| | + | | 0 || 1 |
| | + | |- |
| | + | | 0 || 0 |
| | |} | | |} |
| − | |}
| |
| − | </font><br>
| |
| − |
| |
| − | ===Formula Display 15===
| |
| − |
| |
| − | <pre>
| |
| − | o-------------------------------------------------o
| |
| − | | |
| |
| − | | DG_i = G_i <u, v> + EG_i <u, v, du, dv> |
| |
| − | | |
| |
| − | | = G_i <u, v> + G_i <u + du, v + dv> |
| |
| − | | |
| |
| − | o-------------------------------------------------o
| |
| − | </pre>
| |
| − |
| |
| − | <br><font face="courier new">
| |
| − | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
| |
| | | | | | |
| − | {| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| − | | width="8%" | D''G''<sub>''i''</sub> | + | | 0 || 0 |
| − | | width="4%" | = | + | |- |
| − | | width="20%" | ''G''<sub>''i''</sub>‹''u'', ''v''› | + | | 0 || 1 |
| − | | width="4%" | + | |
| − | | width="64%" | E''G''<sub>''i''</sub>‹''u'', ''v'', d''u'', d''v''› | |
| | |- | | |- |
| − | | width="8%" | | + | | 1 || 0 |
| − | | width="4%" | = | + | |- |
| − | | width="20%" | ''G''<sub>''i''</sub>‹''u'', ''v''› | + | | 1 || 1 |
| − | | width="4%" | + | |
| − | | width="64%" | ''G''<sub>''i''</sub>‹''u'' + d''u'', ''v'' + d''v''› | |
| | |} | | |} |
| | |} | | |} |
| − | </font><br>
| |
| − |
| |
| − | ===Formula Display 16===
| |
| − |
| |
| − | <pre>
| |
| − | o-------------------------------------------------o
| |
| − | | |
| |
| − | | Ef = ((u + du)(v + dv)) |
| |
| − | | |
| |
| − | | Eg = ((u + du, v + dv)) |
| |
| − | | |
| |
| − | o-------------------------------------------------o
| |
| − | </pre>
| |
| − |
| |
| − | <br><font face="courier new">
| |
| − | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
| |
| | | | | | |
| − | {| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| − | | width="8%" | E''f'' | + | | |
| − | | width="4%" | = | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| − | | width="88%" | ((''u'' + d''u'')(''v'' + d''v''))
| + | | <math>\epsilon</math>''f'' |
| − | |-
| + | | <math>\epsilon</math>''g'' |
| − | | width="8%" | E''g''
| |
| − | | width="4%" | =
| |
| − | | width="88%" | ((''u'' + d''u'', ''v'' + d''v''))
| |
| | |} | | |} |
| | + | | |
| | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| | + | | E''f'' |
| | + | | E''g'' |
| | |} | | |} |
| − | </font><br>
| |
| − |
| |
| − | ===Formula Display 17===
| |
| − |
| |
| − | <pre>
| |
| − | o-------------------------------------------------o
| |
| − | | |
| |
| − | | Df = ((u)(v)) + ((u + du)(v + dv)) |
| |
| − | | |
| |
| − | | Dg = ((u, v)) + ((u + du, v + dv)) |
| |
| − | | |
| |
| − | o-------------------------------------------------o
| |
| − | </pre>
| |
| − |
| |
| − | <br><font face="courier new">
| |
| − | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
| |
| | | | | | |
| − | {| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| − | | width="8%" | D''f'' | + | | D''f'' |
| − | | width="4%" | = | + | | D''g'' |
| − | | width="20%" | ((''u'')(''v''))
| + | |} |
| − | | width="4%" | + | + | | |
| − | | width="64%" | ((''u'' + d''u'')(''v'' + d''v''))
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| | + | | d''f'' |
| | + | | d''g'' |
| | + | |} |
| | + | | |
| | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| | + | | d<sup>2</sup>''f'' |
| | + | | d<sup>2</sup>''g'' |
| | + | |} |
| | |- | | |- |
| − | | width="8%" | D''g'' | + | | valign="top" | |
| − | | width="4%" | = | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| − | | width="20%" | ((''u'', ''v''))
| + | | 0 || 1 |
| − | | width="4%" | +
| |
| − | | width="64%" | ((''u'' + d''u'', ''v'' + d''v''))
| |
| − | |} | |
| | |} | | |} |
| − | </font><br>
| |
| − |
| |
| − | ===Table 66-i. Computation Summary for f‹u, v› = ((u)(v))===
| |
| − |
| |
| − | <pre>
| |
| − | Table 66-i. Computation Summary for f<u, v> = ((u)(v))
| |
| − | o--------------------------------------------------------------------------------o
| |
| − | | |
| |
| − | | !e!f = uv. 1 + u(v). 1 + (u)v. 1 + (u)(v). 0 |
| |
| − | | |
| |
| − | | Ef = uv. (du dv) + u(v). (du (dv)) + (u)v.((du) dv) + (u)(v).((du)(dv)) |
| |
| − | | |
| |
| − | | Df = uv. du dv + u(v). du (dv) + (u)v. (du) dv + (u)(v).((du)(dv)) |
| |
| − | | |
| |
| − | | df = uv. 0 + u(v). du + (u)v. dv + (u)(v). (du, dv) |
| |
| − | | |
| |
| − | | rf = uv. du dv + u(v). du dv + (u)v. du dv + (u)(v). du dv |
| |
| − | | |
| |
| − | o--------------------------------------------------------------------------------o
| |
| − | </pre>
| |
| − |
| |
| − | <font face="courier new">
| |
| − | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
| |
| − | |+ Table 66-i. Computation Summary for ''f''‹''u'', ''v''› = ((''u'')(''v''))
| |
| | | | | | |
| − | {| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| − | | <math>\epsilon</math>''f'' | + | | 0 || 1 |
| − | | = || ''uv'' || <math>\cdot</math> || 1
| |
| − | | + || ''u''(''v'') || <math>\cdot</math> || 1
| |
| − | | + || (''u'')''v'' || <math>\cdot</math> || 1
| |
| − | | + || (''u'')(''v'') || <math>\cdot</math> || 0
| |
| | |- | | |- |
| − | | E''f'' | + | | 1 || 0 |
| − | | = || ''uv'' || <math>\cdot</math> || (d''u'' d''v'') | |
| − | | + || ''u''(''v'') || <math>\cdot</math> || (d''u (d''v''))
| |
| − | | + || (''u'')''v'' || <math>\cdot</math> || ((d''u'') d''v'')
| |
| − | | + || (''u'')(''v'') || <math>\cdot</math> || ((d''u'')(d''v''))
| |
| | |- | | |- |
| − | | D''f'' | + | | 1 || 0 |
| − | | = || ''uv'' || <math>\cdot</math> || d''u'' d''v'' | + | |- |
| − | | + || ''u''(''v'') || <math>\cdot</math> || d''u'' (d''v'') | + | | 1 || 1 |
| − | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'') d''v'' | + | |} |
| − | | + || (''u'')(''v'') || <math>\cdot</math> || ((d''u'')(d''v'')) | + | | |
| | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| | + | | 0 || 0 |
| | + | |- |
| | + | | 1 || 1 |
| | |- | | |- |
| − | | d''f'' | + | | 1 || 1 |
| − | | = || ''uv'' || <math>\cdot</math> || 0 | |
| − | | + || ''u''(''v'') || <math>\cdot</math> || d''u''
| |
| − | | + || (''u'')''v'' || <math>\cdot</math> || d''v''
| |
| − | | + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'')
| |
| | |- | | |- |
| − | | r''f'' | + | | 1 || 0 |
| − | | = || ''uv'' || <math>\cdot</math> || d''u'' d''v'' | |
| − | | + || ''u''(''v'') || <math>\cdot</math> || d''u'' d''v''
| |
| − | | + || (''u'')''v'' || <math>\cdot</math> || d''u'' d''v''
| |
| − | | + || (''u'')(''v'') || <math>\cdot</math> || d''u'' d''v''
| |
| − | |}
| |
| | |} | | |} |
| − | </font><br>
| |
| − |
| |
| − | ===Table 66-ii. Computation Summary for g‹u, v› = ((u, v))===
| |
| − |
| |
| − | <pre>
| |
| − | Table 66-ii. Computation Summary for g<u, v> = ((u, v))
| |
| − | o--------------------------------------------------------------------------------o
| |
| − | | |
| |
| − | | !e!g = uv. 1 + u(v). 0 + (u)v. 0 + (u)(v). 1 |
| |
| − | | |
| |
| − | | Eg = uv.((du, dv)) + u(v). (du, dv) + (u)v. (du, dv) + (u)(v).((du, dv)) |
| |
| − | | |
| |
| − | | Dg = uv. (du, dv) + u(v). (du, dv) + (u)v. (du, dv) + (u)(v). (du, dv) |
| |
| − | | |
| |
| − | | dg = uv. (du, dv) + u(v). (du, dv) + (u)v. (du, dv) + (u)(v). (du, dv) |
| |
| − | | |
| |
| − | | rg = uv. 0 + u(v). 0 + (u)v. 0 + (u)(v). 0 |
| |
| − | | |
| |
| − | o--------------------------------------------------------------------------------o
| |
| − | </pre>
| |
| − |
| |
| − | <font face="courier new">
| |
| − | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
| |
| − | |+ Table 66-ii. Computation Summary for g‹''u'', ''v''› = ((''u'', ''v''))
| |
| | | | | | |
| − | {| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| − | | <math>\epsilon</math>''g''
| + | | 0 || 0 |
| − | | = || ''uv'' || <math>\cdot</math> || 1
| |
| − | | + || ''u''(''v'') || <math>\cdot</math> || 0
| |
| − | | + || (''u'')''v'' || <math>\cdot</math> || 0
| |
| − | | + || (''u'')(''v'') || <math>\cdot</math> || 1
| |
| | |- | | |- |
| − | | E''g'' | + | | 1 || 1 |
| − | | = || ''uv'' || <math>\cdot</math> || ((d''u'', d''v'')) | + | |- |
| − | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'') | + | | 1 || 1 |
| − | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'') | + | |- |
| − | | + || (''u'')(''v'') || <math>\cdot</math> || ((d''u'', d''v'')) | + | | 0 || 0 |
| | + | |} |
| | + | | |
| | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| | + | | 0 || 0 |
| | + | |- |
| | + | | 0 || 0 |
| | |- | | |- |
| − | | D''g'' | + | | 0 || 0 |
| − | | = || ''uv'' || <math>\cdot</math> || (d''u'', d''v'') | |
| − | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'')
| |
| − | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'')
| |
| − | | + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'')
| |
| | |- | | |- |
| − | | d''g'' | + | | 1 || 0 |
| − | | = || ''uv'' || <math>\cdot</math> || (d''u'', d''v'')
| + | |} |
| − | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'')
| |
| − | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'')
| |
| − | | + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'') | |
| | |- | | |- |
| − | | r''g'' | + | | valign="top" | |
| − | | = || ''uv'' || <math>\cdot</math> || 0
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| − | | + || ''u''(''v'') || <math>\cdot</math> || 0 | + | | 1 || 0 |
| − | | + || (''u'')''v'' || <math>\cdot</math> || 0
| |
| − | | + || (''u'')(''v'') || <math>\cdot</math> || 0 | |
| | |} | | |} |
| | + | | |
| | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| | + | | 1 || 0 |
| | + | |- |
| | + | | 0 || 1 |
| | + | |- |
| | + | | 1 || 1 |
| | + | |- |
| | + | | 1 || 0 |
| | |} | | |} |
| − | </font><br>
| + | | |
| − | | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| − | ===Table 67. Computation of an Analytic Series in Terms of Coordinates===
| + | | 0 || 0 |
| − | | + | |- |
| − | <pre>
| + | | 1 || 1 |
| − | Table 67. Computation of an Analytic Series in Terms of Coordinates
| + | |- |
| − | o--------o-------o-------o--------o-------o-------o-------o-------o
| + | | 0 || 1 |
| − | | u v | du dv | u' v' | f g | Ef Eg | Df Dg | df dg | rf rg |
| |
| − | o--------o-------o-------o--------o-------o-------o-------o-------o
| |
| − | | | | | | | | | |
| |
| − | | 0 0 | 0 0 | 0 0 | 0 1 | 0 1 | 0 0 | 0 0 | 0 0 |
| |
| − | | | | | | | | | |
| |
| − | | | 0 1 | 0 1 | | 1 0 | 1 1 | 1 1 | 0 0 |
| |
| − | | | | | | | | | |
| |
| − | | | 1 0 | 1 0 | | 1 0 | 1 1 | 1 1 | 0 0 |
| |
| − | | | | | | | | | |
| |
| − | | | 1 1 | 1 1 | | 1 1 | 1 0 | 0 0 | 1 0 |
| |
| − | | | | | | | | | |
| |
| − | o--------o-------o-------o--------o-------o-------o-------o-------o
| |
| − | | | | | | | | | |
| |
| − | | 0 1 | 0 0 | 0 1 | 1 0 | 1 0 | 0 0 | 0 0 | 0 0 |
| |
| − | | | | | | | | | |
| |
| − | | | 0 1 | 0 0 | | 0 1 | 1 1 | 1 1 | 0 0 |
| |
| − | | | | | | | | | |
| |
| − | | | 1 0 | 1 1 | | 1 1 | 0 1 | 0 1 | 0 0 |
| |
| − | | | | | | | | | |
| |
| − | | | 1 1 | 1 0 | | 1 0 | 0 0 | 1 0 | 1 0 |
| |
| − | | | | | | | | | |
| |
| − | o--------o-------o-------o--------o-------o-------o-------o-------o
| |
| − | | | | | | | | | |
| |
| − | | 1 0 | 0 0 | 1 0 | 1 0 | 1 0 | 0 0 | 0 0 | 0 0 |
| |
| − | | | | | | | | | |
| |
| − | | | 0 1 | 1 1 | | 1 1 | 0 1 | 0 1 | 0 0 |
| |
| − | | | | | | | | | |
| |
| − | | | 1 0 | 0 0 | | 0 1 | 1 1 | 1 1 | 0 0 |
| |
| − | | | | | | | | | |
| |
| − | | | 1 1 | 0 1 | | 1 0 | 0 0 | 1 0 | 1 0 |
| |
| − | | | | | | | | | |
| |
| − | o--------o-------o-------o--------o-------o-------o-------o-------o
| |
| − | | | | | | | | | |
| |
| − | | 1 1 | 0 0 | 1 1 | 1 1 | 1 1 | 0 0 | 0 0 | 0 0 |
| |
| − | | | | | | | | | |
| |
| − | | | 0 1 | 1 0 | | 1 0 | 0 1 | 0 1 | 0 0 |
| |
| − | | | | | | | | | |
| |
| − | | | 1 0 | 0 1 | | 1 0 | 0 1 | 0 1 | 0 0 |
| |
| − | | | | | | | | | |
| |
| − | | | 1 1 | 0 0 | | 0 1 | 1 0 | 0 0 | 1 0 |
| |
| − | | | | | | | | | |
| |
| − | o--------o-------o-------o--------o-------o-------o-------o-------o
| |
| − | </pre>
| |
| − | | |
| − | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | |
| − | |+ Table 67. Computation of an Analytic Series in Terms of Coordinates
| |
| − | |
| |
| − | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
| |
| − | | | |
| − | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
| |
| − | | ''u'' | |
| − | | ''v'' | |
| − | |}
| |
| − | | | |
| − | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
| |
| − | | d''u'' | |
| − | | d''v'' | |
| − | |} | |
| − | | | |
| − | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
| |
| − | | ''u''<font face="courier new">’</font>
| |
| − | | ''v''<font face="courier new">’</font> | |
| − | |} | |
| | |- | | |- |
| − | | valign="top" |
| |
| − | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
| |
| | | 0 || 0 | | | 0 || 0 |
| | |} | | |} |
| Line 10,003: |
Line 10,187: |
| | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| | | 0 || 0 | | | 0 || 0 |
| | + | |- |
| | + | | 1 || 1 |
| | |- | | |- |
| | | 0 || 1 | | | 0 || 1 |
| | |- | | |- |
| | | 1 || 0 | | | 1 || 0 |
| − | |-
| |
| − | | 1 || 1
| |
| | |} | | |} |
| | | | | | |
| Line 10,014: |
Line 10,198: |
| | | 0 || 0 | | | 0 || 0 |
| | |- | | |- |
| − | | 0 || 1 | + | | 0 || 0 |
| | + | |- |
| | + | | 0 || 0 |
| | |- | | |- |
| | | 1 || 0 | | | 1 || 0 |
| − | |-
| |
| − | | 1 || 1
| |
| | |} | | |} |
| | |- | | |- |
| | | valign="top" | | | | valign="top" | |
| | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| − | | 0 || 1 | + | | 1 || 0 |
| | |} | | |} |
| | | | | | |
| | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| − | | 0 || 0 | + | | 1 || 0 |
| | + | |- |
| | + | | 1 || 1 |
| | |- | | |- |
| | | 0 || 1 | | | 0 || 1 |
| | |- | | |- |
| | | 1 || 0 | | | 1 || 0 |
| − | |-
| |
| − | | 1 || 1
| |
| | |} | | |} |
| | | | | | |
| | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| | + | | 0 || 0 |
| | + | |- |
| | | 0 || 1 | | | 0 || 1 |
| − | |-
| |
| − | | 0 || 0
| |
| | |- | | |- |
| | | 1 || 1 | | | 1 || 1 |
| | |- | | |- |
| − | | 1 || 0
| + | | 0 || 0 |
| − | |}
| |
| − | |-
| |
| − | | valign="top" |
| |
| − | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
| |
| − | | 1 || 0
| |
| | |} | | |} |
| | | | | | |
| Line 10,055: |
Line 10,234: |
| | |- | | |- |
| | | 0 || 1 | | | 0 || 1 |
| | + | |- |
| | + | | 1 || 1 |
| | |- | | |- |
| | | 1 || 0 | | | 1 || 0 |
| − | |-
| |
| − | | 1 || 1
| |
| | |} | | |} |
| | | | | | |
| | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| − | | 1 || 0 | + | | 0 || 0 |
| | |- | | |- |
| − | | 1 || 1 | + | | 0 || 0 |
| | |- | | |- |
| | | 0 || 0 | | | 0 || 0 |
| | |- | | |- |
| − | | 0 || 1 | + | | 1 || 0 |
| | |} | | |} |
| | |- | | |- |
| Line 10,078: |
Line 10,257: |
| | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| | | 1 || 1 | | | 1 || 1 |
| | + | |- |
| | + | | 1 || 0 |
| | |- | | |- |
| | | 1 || 0 | | | 1 || 0 |
| | |- | | |- |
| | | 0 || 1 | | | 0 || 1 |
| − | |-
| |
| − | | 0 || 0
| |
| | |} | | |} |
| | | | | | |
| | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| | | 0 || 0 | | | 0 || 0 |
| | + | |- |
| | + | | 0 || 1 |
| | |- | | |- |
| | | 0 || 1 | | | 0 || 1 |
| | |- | | |- |
| | | 1 || 0 | | | 1 || 0 |
| − | |-
| |
| − | | 1 || 1
| |
| − | |}
| |
| | |} | | |} |
| | | | | | |
| − | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| − | | | + | | 0 || 0 |
| − | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
| + | |- |
| − | | <math>\epsilon</math>''f'' | + | | 0 || 1 |
| − | | <math>\epsilon</math>''g'' | + | |- |
| | + | | 0 || 1 |
| | + | |- |
| | + | | 0 || 0 |
| | |} | | |} |
| | | | | | |
| − | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| − | | E''f'' | + | | 0 || 0 |
| − | | E''g'' | + | |- |
| | + | | 0 || 0 |
| | + | |- |
| | + | | 0 || 0 |
| | + | |- |
| | + | | 1 || 0 |
| | + | |} |
| | + | |} |
| | |} | | |} |
| − | | | + | <br> |
| − | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | |
| | + | ===Table 68. Computation of an Analytic Series in Symbolic Terms=== |
| | + | |
| | + | <pre> |
| | + | Table 68. Computation of an Analytic Series in Symbolic Terms |
| | + | o-----o-----o------------o----------o----------o----------o----------o----------o |
| | + | | u v | f g | Df | Dg | df | dg | rf | rg | |
| | + | o-----o-----o------------o----------o----------o----------o----------o----------o |
| | + | | | | | | | | | | |
| | + | | 0 0 | 0 1 | ((du)(dv)) | (du, dv) | (du, dv) | (du, dv) | du dv | () | |
| | + | | | | | | | | | | |
| | + | | 0 1 | 1 0 | (du) dv | (du, dv) | dv | (du, dv) | du dv | () | |
| | + | | | | | | | | | | |
| | + | | 1 0 | 1 0 | du (dv) | (du, dv) | du | (du, dv) | du dv | () | |
| | + | | | | | | | | | | |
| | + | | 1 1 | 1 1 | du dv | (du, dv) | () | (du, dv) | du dv | () | |
| | + | | | | | | | | | | |
| | + | o-----o-----o------------o----------o----------o----------o----------o----------o |
| | + | </pre> |
| | + | |
| | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
| | + | |+ '''Table 68. Computation of an Analytic Series in Symbolic Terms''' |
| | + | |- style="background:paleturquoise" |
| | + | | ''u'' ''v'' |
| | + | | ''f'' ''g'' |
| | | D''f'' | | | D''f'' |
| | | D''g'' | | | D''g'' |
| − | |}
| |
| − | |
| |
| − | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
| |
| | | d''f'' | | | d''f'' |
| | | d''g'' | | | d''g'' |
| − | |}
| |
| − | |
| |
| − | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
| |
| | | d<sup>2</sup>''f'' | | | d<sup>2</sup>''f'' |
| | | d<sup>2</sup>''g'' | | | d<sup>2</sup>''g'' |
| − | |}
| |
| | |- | | |- |
| − | | valign="top" |
| |
| − | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
| |
| − | | 0 || 1
| |
| − | |}
| |
| | | | | | |
| − | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| − | | 0 || 1 | + | | 0 0 |
| | |- | | |- |
| − | | 1 || 0 | + | | 0 1 |
| | |- | | |- |
| − | | 1 || 0 | + | | 1 0 |
| | |- | | |- |
| − | | 1 || 1 | + | | 1 1 |
| | |} | | |} |
| | | | | | |
| − | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| − | | 0 || 0 | + | | 0 1 |
| | |- | | |- |
| − | | 1 || 1 | + | | 1 0 |
| | |- | | |- |
| − | | 1 || 1 | + | | 1 0 |
| | |- | | |- |
| − | | 1 || 0 | + | | 1 1 |
| | |} | | |} |
| | | | | | |
| − | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| − | | 0 || 0 | + | | ((d''u'')(d''v'')) |
| | |- | | |- |
| − | | 1 || 1 | + | | (d''u'') d''v'' |
| | |- | | |- |
| − | | 1 || 1 | + | | d''u'' (d''v'') |
| | |- | | |- |
| − | | 0 || 0 | + | | d''u'' d''v'' |
| | |} | | |} |
| | | | | | |
| − | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| − | | 0 || 0 | + | | (d''u'', d''v'') |
| | |- | | |- |
| − | | 0 || 0 | + | | (d''u'', d''v'') |
| | |- | | |- |
| − | | 0 || 0 | + | | (d''u'', d''v'') |
| | |- | | |- |
| − | | 1 || 0 | + | | (d''u'', d''v'') |
| − | |}
| |
| − | |-
| |
| − | | valign="top" |
| |
| − | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
| |
| − | | 1 || 0
| |
| | |} | | |} |
| | | | | | |
| − | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| − | | 1 || 0 | + | | (d''u'', d''v'') |
| | |- | | |- |
| − | | 0 || 1 | + | | d''v'' |
| | |- | | |- |
| − | | 1 || 1 | + | | d''u'' |
| | |- | | |- |
| − | | 1 || 0 | + | | ( ) |
| | |} | | |} |
| | | | | | |
| − | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| − | | 0 || 0 | + | | (d''u'', d''v'') |
| | |- | | |- |
| − | | 1 || 1 | + | | (d''u'', d''v'') |
| | |- | | |- |
| − | | 0 || 1 | + | | (d''u'', d''v'') |
| | |- | | |- |
| − | | 0 || 0 | + | | (d''u'', d''v'') |
| | |} | | |} |
| | | | | | |
| − | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| − | | 0 || 0 | + | | d''u'' d''v'' |
| | |- | | |- |
| − | | 1 || 1 | + | | d''u'' d''v'' |
| | |- | | |- |
| − | | 0 || 1 | + | | d''u'' d''v'' |
| | |- | | |- |
| − | | 1 || 0 | + | | d''u'' d''v'' |
| | |} | | |} |
| | | | | | |
| − | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| − | | 0 || 0 | + | | ( ) |
| | |- | | |- |
| − | | 0 || 0 | + | | ( ) |
| | |- | | |- |
| − | | 0 || 0 | + | | ( ) |
| | |- | | |- |
| − | | 1 || 0 | + | | ( ) |
| | |} | | |} |
| − | |-
| |
| − | | valign="top" |
| |
| − | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
| |
| − | | 1 || 0
| |
| | |} | | |} |
| | + | <br> |
| | + | |
| | + | ===Formula Display 18=== |
| | + | |
| | + | <pre> |
| | + | o-------------------------------------------------------------------------o |
| | + | | | |
| | + | | Df = uv. du dv + u(v). du (dv) + (u)v.(du) dv + (u)(v).((du)(dv)) | |
| | + | | | |
| | + | | Dg = uv.(du, dv) + u(v).(du, dv) + (u)v.(du, dv) + (u)(v). (du, dv) | |
| | + | | | |
| | + | o-------------------------------------------------------------------------o |
| | + | </pre> |
| | + | |
| | + | <br><font face="courier new"> |
| | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
| | | | | | |
| − | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| − | | 1 || 0 | + | | |
| | + | |- |
| | + | | D''f'' |
| | + | | = || ''uv'' || <math>\cdot</math> || d''u'' d''v'' |
| | + | | + || ''u''(''v'') || <math>\cdot</math> || d''u'' (d''v'') |
| | + | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'') d''v'' |
| | + | | + || (''u'')(''v'') || <math>\cdot</math> || ((d''u'')(d''v'')) |
| | |- | | |- |
| − | | 1 || 1 | + | | |
| | |- | | |- |
| − | | 0 || 1 | + | | D''g'' |
| | + | | = || ''uv'' || <math>\cdot</math> || (d''u'', d''v'') |
| | + | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| | + | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'') |
| | + | | + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| | |- | | |- |
| − | | 1 || 0 | + | | |
| − | |}
| + | |} |
| − | |
| |
| − | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
| |
| − | | 0 || 0
| |
| − | |-
| |
| − | | 0 || 1
| |
| − | |-
| |
| − | | 1 || 1
| |
| − | |-
| |
| − | | 0 || 0
| |
| − | |} | |
| − | |
| |
| − | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
| |
| − | | 0 || 0
| |
| − | |-
| |
| − | | 0 || 1
| |
| − | |-
| |
| − | | 1 || 1
| |
| − | |-
| |
| − | | 1 || 0
| |
| − | |}
| |
| − | |
| |
| − | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
| |
| − | | 0 || 0
| |
| − | |-
| |
| − | | 0 || 0
| |
| − | |-
| |
| − | | 0 || 0
| |
| − | |-
| |
| − | | 1 || 0
| |
| − | |}
| |
| − | |-
| |
| − | | valign="top" |
| |
| − | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
| |
| − | | 1 || 1
| |
| | |} | | |} |
| | + | </font><br> |
| | + | |
| | + | ===Figure 69. Difference Map of F = ‹f, g› = ‹((u)(v)), ((u, v))›=== |
| | + | |
| | + | <pre> |
| | + | o-----------------------------------o o-----------------------------------o |
| | + | | U | |`U`````````````````````````````````| |
| | + | | | |```````````````````````````````````| |
| | + | | ^ | |```````````````````````````````````| |
| | + | | | | |```````````````````````````````````| |
| | + | | o-------o | o-------o | |```````o-------o```o-------o```````| |
| | + | | ^ /`````````\|/`````````\ ^ | | ^ ```/ ^ \`/ ^ \``` ^ | |
| | + | | \ /```````````|```````````\ / | |``\``/ \ o / \``/``| |
| | + | | \/`````u`````/|\`````v`````\/ | |```\/ u \/`\/ v \/```| |
| | + | | /\``````````/`|`\``````````/\ | |```/\ /\`/\ /\```| |
| | + | | o``\````````o``@``o````````/``o | |``o \ o``@``o / o``| |
| | + | | |```\```````|`````|```````/```| | |``| \ |`````| / |``| |
| | + | | |````@``````|`````|``````@````| | |``| @-------->`<--------@ |``| |
| | + | | |```````````|`````|```````````| | |``| |`````| |``| |
| | + | | o```````````o` ^ `o```````````o | |``o o`````o o``| |
| | + | | \```````````\`|`/```````````/ | |```\ \```/ /```| |
| | + | | \```` ^ ````\|/```` ^ ````/ | |````\ ^ \`/ ^ /````| |
| | + | | \`````\`````|`````/`````/ | |`````\ \ o / /`````| |
| | + | | \`````\```/|\```/`````/ | |``````\ \ /`\ / /``````| |
| | + | | o-----\-o | o-/-----o | |```````o-----\-o```o-/-----o```````| |
| | + | | \ | / | |``````````````\`````/``````````````| |
| | + | | \ | / | |```````````````\```/```````````````| |
| | + | | \|/ | |````````````````\`/````````````````| |
| | + | | @ | |`````````````````@`````````````````| |
| | + | o-----------------------------------o o-----------------------------------o |
| | + | \ / \ / |
| | + | \ / \ / |
| | + | \ ((u)(v)) / \ ((u, v)) / |
| | + | \ / \ / |
| | + | \ / \ / |
| | + | o----------\-------------/-----------------------\-------------/----------o |
| | + | | X \ / \ / | |
| | + | | \ / \ / | |
| | + | | \ / \ / | |
| | + | | o----------------o o----------------o | |
| | + | | / \ / \ | |
| | + | | / o \ | |
| | + | | / / \ \ | |
| | + | | / / \ \ | |
| | + | | / / \ \ | |
| | + | | / / \ \ | |
| | + | | / / \ \ | |
| | + | | o o o o | |
| | + | | | | | | | |
| | + | | | | | | | |
| | + | | | f | | g | | |
| | + | | | | | | | |
| | + | | | | | | | |
| | + | | o o o o | |
| | + | | \ \ / / | |
| | + | | \ \ / / | |
| | + | | \ \ / / | |
| | + | | \ \ / / | |
| | + | | \ \ / / | |
| | + | | \ o / | |
| | + | | \ / \ / | |
| | + | | o----------------o o----------------o | |
| | + | | | |
| | + | | | |
| | + | | | |
| | + | o-------------------------------------------------------------------------o |
| | + | Figure 69. Difference Map of F = <f, g> = <((u)(v)), ((u, v))> |
| | + | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 69 -- Difference Map (Short Form).gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 69. Difference Map of F = ‹f, g› = ‹((u)(v)), ((u, v))›'''</font></center></p> |
| | + | |
| | + | ===Formula Display 19=== |
| | + | |
| | + | <pre> |
| | + | o-------------------------------------------------------------------------------o |
| | + | | | |
| | + | | df = uv. 0 + u(v). du + (u)v. dv + (u)(v).(du, dv) | |
| | + | | | |
| | + | | dg = uv.(du, dv) + u(v).(du, dv) + (u)v.(du, dv) + (u)(v).(du, dv) | |
| | + | | | |
| | + | o-------------------------------------------------------------------------------o |
| | + | </pre> |
| | + | |
| | + | <br><font face="courier new"> |
| | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
| | | | | | |
| − | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| − | | 1 || 1 | + | | |
| | |- | | |- |
| − | | 1 || 0 | + | | d''f'' |
| − | |- | + | | = || ''uv'' || <math>\cdot</math> || 0 |
| − | | 1 || 0 | + | | + || ''u''(''v'') || <math>\cdot</math> || d''u'' |
| | + | | + || (''u'')''v'' || <math>\cdot</math> || d''v'' |
| | + | | + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| | |- | | |- |
| − | | 0 || 1 | + | | |
| − | |}
| |
| − | |
| |
| − | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
| |
| − | | 0 || 0
| |
| | |- | | |- |
| − | | 0 || 1 | + | | d''g'' |
| | + | | = || ''uv'' || <math>\cdot</math> || (d''u'', d''v'') |
| | + | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| | + | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'') |
| | + | | + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| | |- | | |- |
| − | | 0 || 1 | + | | |
| − | |-
| |
| − | | 1 || 0
| |
| | |} | | |} |
| − | |
| |
| − | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
| |
| − | | 0 || 0
| |
| − | |-
| |
| − | | 0 || 1
| |
| − | |-
| |
| − | | 0 || 1
| |
| − | |-
| |
| − | | 0 || 0
| |
| | |} | | |} |
| − | |
| + | </font><br> |
| − | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
| |
| − | | 0 || 0
| |
| − | |-
| |
| − | | 0 || 0
| |
| − | |-
| |
| − | | 0 || 0
| |
| − | |-
| |
| − | | 1 || 0
| |
| − | |}
| |
| − | |}
| |
| − | |}
| |
| − | <br> | |
| | | | |
| − | ===Table 68. Computation of an Analytic Series in Symbolic Terms=== | + | ===Figure 70-a. Tangent Functor Diagram for F‹u, v› = ‹((u)(v)), ((u, v))›=== |
| | | | |
| | <pre> | | <pre> |
| − | Table 68. Computation of an Analytic Series in Symbolic Terms
| + | o o |
| − | o-----o-----o------------o----------o----------o----------o----------o----------o
| + | / \ / \ |
| − | | u v | f g | Df | Dg | df | dg | rf | rg |
| + | / \ / \ |
| − | o-----o-----o------------o----------o----------o----------o----------o----------o
| + | / \ / O \ |
| − | | | | | | | | | |
| + | / \ o /@\ o |
| − | | 0 0 | 0 1 | ((du)(dv)) | (du, dv) | (du, dv) | (du, dv) | du dv | () |
| + | / \ / \ / \ |
| − | | | | | | | | | |
| + | / \ / \ / \ |
| − | | 0 1 | 1 0 | (du) dv | (du, dv) | dv | (du, dv) | du dv | () |
| + | / O \ / O \ / O \ |
| − | | | | | | | | | |
| + | o /@\ o o /@\ o /@\ o |
| − | | 1 0 | 1 0 | du (dv) | (du, dv) | du | (du, dv) | du dv | () |
| + | / \ / \ / \ \ / \ \ / \ |
| − | | | | | | | | | |
| + | / \ / \ / \ / \ / \ |
| − | | 1 1 | 1 1 | du dv | (du, dv) | () | (du, dv) | du dv | () |
| + | / \ / \ / O \ / O \ / O \ |
| − | | | | | | | | | |
| + | / \ / \ o /@ o /@\ o /@ o |
| − | o-----o-----o------------o----------o----------o----------o----------o----------o
| + | / \ / \ / \ \ / \ / \ \ / \ |
| − | </pre>
| + | / \ / \ / \ / \ / \ / \ |
| − | | + | / O \ / O \ / O \ / O \ / O \ / O \ |
| − | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
| + | o /@ o /@ o o /@ o /@ o /@ o /@ o |
| − | |+ '''Table 68. Computation of an Analytic Series in Symbolic Terms'''
| + | |\ / \ /| |\ / \ / / \ / / \ /| |
| − | |- style="background:paleturquoise"
| + | | \ / \ / | | \ / \ / \ / \ / | |
| − | | ''u'' ''v''
| + | | \ / \ / | | \ / O \ / O \ / O \ / | |
| − | | ''f'' ''g''
| + | | \ / \ / | | o /@ o @\ o /@ o | |
| − | | D''f''
| + | | \ / \ / | | |\ / \ / \ / \ / \ /| | |
| − | | D''g''
| + | | \ / \ / | | | \ / \ / \ / | | |
| − | | d''f''
| + | | u \ / O \ / v | | u | \ / O \ / O \ / | v | |
| − | | d''g''
| + | o-------o @\ o-------o o---+---o @\ o @\ o---+---o |
| − | | d<sup>2</sup>''f''
| + | \ / | \ / \ / \ / \ / | |
| − | | d<sup>2</sup>''g''
| + | \ / | \ / \ / | |
| − | |-
| + | \ / | du \ / O \ / dv | |
| − | |
| + | \ / o-------o @\ o-------o |
| − | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
| + | \ / \ / |
| − | | 0 0
| + | \ / \ / |
| − | |-
| + | \ / \ / |
| − | | 0 1
| + | o o |
| − | |-
| + | U% $T$ $E$U% |
| − | | 1 0
| + | o------------------>o |
| − | |-
| + | | | |
| − | | 1 1
| + | | | |
| − | |}
| + | | | |
| − | |
| + | | | |
| − | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
| + | F | | $T$F |
| − | | 0 1
| |
| − | |-
| |
| − | | 1 0
| |
| − | |-
| |
| − | | 1 0
| |
| − | |-
| |
| − | | 1 1
| |
| − | |}
| |
| − | |
| |
| − | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
| |
| − | | ((d''u'')(d''v''))
| |
| − | |-
| |
| − | | (d''u'') d''v''
| |
| − | |-
| |
| − | | d''u'' (d''v'')
| |
| − | |-
| |
| − | | d''u'' d''v''
| |
| − | |}
| |
| − | |
| |
| − | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
| |
| − | | (d''u'', d''v'')
| |
| − | |-
| |
| − | | (d''u'', d''v'')
| |
| − | |-
| |
| − | | (d''u'', d''v'')
| |
| − | |-
| |
| − | | (d''u'', d''v'')
| |
| − | |}
| |
| − | |
| |
| − | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
| |
| − | | (d''u'', d''v'')
| |
| − | |-
| |
| − | | d''v''
| |
| − | |-
| |
| − | | d''u''
| |
| − | |-
| |
| − | | ( )
| |
| − | |}
| |
| − | |
| |
| − | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
| |
| − | | (d''u'', d''v'')
| |
| − | |-
| |
| − | | (d''u'', d''v'')
| |
| − | |-
| |
| − | | (d''u'', d''v'')
| |
| − | |-
| |
| − | | (d''u'', d''v'')
| |
| − | |}
| |
| − | |
| |
| − | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
| |
| − | | d''u'' d''v''
| |
| − | |-
| |
| − | | d''u'' d''v''
| |
| − | |-
| |
| − | | d''u'' d''v''
| |
| − | |-
| |
| − | | d''u'' d''v''
| |
| − | |}
| |
| − | |
| |
| − | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
| |
| − | | ( )
| |
| − | |-
| |
| − | | ( )
| |
| − | |-
| |
| − | | ( )
| |
| − | |-
| |
| − | | ( )
| |
| − | |}
| |
| − | |}
| |
| − | <br>
| |
| − | | |
| − | ===Formula Display 18===
| |
| − | | |
| − | <pre>
| |
| − | o-------------------------------------------------------------------------o
| |
| − | | |
| |
| − | | Df = uv. du dv + u(v). du (dv) + (u)v.(du) dv + (u)(v).((du)(dv)) |
| |
| − | | |
| |
| − | | Dg = uv.(du, dv) + u(v).(du, dv) + (u)v.(du, dv) + (u)(v). (du, dv) |
| |
| − | | |
| |
| − | o-------------------------------------------------------------------------o
| |
| − | </pre>
| |
| − | | |
| − | <br><font face="courier new">
| |
| − | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
| |
| − | |
| |
| − | {| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
| |
| − | |
| |
| − | |-
| |
| − | | D''f''
| |
| − | | = || ''uv'' || <math>\cdot</math> || d''u'' d''v''
| |
| − | | + || ''u''(''v'') || <math>\cdot</math> || d''u'' (d''v'')
| |
| − | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'') d''v''
| |
| − | | + || (''u'')(''v'') || <math>\cdot</math> || ((d''u'')(d''v''))
| |
| − | |-
| |
| − | |
| |
| − | |-
| |
| − | | D''g''
| |
| − | | = || ''uv'' || <math>\cdot</math> || (d''u'', d''v'')
| |
| − | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'')
| |
| − | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'')
| |
| − | | + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'')
| |
| − | |-
| |
| − | |
| |
| − | |}
| |
| − | |}
| |
| − | </font><br>
| |
| − | | |
| − | ===Figure 69. Difference Map of F = ‹f, g› = ‹((u)(v)), ((u, v))›===
| |
| − | | |
| − | <pre>
| |
| − | o-----------------------------------o o-----------------------------------o
| |
| − | | U | |`U`````````````````````````````````|
| |
| − | | | |```````````````````````````````````|
| |
| − | | ^ | |```````````````````````````````````|
| |
| − | | | | |```````````````````````````````````|
| |
| − | | o-------o | o-------o | |```````o-------o```o-------o```````|
| |
| − | | ^ /`````````\|/`````````\ ^ | | ^ ```/ ^ \`/ ^ \``` ^ |
| |
| − | | \ /```````````|```````````\ / | |``\``/ \ o / \``/``|
| |
| − | | \/`````u`````/|\`````v`````\/ | |```\/ u \/`\/ v \/```|
| |
| − | | /\``````````/`|`\``````````/\ | |```/\ /\`/\ /\```|
| |
| − | | o``\````````o``@``o````````/``o | |``o \ o``@``o / o``|
| |
| − | | |```\```````|`````|```````/```| | |``| \ |`````| / |``|
| |
| − | | |````@``````|`````|``````@````| | |``| @-------->`<--------@ |``|
| |
| − | | |```````````|`````|```````````| | |``| |`````| |``|
| |
| − | | o```````````o` ^ `o```````````o | |``o o`````o o``|
| |
| − | | \```````````\`|`/```````````/ | |```\ \```/ /```|
| |
| − | | \```` ^ ````\|/```` ^ ````/ | |````\ ^ \`/ ^ /````|
| |
| − | | \`````\`````|`````/`````/ | |`````\ \ o / /`````|
| |
| − | | \`````\```/|\```/`````/ | |``````\ \ /`\ / /``````|
| |
| − | | o-----\-o | o-/-----o | |```````o-----\-o```o-/-----o```````|
| |
| − | | \ | / | |``````````````\`````/``````````````|
| |
| − | | \ | / | |```````````````\```/```````````````|
| |
| − | | \|/ | |````````````````\`/````````````````|
| |
| − | | @ | |`````````````````@`````````````````|
| |
| − | o-----------------------------------o o-----------------------------------o
| |
| − | \ / \ /
| |
| − | \ / \ /
| |
| − | \ ((u)(v)) / \ ((u, v)) /
| |
| − | \ / \ /
| |
| − | \ / \ /
| |
| − | o----------\-------------/-----------------------\-------------/----------o
| |
| − | | X \ / \ / |
| |
| − | | \ / \ / |
| |
| − | | \ / \ / |
| |
| − | | o----------------o o----------------o |
| |
| − | | / \ / \ |
| |
| − | | / o \ |
| |
| − | | / / \ \ |
| |
| − | | / / \ \ |
| |
| − | | / / \ \ |
| |
| − | | / / \ \ |
| |
| − | | / / \ \ |
| |
| − | | o o o o |
| |
| − | | | | | | |
| |
| − | | | | | | |
| |
| − | | | f | | g | |
| |
| − | | | | | | |
| |
| − | | | | | | |
| |
| − | | o o o o |
| |
| − | | \ \ / / |
| |
| − | | \ \ / / |
| |
| − | | \ \ / / |
| |
| − | | \ \ / / |
| |
| − | | \ \ / / |
| |
| − | | \ o / |
| |
| − | | \ / \ / |
| |
| − | | o----------------o o----------------o |
| |
| − | | |
| |
| − | | |
| |
| − | | |
| |
| − | o-------------------------------------------------------------------------o
| |
| − | Figure 69. Difference Map of F = <f, g> = <((u)(v)), ((u, v))>
| |
| − | </pre>
| |
| − | | |
| − | ===Formula Display 19===
| |
| − | | |
| − | <pre>
| |
| − | o-------------------------------------------------------------------------------o
| |
| − | | |
| |
| − | | df = uv. 0 + u(v). du + (u)v. dv + (u)(v).(du, dv) |
| |
| − | | |
| |
| − | | dg = uv.(du, dv) + u(v).(du, dv) + (u)v.(du, dv) + (u)(v).(du, dv) |
| |
| − | | |
| |
| − | o-------------------------------------------------------------------------------o
| |
| − | </pre>
| |
| − | | |
| − | <br><font face="courier new">
| |
| − | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
| |
| − | |
| |
| − | {| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
| |
| − | |
| |
| − | |-
| |
| − | | d''f''
| |
| − | | = || ''uv'' || <math>\cdot</math> || 0
| |
| − | | + || ''u''(''v'') || <math>\cdot</math> || d''u''
| |
| − | | + || (''u'')''v'' || <math>\cdot</math> || d''v''
| |
| − | | + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'')
| |
| − | |-
| |
| − | |
| |
| − | |-
| |
| − | | d''g''
| |
| − | | = || ''uv'' || <math>\cdot</math> || (d''u'', d''v'')
| |
| − | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'')
| |
| − | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'')
| |
| − | | + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'')
| |
| − | |-
| |
| − | |
| |
| − | |}
| |
| − | |}
| |
| − | </font><br>
| |
| − | | |
| − | ===Figure 70-a. Tangent Functor Diagram for F‹u, v› = ‹((u)(v)), ((u, v))›===
| |
| − | | |
| − | <pre>
| |
| − | o o | |
| − | / \ / \ | |
| − | / \ / \ | |
| − | / \ / O \ | |
| − | / \ o /@\ o | |
| − | / \ / \ / \ | |
| − | / \ / \ / \ | |
| − | / O \ / O \ / O \ | |
| − | o /@\ o o /@\ o /@\ o | |
| − | / \ / \ / \ \ / \ \ / \ | |
| − | / \ / \ / \ / \ / \ | |
| − | / \ / \ / O \ / O \ / O \ | |
| − | / \ / \ o /@ o /@\ o /@ o | |
| − | / \ / \ / \ \ / \ / \ \ / \ | |
| − | / \ / \ / \ / \ / \ / \ | |
| − | / O \ / O \ / O \ / O \ / O \ / O \ | |
| − | o /@ o /@ o o /@ o /@ o /@ o /@ o | |
| − | |\ / \ /| |\ / \ / / \ / / \ /| | |
| − | | \ / \ / | | \ / \ / \ / \ / | | |
| − | | \ / \ / | | \ / O \ / O \ / O \ / | | |
| − | | \ / \ / | | o /@ o @\ o /@ o | | |
| − | | \ / \ / | | |\ / \ / \ / \ / \ /| | | |
| − | | \ / \ / | | | \ / \ / \ / | | | |
| − | | u \ / O \ / v | | u | \ / O \ / O \ / | v | | |
| − | o-------o @\ o-------o o---+---o @\ o @\ o---+---o | |
| − | \ / | \ / \ / \ / \ / | | |
| − | \ / | \ / \ / | | |
| − | \ / | du \ / O \ / dv | | |
| − | \ / o-------o @\ o-------o | |
| − | \ / \ / | |
| − | \ / \ / | |
| − | \ / \ / | |
| − | o o | |
| − | U% $T$ $E$U% | |
| − | o------------------>o | |
| − | | | | |
| − | | | | |
| − | | | | |
| − | | | | |
| − | F | | $T$F | |
| | | | | | | | |
| | | | | | | | |
| Line 10,647: |
Line 10,642: |
| | Figure 70-a. Tangent Functor Diagram for F‹u, v› = <((u)(v)), ((u, v))> | | Figure 70-a. Tangent Functor Diagram for F‹u, v› = <((u)(v)), ((u, v))> |
| | </pre> | | </pre> |
| | + | |
| | + | <br> |
| | + | <p>[[Image:Diff Log Dyn Sys -- Figure 70-a -- Tangent Functor Diagram.gif|center]]</p> |
| | + | <p><center><font size="+1">'''Figure 70-a. Tangent Functor Diagram for F‹u, v› = ‹((u)(v)), ((u, v))›'''</font></center></p> |
| | | | |
| | ===Figure 70-b. Tangent Functor Ferris Wheel for F‹u, v› = ‹((u)(v)), ((u, v))›=== | | ===Figure 70-b. Tangent Functor Ferris Wheel for F‹u, v› = ‹((u)(v)), ((u, v))›=== |