Line 1,141: |
Line 1,141: |
| Figure 12. The Anchor | | Figure 12. The Anchor |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 12 -- The Anchor.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 12. The Anchor'''</font></center></p> |
| | | |
| ===Figure 13. The Tiller=== | | ===Figure 13. The Tiller=== |
Line 1,174: |
Line 1,178: |
| Figure 13. The Tiller | | Figure 13. The Tiller |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 13 -- The Tiller.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 13. The Tiller'''</font></center></p> |
| | | |
| ===Table 14. Differential Propositions=== | | ===Table 14. Differential Propositions=== |
Line 1,667: |
Line 1,675: |
| |} | | |} |
| </font><br> | | </font><br> |
| + | |
| + | ===Figure 16. A Couple of Fourth Gear Orbits=== |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 16 -- A Couple of Fourth Gear Orbits.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 16. A Couple of Fourth Gear Orbits'''</font></center></p> |
| | | |
| ===Figure 16-a. A Couple of Fourth Gear Orbits: 1=== | | ===Figure 16-a. A Couple of Fourth Gear Orbits: 1=== |
Line 2,064: |
Line 2,078: |
| Figure 18-a. Extension from 1 to 2 Dimensions: Areal | | Figure 18-a. Extension from 1 to 2 Dimensions: Areal |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 18-a -- Extension from 1 to 2 Dimensions.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 18-a. Extension from 1 to 2 Dimensions: Areal'''</font></center></p> |
| | | |
| ===Figure 18-b. Extension from 1 to 2 Dimensions: Bundle=== | | ===Figure 18-b. Extension from 1 to 2 Dimensions: Bundle=== |
Line 2,093: |
Line 2,111: |
| Figure 18-b. Extension from 1 to 2 Dimensions: Bundle | | Figure 18-b. Extension from 1 to 2 Dimensions: Bundle |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 18-b -- Extension from 1 to 2 Dimensions.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 18-b. Extension from 1 to 2 Dimensions: Bundle'''</font></center></p> |
| | | |
| ===Figure 18-c. Extension from 1 to 2 Dimensions: Compact=== | | ===Figure 18-c. Extension from 1 to 2 Dimensions: Compact=== |
Line 2,124: |
Line 2,146: |
| Figure 18-c. Extension from 1 to 2 Dimensions: Compact | | Figure 18-c. Extension from 1 to 2 Dimensions: Compact |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 18-c -- Extension from 1 to 2 Dimensions.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 18-c. Extension from 1 to 2 Dimensions: Compact'''</font></center></p> |
| | | |
| ===Figure 18-d. Extension from 1 to 2 Dimensions: Digraph=== | | ===Figure 18-d. Extension from 1 to 2 Dimensions: Digraph=== |
Line 2,143: |
Line 2,169: |
| Figure 18-d. Extension from 1 to 2 Dimensions: Digraph | | Figure 18-d. Extension from 1 to 2 Dimensions: Digraph |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 18-d -- Extension from 1 to 2 Dimensions.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 18-d. Extension from 1 to 2 Dimensions: Digraph'''</font></center></p> |
| | | |
| ===Figure 19-a. Extension from 2 to 4 Dimensions: Areal=== | | ===Figure 19-a. Extension from 2 to 4 Dimensions: Areal=== |
Line 2,186: |
Line 2,216: |
| Figure 19-a. Extension from 2 to 4 Dimensions: Areal | | Figure 19-a. Extension from 2 to 4 Dimensions: Areal |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 19-a -- Extension from 2 to 4 Dimensions.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 19-a. Extension from 2 to 4 Dimensions: Areal'''</font></center></p> |
| | | |
| ===Figure 19-b. Extension from 2 to 4 Dimensions: Bundle=== | | ===Figure 19-b. Extension from 2 to 4 Dimensions: Bundle=== |
Line 2,247: |
Line 2,281: |
| Figure 19-b. Extension from 2 to 4 Dimensions: Bundle | | Figure 19-b. Extension from 2 to 4 Dimensions: Bundle |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 19-b -- Extension from 2 to 4 Dimensions.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 19-b. Extension from 2 to 4 Dimensions: Bundle'''</font></center></p> |
| | | |
| ===Figure 19-c. Extension from 2 to 4 Dimensions: Compact=== | | ===Figure 19-c. Extension from 2 to 4 Dimensions: Compact=== |
Line 2,287: |
Line 2,325: |
| Figure 19-c. Extension from 2 to 4 Dimensions: Compact | | Figure 19-c. Extension from 2 to 4 Dimensions: Compact |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 19-c -- Extension from 2 to 4 Dimensions.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 19-c. Extension from 2 to 4 Dimensions: Compact'''</font></center></p> |
| | | |
| ===Figure 19-d. Extension from 2 to 4 Dimensions: Digraph=== | | ===Figure 19-d. Extension from 2 to 4 Dimensions: Digraph=== |
Line 2,330: |
Line 2,372: |
| Figure 19-d. Extension from 2 to 4 Dimensions: Digraph | | Figure 19-d. Extension from 2 to 4 Dimensions: Digraph |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 19-d -- Extension from 2 to 4 Dimensions.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 19-d. Extension from 2 to 4 Dimensions: Digraph'''</font></center></p> |
| | | |
| ===Figure 20-i. Thematization of Conjunction (Stage 1)=== | | ===Figure 20-i. Thematization of Conjunction (Stage 1)=== |
Line 2,360: |
Line 2,406: |
| Figure 20-i. Thematization of Conjunction (Stage 1) | | Figure 20-i. Thematization of Conjunction (Stage 1) |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 20-i -- Thematization of Conjunction (Stage 1).gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 20-i. Thematization of Conjunction (Stage 1)'''</font></center></p> |
| | | |
| ===Figure 20-ii. Thematization of Conjunction (Stage 2)=== | | ===Figure 20-ii. Thematization of Conjunction (Stage 2)=== |
Line 2,407: |
Line 2,457: |
| Figure 20-ii. Thematization of Conjunction (Stage 2) | | Figure 20-ii. Thematization of Conjunction (Stage 2) |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 20-ii -- Thematization of Conjunction (Stage 2).gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 20-ii. Thematization of Conjunction (Stage 2)'''</font></center></p> |
| | | |
| ===Figure 20-iii. Thematization of Conjunction (Stage 3)=== | | ===Figure 20-iii. Thematization of Conjunction (Stage 3)=== |
Line 2,450: |
Line 2,504: |
| Figure 20-iii. Thematization of Conjunction (Stage 3) | | Figure 20-iii. Thematization of Conjunction (Stage 3) |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 20-iii -- Thematization of Conjunction (Stage 3).gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 20-iii. Thematization of Conjunction (Stage 3)'''</font></center></p> |
| | | |
| ===Figure 21. Thematization of Disjunction and Equality=== | | ===Figure 21. Thematization of Disjunction and Equality=== |
Line 2,516: |
Line 2,574: |
| Figure 21. Thematization of Disjunction and Equality | | Figure 21. Thematization of Disjunction and Equality |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 21 -- Thematization of Disjunction and Equality.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 21. Thematization of Disjunction and Equality'''</font></center></p> |
| | | |
| ===Table 22. Disjunction ''f'' and Equality ''g''=== | | ===Table 22. Disjunction ''f'' and Equality ''g''=== |
Line 3,673: |
Line 3,735: |
| Figure 30. Generic Frame of a Logical Transformation | | Figure 30. Generic Frame of a Logical Transformation |
| </pre> | | </pre> |
| + | |
| + | '''Note.''' The following image was corrupted in transit between software platforms. |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 30 -- Generic Frame of a Logical Transformation.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 30. Generic Frame of a Logical Transformation'''</font></center></p> |
| | | |
| ===Formula Display 3=== | | ===Formula Display 3=== |
Line 3,729: |
Line 3,797: |
| Figure 31. Operator Diagram (1) | | Figure 31. Operator Diagram (1) |
| </pre> | | </pre> |
| + | |
| + | '''Note.''' The following image was corrupted in transit between software platforms. |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 31 -- Operator Diagram (1).gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 31. Operator Diagram (1)'''</font></center></p> |
| | | |
| ===Figure 32. Operator Diagram (2)=== | | ===Figure 32. Operator Diagram (2)=== |
Line 3,754: |
Line 3,828: |
| Figure 32. Operator Diagram (2) | | Figure 32. Operator Diagram (2) |
| </pre> | | </pre> |
| + | |
| + | '''Note.''' The following image was corrupted in transit between software platforms. |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 32 -- Operator Diagram (2).gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 32. Operator Diagram (2)'''</font></center></p> |
| | | |
| ===Figure 33-i. Analytic Diagram (1)=== | | ===Figure 33-i. Analytic Diagram (1)=== |
Line 3,774: |
Line 3,854: |
| Figure 33-i. Analytic Diagram (1) | | Figure 33-i. Analytic Diagram (1) |
| </pre> | | </pre> |
| + | |
| + | '''Note.''' The following image was corrupted in transit between software platforms. |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 33-i -- Analytic Diagram (1).gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 33-i. Analytic Diagram (1)'''</font></center></p> |
| | | |
| ===Figure 33-ii. Analytic Diagram (2)=== | | ===Figure 33-ii. Analytic Diagram (2)=== |
Line 3,794: |
Line 3,880: |
| Figure 33-ii. Analytic Diagram (2) | | Figure 33-ii. Analytic Diagram (2) |
| </pre> | | </pre> |
| + | |
| + | '''Note.''' The following image was corrupted in transit between software platforms. |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 33-ii -- Analytic Diagram (2).gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 33-ii. Analytic Diagram (2)'''</font></center></p> |
| | | |
| ===Formula Display 4=== | | ===Formula Display 4=== |
Line 4,012: |
Line 4,104: |
| Figure 34. Tangent Functor Diagram | | Figure 34. Tangent Functor Diagram |
| </pre> | | </pre> |
| + | |
| + | '''Note.''' The following image was corrupted in transit between software platforms. |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 34 -- Tangent Functor Diagram.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 34. Tangent Functor Diagram'''</font></center></p> |
| | | |
| ===Figure 35. Conjunction as Transformation=== | | ===Figure 35. Conjunction as Transformation=== |
Line 4,067: |
Line 4,165: |
| Figure 35. Conjunction as Transformation | | Figure 35. Conjunction as Transformation |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 35 -- A Conjunction Viewed as a Transformation.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 35. Conjunction as Transformation'''</font></center></p> |
| | | |
| ===Table 36. Computation of !e!J=== | | ===Table 36. Computation of !e!J=== |
Line 4,140: |
Line 4,242: |
| </font><br> | | </font><br> |
| | | |
− | ===Figure 37-a. Tacit Extension of J (Areal)=== | + | ===Figure 37-a. Tacit Extension of ''J'' (Areal)=== |
| | | |
| <pre> | | <pre> |
Line 4,183: |
Line 4,285: |
| </pre> | | </pre> |
| | | |
− | ===Figure 37-b. Tacit Extension of J (Bundle)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 37-a -- Tacit Extension of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 37-a. Tacit Extension of ''J'' (Areal)'''</font></center></p> |
| + | |
| + | ===Figure 37-b. Tacit Extension of ''J'' (Bundle)=== |
| | | |
| <pre> | | <pre> |
Line 4,252: |
Line 4,358: |
| </pre> | | </pre> |
| | | |
− | ===Figure 37-c. Tacit Extension of J (Compact)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 37-b -- Tacit Extension of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 37-b. Tacit Extension of ''J'' (Bundle)'''</font></center></p> |
| + | |
| + | ===Figure 37-c. Tacit Extension of ''J'' (Compact)=== |
| | | |
| <pre> | | <pre> |
Line 4,292: |
Line 4,402: |
| </pre> | | </pre> |
| | | |
− | ===Figure 37-d. Tacit Extension of J (Digraph)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 37-c -- Tacit Extension of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 37-c. Tacit Extension of ''J'' (Compact)'''</font></center></p> |
| + | |
| + | ===Figure 37-d. Tacit Extension of ''J'' (Digraph)=== |
| | | |
| <pre> | | <pre> |
Line 4,333: |
Line 4,447: |
| Figure 37-d. Tacit Extension of J (Digraph) | | Figure 37-d. Tacit Extension of J (Digraph) |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 37-d -- Tacit Extension of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 37-d. Tacit Extension of ''J'' (Digraph)'''</font></center></p> |
| | | |
| ===Table 38. Computation of EJ (Method 1)=== | | ===Table 38. Computation of EJ (Method 1)=== |
Line 4,504: |
Line 4,622: |
| </font><br> | | </font><br> |
| | | |
− | ===Figure 40-a. Enlargement of J (Areal)=== | + | ===Figure 40-a. Enlargement of ''J'' (Areal)=== |
| | | |
| <pre> | | <pre> |
Line 4,547: |
Line 4,665: |
| </pre> | | </pre> |
| | | |
− | ===Figure 40-b. Enlargement of J (Bundle)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 40-a -- Enlargement of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 40-a. Enlargement of ''J'' (Areal)'''</font></center></p> |
| + | |
| + | ===Figure 40-b. Enlargement of ''J'' (Bundle)=== |
| | | |
| <pre> | | <pre> |
Line 4,616: |
Line 4,738: |
| </pre> | | </pre> |
| | | |
− | ===Figure 40-c. Enlargement of J (Compact)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 40-b -- Enlargement of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 40-b. Enlargement of ''J'' (Bundle)'''</font></center></p> |
| + | |
| + | ===Figure 40-c. Enlargement of ''J'' (Compact)=== |
| | | |
| <pre> | | <pre> |
Line 4,656: |
Line 4,782: |
| </pre> | | </pre> |
| | | |
− | ===Figure 40-d. Enlargement of J (Digraph)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 40-c -- Enlargement of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 40-c. Enlargement of ''J'' (Compact)'''</font></center></p> |
| + | |
| + | ===Figure 40-d. Enlargement of ''J'' (Digraph)=== |
| | | |
| <pre> | | <pre> |
Line 4,697: |
Line 4,827: |
| Figure 40-d. Enlargement of J (Digraph) | | Figure 40-d. Enlargement of J (Digraph) |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 40-d -- Enlargement of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 40-d. Enlargement of ''J'' (Digraph)'''</font></center></p> |
| | | |
| ===Table 41. Computation of DJ (Method 1)=== | | ===Table 41. Computation of DJ (Method 1)=== |
Line 4,964: |
Line 5,098: |
| </font><br> | | </font><br> |
| | | |
− | ===Figure 44-a. Difference Map of J (Areal)=== | + | ===Figure 44-a. Difference Map of ''J'' (Areal)=== |
| | | |
| <pre> | | <pre> |
Line 5,007: |
Line 5,141: |
| </pre> | | </pre> |
| | | |
− | ===Figure 44-b. Difference Map of J (Bundle)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 44-a -- Difference Map of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 44-a. Difference Map of ''J'' (Areal)'''</font></center></p> |
| + | |
| + | ===Figure 44-b. Difference Map of ''J'' (Bundle)=== |
| | | |
| <pre> | | <pre> |
Line 5,076: |
Line 5,214: |
| </pre> | | </pre> |
| | | |
− | ===Figure 44-c. Difference Map of J (Compact)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 44-b -- Difference Map of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 44-b. Difference Map of ''J'' (Bundle)'''</font></center></p> |
| + | |
| + | ===Figure 44-c. Difference Map of ''J'' (Compact)=== |
| | | |
| <pre> | | <pre> |
Line 5,117: |
Line 5,259: |
| </pre> | | </pre> |
| | | |
− | ===Figure 44-d. Difference Map of J (Digraph)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 44-c -- Difference Map of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 44-c. Difference Map of ''J'' (Compact)'''</font></center></p> |
| + | |
| + | ===Figure 44-d. Difference Map of ''J'' (Digraph)=== |
| | | |
| <pre> | | <pre> |
Line 5,155: |
Line 5,301: |
| Figure 44-d. Difference Map of J (Digraph) | | Figure 44-d. Difference Map of J (Digraph) |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 44-d -- Difference Map of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 44-d. Difference Map of ''J'' (Digraph)'''</font></center></p> |
| | | |
| ===Table 45. Computation of dJ=== | | ===Table 45. Computation of dJ=== |
Line 5,193: |
Line 5,343: |
| </font><br> | | </font><br> |
| | | |
− | ===Figure 46-a. Differential of J (Areal)=== | + | ===Figure 46-a. Differential of ''J'' (Areal)=== |
| | | |
| <pre> | | <pre> |
Line 5,236: |
Line 5,386: |
| </pre> | | </pre> |
| | | |
− | ===Figure 46-b. Differential of J (Bundle)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 46-a -- Differential of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 46-a. Differential of ''J'' (Areal)'''</font></center></p> |
| + | |
| + | ===Figure 46-b. Differential of ''J'' (Bundle)=== |
| | | |
| <pre> | | <pre> |
Line 5,305: |
Line 5,459: |
| </pre> | | </pre> |
| | | |
− | ===Figure 46-c. Differential of J (Compact)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 46-b -- Differential of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 46-b. Differential of ''J'' (Bundle)'''</font></center></p> |
| + | |
| + | ===Figure 46-c. Differential of ''J'' (Compact)=== |
| | | |
| <pre> | | <pre> |
Line 5,342: |
Line 5,500: |
| </pre> | | </pre> |
| | | |
− | ===Figure 46-d. Differential of J (Digraph)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 46-c -- Differential of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 46-c. Differential of ''J'' (Compact)'''</font></center></p> |
| + | |
| + | ===Figure 46-d. Differential of ''J'' (Digraph)=== |
| | | |
| <pre> | | <pre> |
Line 5,378: |
Line 5,540: |
| Figure 46-d. Differential of J (Digraph) | | Figure 46-d. Differential of J (Digraph) |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 46-d -- Differential of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 46-d. Differential of ''J'' (Digraph)'''</font></center></p> |
| | | |
| ===Table 47. Computation of rJ=== | | ===Table 47. Computation of rJ=== |
Line 5,439: |
Line 5,605: |
| </font><br> | | </font><br> |
| | | |
− | ===Figure 48-a. Remainder of J (Areal)=== | + | ===Figure 48-a. Remainder of ''J'' (Areal)=== |
| | | |
| <pre> | | <pre> |
Line 5,482: |
Line 5,648: |
| </pre> | | </pre> |
| | | |
− | ===Figure 48-b. Remainder of J (Bundle)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 48-a -- Remainder of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 48-a. Remainder of ''J'' (Areal)'''</font></center></p> |
| + | |
| + | ===Figure 48-b. Remainder of ''J'' (Bundle)=== |
| | | |
| <pre> | | <pre> |
Line 5,551: |
Line 5,721: |
| </pre> | | </pre> |
| | | |
− | ===Figure 48-c. Remainder of J (Compact)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 48-b -- Remainder of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 48-b. Remainder of ''J'' (Bundle)'''</font></center></p> |
| + | |
| + | ===Figure 48-c. Remainder of ''J'' (Compact)=== |
| | | |
| <pre> | | <pre> |
Line 5,591: |
Line 5,765: |
| </pre> | | </pre> |
| | | |
− | ===Figure 48-d. Remainder of J (Digraph)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 48-c -- Remainder of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 48-c. Remainder of ''J'' (Compact)'''</font></center></p> |
| + | |
| + | ===Figure 48-d. Remainder of ''J'' (Digraph)=== |
| | | |
| <pre> | | <pre> |
Line 5,627: |
Line 5,805: |
| Figure 48-d. Remainder of J (Digraph) | | Figure 48-d. Remainder of J (Digraph) |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 48-d -- Remainder of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 48-d. Remainder of ''J'' (Digraph)'''</font></center></p> |
| | | |
| ===Table 49. Computation Summary for J=== | | ===Table 49. Computation Summary for J=== |
Line 5,734: |
Line 5,916: |
| </pre> | | </pre> |
| | | |
− | ===Formula Display 9=== | + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
− | | + | |+ Table 50. Computation of an Analytic Series in Terms of Coordinates |
− | <pre>
| + | | |
− | o-------------------------------------------------o
| + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | | | | |
− | | u' = u + du = (u, du) |
| |
− | | |
| |
− | | v' = v + du = (v, dv) | | |
− | | |
| |
− | o-------------------------------------------------o
| |
− | </pre>
| |
− | | |
− | <br><font face="courier new">
| |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | |
| | | | | |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
− | | || ''u''’ || = || ''u'' + d''u'' || = || (''u'', d''u'') || | + | | ''u'' |
− | |-
| + | | ''v'' |
− | | || ''v''’ || = || ''v'' + d''u'' || = || (''v'', d''v'') ||
| |
| |} | | |} |
− | |}
| |
− | </font><br>
| |
− |
| |
− | ===Formula Display 10===
| |
− |
| |
− | <pre>
| |
− | o--------------------------------------------------------------o
| |
− | | |
| |
− | | EJ<u, v, du, dv> = J<u + du, v + dv> = J<u', v'> |
| |
− | | |
| |
− | o--------------------------------------------------------------o
| |
− | </pre>
| |
− |
| |
− | <br><font face="courier new">
| |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
| |
| | | | | |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
− | | E''J''‹''u'', ''v'', d''u'', d''v''› | + | | d''u'' |
− | | =
| + | | d''v'' |
− | | ''J''‹''u'' + d''u'', ''v'' + d''v''› | |
− | | =
| |
− | | ''J''‹''u''’, ''v''’›
| |
| |} | | |} |
− | |}
| |
− | </font><br>
| |
− |
| |
− | ===Table 51. Computation of an Analytic Series in Symbolic Terms===
| |
− |
| |
− | <pre>
| |
− | Table 51. Computation of an Analytic Series in Symbolic Terms
| |
− | o-----------o---------o------------o------------o------------o-----------o
| |
− | | u v | J | EJ | DJ | dJ | d^2.J |
| |
− | o-----------o---------o------------o------------o------------o-----------o
| |
− | | | | | | | |
| |
− | | 0 0 | 0 | du dv | du dv | () | du dv |
| |
− | | | | | | | |
| |
− | | 0 1 | 0 | du (dv) | du (dv) | du | du dv |
| |
− | | | | | | | |
| |
− | | 1 0 | 0 | (du) dv | (du) dv | dv | du dv |
| |
− | | | | | | | |
| |
− | | 1 1 | 1 | (du)(dv) | ((du)(dv)) | (du, dv) | du dv |
| |
− | | | | | | | |
| |
− | o-----------o---------o------------o------------o------------o-----------o
| |
− | </pre>
| |
− |
| |
− | <font face="courier new">
| |
− | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
| |
− | |+ Table 51. Computation of an Analytic Series in Symbolic Terms
| |
| | | | | |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
− | | ''u'' || ''v'' | + | | ''u''<font face="courier new">’</font> |
| + | | ''v''<font face="courier new">’</font> |
| |} | | |} |
| + | |- |
| | | | | |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | | ''J'' | + | | 0 || 0 |
| + | |- |
| + | | || |
| + | |- |
| + | | || |
| + | |- |
| + | | || |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | | E''J''
| |
− | |}
| |
− | |
| |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
| |
− | | D''J''
| |
− | |}
| |
− | |
| |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
| |
− | | d''J''
| |
− | |}
| |
− | |
| |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
| |
− | | d<sup>2</sup>''J''
| |
− | |}
| |
− | |-
| |
− | |
| |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
| |
| | 0 || 0 | | | 0 || 0 |
| |- | | |- |
Line 5,838: |
Line 5,957: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | | 0 | + | | 0 || 0 |
| |- | | |- |
− | | 0 | + | | 0 || 1 |
| |- | | |- |
− | | 0 | + | | 1 || 0 |
| |- | | |- |
− | | 1 | + | | 1 || 1 |
| |} | | |} |
| + | |- |
| | | | | |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | | d''u'' d''v'' | + | | 0 || 1 |
| |- | | |- |
− | | d''u'' (d''v'') | + | | || |
| |- | | |- |
− | | (d''u'') d''v'' | + | | || |
| |- | | |- |
− | | (d''u'')(d''v'') | + | | || |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | | d''u'' d''v'' | + | | 0 || 0 |
| |- | | |- |
− | | d''u'' (d''v'') | + | | 0 || 1 |
| |- | | |- |
− | | (d''u'') d''v'' | + | | 1 || 0 |
| |- | | |- |
− | | ((d''u'')(d''v'')) | + | | 1 || 1 |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | | () | + | | 0 || 1 |
| |- | | |- |
− | | d''u'' | + | | 0 || 0 |
| |- | | |- |
− | | d''v'' | + | | 1 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 || 0 |
| + | |- |
| + | | || |
| + | |- |
| + | | || |
| + | |- |
| + | | || |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 0 |
| |- | | |- |
− | | (d''u'', d''v'') | + | | 1 || 1 |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | | d''u'' d''v'' | + | | 1 || 0 |
| |- | | |- |
− | | d''u'' d''v'' | + | | 1 || 1 |
| |- | | |- |
− | | d''u'' d''v'' | + | | 0 || 0 |
| |- | | |- |
− | | d''u'' d''v'' | + | | 0 || 1 |
| |} | | |} |
| + | |- |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 || 1 |
| + | |- |
| + | | || |
| + | |- |
| + | | || |
| + | |- |
| + | | || |
| |} | | |} |
− | </font><br>
| + | | |
− | | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | ===Figure 52. Decomposition of the Enlarged Conjunction EJ = (J, DJ)=== | + | | 1 || 1 |
− | | + | |- |
− | <pre>
| + | | 1 || 0 |
− | o o o
| + | |- |
− | /%\ /%\ / \
| + | | 0 || 1 |
− | /%%%\ /%%%\ / \
| + | |- |
− | o%%%%%o o%%%%%o o o
| + | | 0 || 0 |
− | / \%%%/ \ /%\%%%/%\ /%\ /%\
| + | |} |
− | / \%/ \ /%%%\%/%%%\ /%%%\ /%%%\
| + | | |
− | o o o o%%%%%o%%%%%o o%%%%%o%%%%%o
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | /%\ / \ /%\ / \%%%/%\%%%/ \ /%\%%%/%\%%%/%\
| + | | 0 || 0 |
− | /%%%\ / \ /%%%\ / \%/%%%\%/ \ /%%%\%/%%%\%/%%%\
| + | |- |
− | o%%%%%o o%%%%%o o o%%%%%o o o%%%%%o%%%%%o%%%%%o
| + | | 0 || 1 |
− | / \%%%/ \ / \%%%/ \ / \ / \%%%/ \ / \ / \%%%/ \%%%/ \%%%/ \
| + | |- |
− | / \%/ \ / \%/ \ / \ / \%/ \ / \ / \%/ \%/ \%/ \
| + | | 1 || 0 |
− | o o o o o o o o o o o o o o o
| + | |- |
− | |\ / \ /%\ / \ /| |\ / \ / \ / \ /| |\ / \ /%\ / \ /| | + | | 1 || 1 |
− | | \ / \ /%%%\ / \ / | | \ / \ / \ / \ / | | \ / \ /%%%\ / \ / | | + | |} |
− | | o o%%%%%o o | | o o o o | | o o%%%%%o o | | + | |} |
− | | |\ / \%%%/ \ /| | | |\ / \ / \ /| | | |\ / \%%%/ \ /| | | + | | |
− | |u | \ / \%/ \ / | v| |u | \ / \ / \ / | v| |u | \ / \%/ \ / | v| | + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | o--+--o o o--+--o o--+--o o o--+--o o--+--o o o--+--o
| + | | |
− | | \ / \ / | | \ / \ / | | \ / \ / |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
− | | du \ / \ / dv | | du \ / \ / dv | | du \ / \ / dv |
| + | | <math>\epsilon</math>''J'' |
− | o-----o o-----o o-----o o-----o o-----o o-----o
| + | | E''J'' |
− | \ / \ / \ /
| + | |} |
− | \ / \ / \ /
| + | | |
− | o o o
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
− | | + | | D''J'' |
− | EJ = J + DJ
| + | |} |
− | | + | | |
− | o-----------------------o o-----------------------o o-----------------------o | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
− | | | | | | | | + | | d''J'' |
− | | o--o o--o | | o--o o--o | | o--o o--o |
| + | | d<sup>2</sup>''J'' |
− | | / \ / \ | | / \ / \ | | / \ / \ | | + | |} |
− | | / o \ | | / o \ | | / o \ |
| + | |- |
− | | / u / \ v \ | | / u / \ v \ | | / u / \ v \ |
| + | | |
− | | o /->-\ o | | o /->-\ o | | o / \ o |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | | | o \ / o | | | | o \ / o | | | | o o | |
| + | | 0 || 0 |
− | | | @--|->@<-|--@ | | | | @<-|--@--|->@ | | | | @<-|->@<-|->@ | |
| + | |- |
− | | | o ^ o | | | | o | o | | | | o ^ o | |
| + | | || 0 |
− | | o \ | / o | | o \ | / o | | o \ | / o |
| + | |- |
− | | \ \|/ / | | \ \|/ / | | \ \|/ / |
| + | | || 0 |
− | | \ | / | | \ | / | | \ | / |
| + | |- |
− | | \ /|\ / | | \ /|\ / | | \ /|\ / |
| + | | || 1 |
− | | o--o | o--o | | o--o v o--o | | o--o v o--o |
| + | |} |
− | | @ | | @ | | @ |
| + | | |
− | o-----------------------o o-----------------------o o-----------------------o
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | Figure 52. Decomposition of the Enlarged Conjunction EJ = (J, DJ)
| + | | 0 |
− | </pre>
| + | |- |
− | | + | | 0 |
− | ===Figure 53. Decomposition of the Differed Conjunction DJ = (dJ, ddJ)===
| + | |- |
− | | + | | 0 |
− | <pre>
| + | |- |
− | o o o
| + | | 1 |
− | / \ / \ / \
| + | |} |
− | / \ / \ / \
| + | | |
− | o o o o o o
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | /%\ /%\ /%\ /%\ / \ / \
| + | | 0 || 0 |
− | /%%%\ /%%%\ /%%%\%/%%%\ / \ / \
| + | |- |
− | o%%%%%o%%%%%o o%%%%%o%%%%%o o o o
| + | | 0 || 0 |
− | /%\%%%/%\%%%/%\ /%\%%%/ \%%%/%\ / \ /%\ / \
| + | |- |
− | /%%%\%/%%%\%/%%%\ /%%%\%/ \%/%%%\ / \ /%%%\ / \
| + | | 0 || 0 |
− | o%%%%%o%%%%%o%%%%%o o%%%%%o o%%%%%o o o%%%%%o o
| + | |- |
− | / \%%%/ \%%%/ \%%%/ \ / \%%%/%\ /%\%%%/ \ / \ /%\%%%/%\ / \
| + | | 0 || 1 |
− | / \%/ \%/ \%/ \ / \%/%%%\ /%%%\%/ \ / \ /%%%\%/%%%\ / \
| + | |} |
− | o o o o o o o%%%%%o%%%%%o o o o%%%%%o%%%%%o o
| + | |- |
− | |\ / \ /%\ / \ /| |\ / \%%%/ \%%%/ \ /| |\ / \%%%/%\%%%/ \ /|
| + | | |
− | | \ / \ /%%%\ / \ / | | \ / \%/ \%/ \ / | | \ / \%/%%%\%/ \ / |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | | o o%%%%%o o | | o o o o | | o o%%%%%o o |
| + | | 0 || 0 |
− | | |\ / \%%%/ \ /| | | |\ / \ / \ /| | | |\ / \%%%/ \ /| |
| + | |- |
− | |u | \ / \%/ \ / | v| |u | \ / \ / \ / | v| |u | \ / \%/ \ / | v|
| + | | || 0 |
− | o--+--o o o--+--o o--+--o o o--+--o o--+--o o o--+--o
| + | |- |
− | | \ / \ / | | \ / \ / | | \ / \ / |
| + | | || 1 |
− | | du \ / \ / dv | | du \ / \ / dv | | du \ / \ / dv |
| + | |- |
− | o-----o o-----o o-----o o-----o o-----o o-----o
| + | | || 0 |
− | \ / \ / \ /
| + | |} |
− | \ / \ / \ /
| + | | |
− | o o o
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | | + | | 0 |
− | DJ = dJ + ddJ
| + | |- |
− | | + | | 0 |
− | o-----------------------o o-----------------------o o-----------------------o
| + | |- |
− | | | | | | |
| + | | 1 |
− | | o--o o--o | | o--o o--o | | o--o o--o |
| + | |- |
− | | / \ / \ | | / \ / \ | | / \ / \ |
| + | | 0 |
− | | / o \ | | / o \ | | / o \ |
| + | |} |
− | | / u / \ v \ | | / u / \ v \ | | / u / \ v \ |
| + | | |
− | | o / \ o | | o / \ o | | o / \ o |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | | | o o | | | | o o | | | | o o | |
| + | | 0 || 0 |
− | | | @<-|->@<-|->@ | | | | @<-|->@<-|->@ | | | | @<-|-----|->@ | |
| + | |- |
− | | | o ^ o | | | | ^ o o ^ | | | | o @ o | |
| + | | 0 || 0 |
− | | o \ | / o | | o \ \ / / o | | o \ ^ / o |
| + | |- |
− | | \ \|/ / | | \ --\-/-- / | | \ \|/ / |
| + | | 1 || 0 |
− | | \ | / | | \ o / | | \ | / |
| + | |- |
− | | \ /|\ / | | \ / \ / | | \ /|\ / |
| + | | 1 || 1 |
− | | o--o v o--o | | o--o o--o | | o--o v o--o |
| + | |} |
− | | @ | | @ | | @ |
| + | |- |
− | o-----------------------o o-----------------------o o-----------------------o
| + | | |
− | Figure 53. Decomposition of the Differed Conjunction DJ = (dJ, ddJ)
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | </pre>
| + | | 0 || 0 |
− | | + | |- |
− | ===Table 54. Cast of Characters: Expansive Subtypes of Objects and Operators===
| + | | || 1 |
− | | + | |- |
− | <pre>
| + | | || 0 |
− | Table 54. Cast of Characters: Expansive Subtypes of Objects and Operators
| + | |- |
− | o------o-------------------------o------------------o----------------------------o
| + | | || 0 |
− | | Item | Notation | Description | Type |
| + | |} |
− | o------o-------------------------o------------------o----------------------------o
| + | | |
− | | | | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | | U% | = [u, v] | Source Universe | [B^2] |
| + | | 0 |
− | | | | | |
| + | |- |
− | o------o-------------------------o------------------o----------------------------o
| + | | 1 |
− | | | | | |
| + | |- |
− | | X% | = [x] | Target Universe | [B^1] |
| + | | 0 |
− | | | | | |
| + | |- |
− | o------o-------------------------o------------------o----------------------------o
| + | | 0 |
− | | | | | |
| + | |} |
− | | EU% | = [u, v, du, dv] | Extended | [B^2 x D^2] |
| + | | |
− | | | | Source Universe | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | | | | | |
| + | | 0 || 0 |
− | o------o-------------------------o------------------o----------------------------o
| + | |- |
− | | | | | |
| + | | 1 || 0 |
− | | EX% | = [x, dx] | Extended | [B^1 x D^1] |
| + | |- |
− | | | | Target Universe | |
| + | | 0 || 0 |
− | | | | | |
| + | |- |
− | o------o-------------------------o------------------o----------------------------o
| + | | 1 || 1 |
− | | | | | |
| + | |} |
− | | J | J : U -> B | Proposition | (B^2 -> B) c [B^2] |
| + | |- |
− | | | | | |
| + | | |
− | o------o-------------------------o------------------o----------------------------o
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | | | | | |
| + | | 0 || 1 |
− | | J | J : U% -> X% | Transformation, | [B^2] -> [B^1] |
| + | |- |
− | | | | or Mapping | |
| + | | || 0 |
− | | | | | |
| + | |- |
− | o------o-------------------------o------------------o----------------------------o
| + | | || 0 |
− | | | | | |
| + | |- |
− | | W | W : | Operator | |
| + | | || 0 |
− | | | U% -> EU%, | | [B^2] -> [B^2 x D^2], |
| + | |} |
− | | | X% -> EX%, | | [B^1] -> [B^1 x D^1], |
| + | | |
− | | | (U%->X%)->(EU%->EX%), | | ([B^2] -> [B^1]) |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | | | for each W among: | | -> |
| + | | 0 |
− | | | e!, !h!, E, D, d | | ([B^2 x D^2]->[B^1 x D^1]) |
| + | |- |
− | | | | | |
| + | | 1 |
− | o------o-------------------------o------------------o----------------------------o
| + | |- |
− | | | | |
| + | | 1 |
− | | !e! | | Tacit Extension Operator !e! |
| + | |- |
− | | !h! | | Trope Extension Operator !h! |
| + | | 1 |
− | | E | | Enlargement Operator E |
| + | |} |
− | | D | | Difference Operator D |
| + | | |
− | | d | | Differential Operator d |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | | | | |
| + | | 0 || 0 |
− | o------o-------------------------o------------------o----------------------------o
| + | |- |
− | | | | | |
| + | | 1 || 0 |
− | | $W$ | $W$ : | Operator | |
| + | |- |
− | | | U% -> $T$U% = EU%, | | [B^2] -> [B^2 x D^2], |
| + | | 1 || 0 |
− | | | X% -> $T$X% = EX%, | | [B^1] -> [B^1 x D^1], |
| + | |- |
− | | | (U%->X%)->($T$U%->$T$X%)| | ([B^2] -> [B^1]) |
| + | | 0 || 1 |
− | | | for each $W$ among: | | -> |
| + | |} |
− | | | $e$, $E$, $D$, $T$ | | ([B^2 x D^2]->[B^1 x D^1]) |
| + | |} |
− | | | | | |
| + | |} |
− | o------o-------------------------o------------------o----------------------------o
| + | <br> |
− | | | | |
| + | |
− | | $e$ | | Radius Operator $e$ = <!e!, !h!> |
| + | ===Formula Display 9=== |
− | | $E$ | | Secant Operator $E$ = <!e!, E > |
| + | |
− | | $D$ | | Chord Operator $D$ = <!e!, D > |
| + | <pre> |
− | | $T$ | | Tangent Functor $T$ = <!e!, d > |
| + | o-------------------------------------------------o |
− | | | | | | + | | | |
− | o------o-------------------------o-----------------------------------------------o | + | | u' = u + du = (u, du) | |
| + | | | |
| + | | v' = v + du = (v, dv) | |
| + | | | |
| + | o-------------------------------------------------o |
| </pre> | | </pre> |
| | | |
− | ===Table 55. Synopsis of Terminology: Restrictive and Alternative Subtypes=== | + | <br><font face="courier new"> |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
| + | | |
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | || ''u''’ || = || ''u'' + d''u'' || = || (''u'', d''u'') || |
| + | |- |
| + | | || ''v''’ || = || ''v'' + d''u'' || = || (''v'', d''v'') || |
| + | |} |
| + | |} |
| + | </font><br> |
| + | |
| + | ===Formula Display 10=== |
| | | |
| <pre> | | <pre> |
− | Table 55. Synopsis of Terminology: Restrictive and Alternative Subtypes
| + | o--------------------------------------------------------------o |
− | o--------------o----------------------o--------------------o----------------------o
| + | | | |
− | | | Operator | Proposition | Map | | + | | EJ<u, v, du, dv> = J<u + du, v + dv> = J<u', v'> | |
− | o--------------o----------------------o--------------------o----------------------o
| + | | | |
− | | | | | | | + | o--------------------------------------------------------------o |
− | | Tacit | !e! : | !e!J : | !e!J : |
| + | </pre> |
− | | Extension | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> B | [u,v,du,dv]->[x] |
| + | |
− | | | (U%->X%)->(EU%->X%) | B^2 x D^2 -> B | [B^2 x D^2]->[B^1] |
| + | <br><font face="courier new"> |
− | | | | | | | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
− | o--------------o----------------------o--------------------o----------------------o | + | | |
− | | | | | |
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | | Trope | !h! : | !h!J : | !h!J : | | + | | E''J''‹''u'', ''v'', d''u'', d''v''› |
− | | Extension | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx] | | + | | = |
− | | | (U%->X%)->(EU%->dX%) | B^2 x D^2 -> D | [B^2 x D^2]->[D^1] | | + | | ''J''‹''u'' + d''u'', ''v'' + d''v''› |
− | | | | | | | + | | = |
− | o--------------o----------------------o--------------------o----------------------o
| + | | ''J''‹''u''’, ''v''’› |
− | | | | | |
| + | |} |
− | | Enlargement | E : | EJ : | EJ : |
| + | |} |
− | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx] |
| + | </font><br> |
− | | | (U%->X%)->(EU%->dX%) | B^2 x D^2 -> D | [B^2 x D^2]->[D^1] | | + | |
− | | | | | |
| + | ===Table 51. Computation of an Analytic Series in Symbolic Terms=== |
− | o--------------o----------------------o--------------------o----------------------o | + | |
− | | | | | | | + | <pre> |
− | | Difference | D : | DJ : | DJ : |
| + | Table 51. Computation of an Analytic Series in Symbolic Terms |
− | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx] |
| + | o-----------o---------o------------o------------o------------o-----------o |
− | | | (U%->X%)->(EU%->dX%) | B^2 x D^2 -> D | [B^2 x D^2]->[D^1] | | + | | u v | J | EJ | DJ | dJ | d^2.J | |
− | | | | | |
| + | o-----------o---------o------------o------------o------------o-----------o |
− | o--------------o----------------------o--------------------o----------------------o | + | | | | | | | | |
− | | | | | | | + | | 0 0 | 0 | du dv | du dv | () | du dv | |
− | | Differential | d : | dJ : | dJ : | | + | | | | | | | | |
− | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx] | | + | | 0 1 | 0 | du (dv) | du (dv) | du | du dv | |
− | | | (U%->X%)->(EU%->dX%) | B^2 x D^2 -> D | [B^2 x D^2]->[D^1] |
| + | | | | | | | | |
− | | | | | | | + | | 1 0 | 0 | (du) dv | (du) dv | dv | du dv | |
− | o--------------o----------------------o--------------------o----------------------o
| + | | | | | | | | |
− | | | | | |
| + | | 1 1 | 1 | (du)(dv) | ((du)(dv)) | (du, dv) | du dv | |
− | | Remainder | r : | rJ : | rJ : | | + | | | | | | | | |
− | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx] | | + | o-----------o---------o------------o------------o------------o-----------o |
− | | | (U%->X%)->(EU%->dX%) | B^2 x D^2 -> D | [B^2 x D^2]->[D^1] |
| |
− | | | | | | | |
− | o--------------o----------------------o--------------------o----------------------o
| |
− | | | | | |
| |
− | | Radius | $e$ = <!e!, !h!> : | | $e$J : | | |
− | | Operator | U%->EU%, X%->EX%, | | [u,v,du,dv]->[x, dx] | | |
− | | | (U%->X%)->(EU%->EX%) | | [B^2 x D^2]->[B x D] |
| |
− | | | | | |
| |
− | o--------------o----------------------o--------------------o----------------------o
| |
− | | | | | |
| |
− | | Secant | $E$ = <!e!, E> : | | $E$J : |
| |
− | | Operator | U%->EU%, X%->EX%, | | [u,v,du,dv]->[x, dx] |
| |
− | | | (U%->X%)->(EU%->EX%) | | [B^2 x D^2]->[B x D] | | |
− | | | | | |
| |
− | o--------------o----------------------o--------------------o----------------------o
| |
− | | | | | | | |
− | | Chord | $D$ = <!e!, D> : | | $D$J : |
| |
− | | Operator | U%->EU%, X%->EX%, | | [u,v,du,dv]->[x, dx] |
| |
− | | | (U%->X%)->(EU%->EX%) | | [B^2 x D^2]->[B x D] |
| |
− | | | | | |
| |
− | o--------------o----------------------o--------------------o----------------------o
| |
− | | | | | |
| |
− | | Tangent | $T$ = <!e!, d> : | dJ : | $T$J : |
| |
− | | Functor | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[x, dx] |
| |
− | | | (U%->X%)->(EU%->EX%) | B^2 x D^2 -> D | [B^2 x D^2]->[B x D] | | |
− | | | | | | | |
− | o--------------o----------------------o--------------------o----------------------o | |
| </pre> | | </pre> |
| | | |
− | ===Figure 56-a1. Radius Map of the Conjunction J = uv=== | + | <font face="courier new"> |
− | | + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
− | <pre>
| + | |+ Table 51. Computation of an Analytic Series in Symbolic Terms |
− | o
| + | | |
− | /X\
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
− | /XXX\
| + | | ''u'' || ''v'' |
− | oXXXXXo
| + | |} |
− | /X\XXX/X\
| + | | |
− | /XXX\X/XXX\
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
− | oXXXXXoXXXXXo
| + | | ''J'' |
− | / \XXX/X\XXX/ \
| + | |} |
− | / \X/XXX\X/ \
| + | | |
− | o oXXXXXo o
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
− | / \ / \XXX/ \ / \
| + | | E''J'' |
− | / \ / \X/ \ / \
| + | |} |
− | o o o o o
| + | | |
− | =|\ / \ / \ / \ /|=
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
− | = | \ / \ / \ / \ / | =
| + | | D''J'' |
− | = | o o o o | =
| + | |} |
− | = | |\ / \ / \ /| | =
| + | | |
− | = |u | \ / \ / \ / | v| =
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
− | o o--+--o o o--+--o o
| + | | d''J'' |
− | //\ | \ / \ / | /\\
| + | |} |
− | ////\ | du \ / \ / dv | /\\\\
| + | | |
− | o/////o o-----o o-----o o\\\\\o
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
− | //\/////\ \ / /\\\\\/\\
| + | | d<sup>2</sup>''J'' |
− | ////\/////\ \ / /\\\\\/\\\\
| + | |} |
− | o/////o/////o o o\\\\\o\\\\\o
| + | |- |
− | / \/////\//// \ = = / \\\\/\\\\\/ \
| + | | |
− | / \/////\// \ = = / \\/\\\\\/ \
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | o o/////o o = = o o\\\\\o o
| + | | 0 || 0 |
− | / \ / \//// \ / \ = = / \ / \\\\/ \ / \
| + | |- |
− | / \ / \// \ / \ = = / \ / \\/ \ / \
| + | | 0 || 1 |
− | o o o o o o o o o o
| + | |- |
− | |\ / \ / \ / \ /| |\ / \ / \ / \ /| | + | | 1 || 0 |
− | | \ / \ / \ / \ / | | \ / \ / \ / \ / | | + | |- |
− | | o o o o | | o o o o | | + | | 1 || 1 |
− | | |\ / \ / \ /| | | |\ / \ / \ /| | | + | |} |
− | |u | \ / \ / \ / | v| |u | \ / \ / \ / | v| | + | | |
− | o--+--o o o--+--o o o--+--o o o--+--o
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | . | \ / \ / | /X\ | \ / \ / | .
| + | | 0 |
− | .| du \ / \ / dv | /XXX\ | du \ / \ / dv |.
| + | |- |
− | o-----o o-----o /XXXXX\ o-----o o-----o
| + | | 0 |
− | . \ / /XXXXXXX\ \ / .
| + | |- |
− | . \ / /XXXXXXXXX\ \ / .
| + | | 0 |
− | . o oXXXXXXXXXXXo o .
| + | |- |
− | . //\XXXXXXXXX/\\ .
| + | | 1 |
− | . ////\XXXXXXX/\\\\ .
| + | |} |
− | !e!J //////\XXXXX/\\\\\\ !h!J
| + | | |
− | . ////////\XXX/\\\\\\\\ .
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | . //////////\X/\\\\\\\\\\ .
| + | | d''u'' d''v'' |
− | . o///////////o\\\\\\\\\\\o .
| + | |- |
− | . |\////////// \\\\\\\\\\/| .
| + | | d''u'' (d''v'') |
− | . | \//////// \\\\\\\\/ | .
| + | |- |
− | . | \////// \\\\\\/ | .
| + | | (d''u'') d''v'' |
− | . | \//// \\\\/ | .
| + | |- |
− | .| x \// \\/ dx |.
| + | | (d''u'')(d''v'') |
− | o-----o o-----o
| + | |} |
− | \ /
| + | | |
− | \ /
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | x = uv \ / dx = uv
| + | | d''u'' d''v'' |
− | \ /
| + | |- |
− | \ /
| + | | d''u'' (d''v'') |
− | o
| + | |- |
− | | + | | (d''u'') d''v'' |
− | Figure 56-a1. Radius Map of the Conjunction J = uv
| + | |- |
− | </pre> | + | | ((d''u'')(d''v'')) |
− | | + | |} |
− | ===Figure 56-a2. Secant Map of the Conjunction J = uv=== | + | | |
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | () |
| + | |- |
| + | | d''u'' |
| + | |- |
| + | | d''v'' |
| + | |- |
| + | | (d''u'', d''v'') |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | d''u'' d''v'' |
| + | |- |
| + | | d''u'' d''v'' |
| + | |- |
| + | | d''u'' d''v'' |
| + | |- |
| + | | d''u'' d''v'' |
| + | |} |
| + | |} |
| + | </font><br> |
| + | |
| + | ===Figure 52. Decomposition of the Enlarged Conjunction EJ = (J, DJ)=== |
| | | |
| <pre> | | <pre> |
− | o
| + | o o o |
− | /X\
| + | /%\ /%\ / \ |
− | /XXX\
| + | /%%%\ /%%%\ / \ |
− | oXXXXXo
| + | o%%%%%o o%%%%%o o o |
− | //\XXX//\ | + | / \%%%/ \ /%\%%%/%\ /%\ /%\ |
− | ////\X////\
| + | / \%/ \ /%%%\%/%%%\ /%%%\ /%%%\ |
− | o/////o/////o
| + | o o o o%%%%%o%%%%%o o%%%%%o%%%%%o |
− | /\\/////\////\\
| + | /%\ / \ /%\ / \%%%/%\%%%/ \ /%\%%%/%\%%%/%\ |
− | /\\\\/////\//\\\\
| + | /%%%\ / \ /%%%\ / \%/%%%\%/ \ /%%%\%/%%%\%/%%%\ |
− | o\\\\\o/////o\\\\\o
| + | o%%%%%o o%%%%%o o o%%%%%o o o%%%%%o%%%%%o%%%%%o |
− | / \\\\/ \//// \\\\/ \
| + | / \%%%/ \ / \%%%/ \ / \ / \%%%/ \ / \ / \%%%/ \%%%/ \%%%/ \ |
− | / \\/ \// \\/ \
| + | / \%/ \ / \%/ \ / \ / \%/ \ / \ / \%/ \%/ \%/ \ |
− | o o o o o
| + | o o o o o o o o o o o o o o o |
− | =|\ / \ /\\ / \ /|=
| + | |\ / \ /%\ / \ /| |\ / \ / \ / \ /| |\ / \ /%\ / \ /| |
− | = | \ / \ /\\\\ / \ / | =
| + | | \ / \ /%%%\ / \ / | | \ / \ / \ / \ / | | \ / \ /%%%\ / \ / | |
− | = | o o\\\\\o o | =
| + | | o o%%%%%o o | | o o o o | | o o%%%%%o o | |
− | = | |\ / \\\\/ \ /| | =
| + | | |\ / \%%%/ \ /| | | |\ / \ / \ /| | | |\ / \%%%/ \ /| | |
− | = |u | \ / \\/ \ / | v| =
| + | |u | \ / \%/ \ / | v| |u | \ / \ / \ / | v| |u | \ / \%/ \ / | v| |
− | o o--+--o o o--+--o o
| + | o--+--o o o--+--o o--+--o o o--+--o o--+--o o o--+--o |
− | //\ | \ / \ / | /\\
| + | | \ / \ / | | \ / \ / | | \ / \ / | |
− | ////\ | du \ / \ / dv | /\\\\ | + | | du \ / \ / dv | | du \ / \ / dv | | du \ / \ / dv | |
− | o/////o o-----o o-----o o\\\\\o
| + | o-----o o-----o o-----o o-----o o-----o o-----o |
− | //\/////\ \ / / \\\\/ \ | + | \ / \ / \ / |
− | ////\/////\ \ / / \\/ \
| + | \ / \ / \ / |
− | o/////o/////o o o o o
| + | o o o |
− | / \/////\//// \ = = /\\ / \ /\\
| |
− | / \/////\// \ = = /\\\\ / \ /\\\\
| |
− | o o/////o o = = o\\\\\o o\\\\\o
| |
− | / \ / \//// \ / \ = = / \\\\/ \ / \\\\/ \
| |
− | / \ / \// \ / \ = = / \\/ \ / \\/ \
| |
− | o o o o o o o o o o | |
− | |\ / \ / \ / \ /| |\ / \ /\\ / \ /| | |
− | | \ / \ / \ / \ / | | \ / \ /\\\\ / \ / | | |
− | | o o o o | | o o\\\\\o o | | |
− | | |\ / \ / \ /| | | |\ / \\\\/ \ /| | | |
− | |u | \ / \ / \ / | v| |u | \ / \\/ \ / | v| | |
− | o--+--o o o--+--o o o--+--o o o--+--o | |
− | . | \ / \ / | /X\ | \ / \ / | .
| |
− | .| du \ / \ / dv | /XXX\ | du \ / \ / dv |.
| |
− | o-----o o-----o /XXXXX\ o-----o o-----o | |
− | . \ / /XXXXXXX\ \ / .
| |
− | . \ / /XXXXXXXXX\ \ / .
| |
− | . o oXXXXXXXXXXXo o .
| |
− | . //\XXXXXXXXX/\\ .
| |
− | . ////\XXXXXXX/\\\\ .
| |
− | !e!J //////\XXXXX/\\\\\\ EJ
| |
− | . ////////\XXX/\\\\\\\\ .
| |
− | . //////////\X/\\\\\\\\\\ .
| |
− | . o///////////o\\\\\\\\\\\o .
| |
− | . |\////////// \\\\\\\\\\/| .
| |
− | . | \//////// \\\\\\\\/ | .
| |
− | . | \////// \\\\\\/ | .
| |
− | . | \//// \\\\/ | .
| |
− | .| x \// \\/ dx |.
| |
− | o-----o o-----o
| |
− | \ /
| |
− | \ / dx = (u, du)(v, dv)
| |
− | x = uv \ /
| |
− | \ / dx = uv + u dv + v du + du dv
| |
− | \ /
| |
− | o
| |
| | | |
− | Figure 56-a2. Secant Map of the Conjunction J = uv | + | EJ = J + DJ |
| + | |
| + | o-----------------------o o-----------------------o o-----------------------o |
| + | | | | | | | |
| + | | o--o o--o | | o--o o--o | | o--o o--o | |
| + | | / \ / \ | | / \ / \ | | / \ / \ | |
| + | | / o \ | | / o \ | | / o \ | |
| + | | / u / \ v \ | | / u / \ v \ | | / u / \ v \ | |
| + | | o /->-\ o | | o /->-\ o | | o / \ o | |
| + | | | o \ / o | | | | o \ / o | | | | o o | | |
| + | | | @--|->@<-|--@ | | | | @<-|--@--|->@ | | | | @<-|->@<-|->@ | | |
| + | | | o ^ o | | | | o | o | | | | o ^ o | | |
| + | | o \ | / o | | o \ | / o | | o \ | / o | |
| + | | \ \|/ / | | \ \|/ / | | \ \|/ / | |
| + | | \ | / | | \ | / | | \ | / | |
| + | | \ /|\ / | | \ /|\ / | | \ /|\ / | |
| + | | o--o | o--o | | o--o v o--o | | o--o v o--o | |
| + | | @ | | @ | | @ | |
| + | o-----------------------o o-----------------------o o-----------------------o |
| + | Figure 52. Decomposition of the Enlarged Conjunction EJ = (J, DJ) |
| </pre> | | </pre> |
| | | |
− | ===Figure 56-a3. Chord Map of the Conjunction J = uv=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 52 -- Decomposition of EJ.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 52. Decomposition of E''J'''''</font></center></p> |
| + | |
| + | ===Figure 53. Decomposition of the Differed Conjunction DJ = (dJ, ddJ)=== |
| | | |
| <pre> | | <pre> |
− | o
| + | o o o |
− | //\
| + | / \ / \ / \ |
− | ////\
| + | / \ / \ / \ |
− | o/////o
| + | o o o o o o |
− | /X\////X\
| + | /%\ /%\ /%\ /%\ / \ / \ |
− | /XXX\//XXX\
| + | /%%%\ /%%%\ /%%%\%/%%%\ / \ / \ |
− | oXXXXXoXXXXXo | + | o%%%%%o%%%%%o o%%%%%o%%%%%o o o o |
− | /\\XXX/X\XXX/\\
| + | /%\%%%/%\%%%/%\ /%\%%%/ \%%%/%\ / \ /%\ / \ |
− | /\\\\X/XXX\X/\\\\
| + | /%%%\%/%%%\%/%%%\ /%%%\%/ \%/%%%\ / \ /%%%\ / \ |
− | o\\\\\oXXXXXo\\\\\o
| + | o%%%%%o%%%%%o%%%%%o o%%%%%o o%%%%%o o o%%%%%o o |
− | / \\\\/ \XXX/ \\\\/ \
| + | / \%%%/ \%%%/ \%%%/ \ / \%%%/%\ /%\%%%/ \ / \ /%\%%%/%\ / \ |
− | / \\/ \X/ \\/ \
| + | / \%/ \%/ \%/ \ / \%/%%%\ /%%%\%/ \ / \ /%%%\%/%%%\ / \ |
− | o o o o o
| + | o o o o o o o%%%%%o%%%%%o o o o%%%%%o%%%%%o o |
− | =|\ / \ /\\ / \ /|=
| + | |\ / \ /%\ / \ /| |\ / \%%%/ \%%%/ \ /| |\ / \%%%/%\%%%/ \ /| |
− | = | \ / \ /\\\\ / \ / | =
| + | | \ / \ /%%%\ / \ / | | \ / \%/ \%/ \ / | | \ / \%/%%%\%/ \ / | |
− | = | o o\\\\\o o | =
| + | | o o%%%%%o o | | o o o o | | o o%%%%%o o | |
− | = | |\ / \\\\/ \ /| | =
| + | | |\ / \%%%/ \ /| | | |\ / \ / \ /| | | |\ / \%%%/ \ /| | |
− | = |u | \ / \\/ \ / | v| =
| + | |u | \ / \%/ \ / | v| |u | \ / \ / \ / | v| |u | \ / \%/ \ / | v| |
− | o o--+--o o o--+--o o
| + | o--+--o o o--+--o o--+--o o o--+--o o--+--o o o--+--o |
− | //\ | \ / \ / | / \
| + | | \ / \ / | | \ / \ / | | \ / \ / | |
− | ////\ | du \ / \ / dv | / \
| + | | du \ / \ / dv | | du \ / \ / dv | | du \ / \ / dv | |
− | o/////o o-----o o-----o o o
| + | o-----o o-----o o-----o o-----o o-----o o-----o |
− | //\/////\ \ / /\\ /\\
| + | \ / \ / \ / |
− | ////\/////\ \ / /\\\\ /\\\\
| + | \ / \ / \ / |
− | o/////o/////o o o\\\\\o\\\\\o
| + | o o o |
− | / \/////\//// \ = = /\\\\\/\\\\\/\\
| |
− | / \/////\// \ = = /\\\\\/\\\\\/\\\\
| |
− | o o/////o o = = o\\\\\o\\\\\o\\\\\o | |
− | / \ / \//// \ / \ = = / \\\\/ \\\\/ \\\\/ \ | |
− | / \ / \// \ / \ = = / \\/ \\/ \\/ \ | |
− | o o o o o o o o o o | |
− | |\ / \ / \ / \ /| |\ / \ /\\ / \ /| | |
− | | \ / \ / \ / \ / | | \ / \ /\\\\ / \ / | | |
− | | o o o o | | o o\\\\\o o | | |
− | | |\ / \ / \ /| | | |\ / \\\\/ \ /| | | |
− | |u | \ / \ / \ / | v| |u | \ / \\/ \ / | v| | |
− | o--+--o o o--+--o o o--+--o o o--+--o | |
− | . | \ / \ / | /X\ | \ / \ / | .
| |
− | .| du \ / \ / dv | /XXX\ | du \ / \ / dv |.
| |
− | o-----o o-----o /XXXXX\ o-----o o-----o | |
− | . \ / /XXXXXXX\ \ / .
| |
− | . \ / /XXXXXXXXX\ \ / .
| |
− | . o oXXXXXXXXXXXo o .
| |
− | . //\XXXXXXXXX/\\ .
| |
− | . ////\XXXXXXX/\\\\ . | |
− | !e!J //////\XXXXX/\\\\\\ DJ
| |
− | . ////////\XXX/\\\\\\\\ .
| |
− | . //////////\X/\\\\\\\\\\ .
| |
− | . o///////////o\\\\\\\\\\\o .
| |
− | . |\////////// \\\\\\\\\\/| .
| |
− | . | \//////// \\\\\\\\/ | .
| |
− | . | \////// \\\\\\/ | .
| |
− | . | \//// \\\\/ | .
| |
− | .| x \// \\/ dx |.
| |
− | o-----o o-----o
| |
− | \ /
| |
− | \ / dx = (u, du)(v, dv) - uv
| |
− | x = uv \ /
| |
− | \ / dx = u dv + v du + du dv
| |
− | \ /
| |
− | o
| |
| | | |
− | Figure 56-a3. Chord Map of the Conjunction J = uv
| + | DJ = dJ + ddJ |
− | </pre>
| |
| | | |
− | ===Figure 56-a4. Tangent Map of the Conjunction J = uv=== | + | o-----------------------o o-----------------------o o-----------------------o |
| + | | | | | | | |
| + | | o--o o--o | | o--o o--o | | o--o o--o | |
| + | | / \ / \ | | / \ / \ | | / \ / \ | |
| + | | / o \ | | / o \ | | / o \ | |
| + | | / u / \ v \ | | / u / \ v \ | | / u / \ v \ | |
| + | | o / \ o | | o / \ o | | o / \ o | |
| + | | | o o | | | | o o | | | | o o | | |
| + | | | @<-|->@<-|->@ | | | | @<-|->@<-|->@ | | | | @<-|-----|->@ | | |
| + | | | o ^ o | | | | ^ o o ^ | | | | o @ o | | |
| + | | o \ | / o | | o \ \ / / o | | o \ ^ / o | |
| + | | \ \|/ / | | \ --\-/-- / | | \ \|/ / | |
| + | | \ | / | | \ o / | | \ | / | |
| + | | \ /|\ / | | \ / \ / | | \ /|\ / | |
| + | | o--o v o--o | | o--o o--o | | o--o v o--o | |
| + | | @ | | @ | | @ | |
| + | o-----------------------o o-----------------------o o-----------------------o |
| + | Figure 53. Decomposition of the Differed Conjunction DJ = (dJ, ddJ) |
| + | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 53 -- Decomposition of DJ.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 53. Decomposition of D''J'''''</font></center></p> |
| + | |
| + | ===Table 54. Cast of Characters: Expansive Subtypes of Objects and Operators=== |
| | | |
| <pre> | | <pre> |
− | o
| + | Table 54. Cast of Characters: Expansive Subtypes of Objects and Operators |
− | //\
| + | o------o-------------------------o------------------o----------------------------o |
− | ////\
| + | | Item | Notation | Description | Type | |
− | o/////o
| + | o------o-------------------------o------------------o----------------------------o |
− | /X\////X\
| + | | | | | | |
− | /XXX\//XXX\
| + | | U% | = [u, v] | Source Universe | [B^2] | |
− | oXXXXXoXXXXXo
| + | | | | | | |
− | /\\XXX//\XXX/\\
| + | o------o-------------------------o------------------o----------------------------o |
− | /\\\\X////\X/\\\\ | + | | | | | | |
− | o\\\\\o/////o\\\\\o
| + | | X% | = [x] | Target Universe | [B^1] | |
− | / \\\\/\\////\\\\\/ \
| + | | | | | | |
− | / \\/\\\\//\\\\\/ \
| + | o------o-------------------------o------------------o----------------------------o |
− | o o\\\\\o\\\\\o o
| + | | | | | | |
− | =|\ / \\\\/ \\\\/ \ /|= | + | | EU% | = [u, v, du, dv] | Extended | [B^2 x D^2] | |
− | = | \ / \\/ \\/ \ / | =
| + | | | | Source Universe | | |
− | = | o o o o | =
| + | | | | | | |
− | = | |\ / \ / \ /| | =
| + | o------o-------------------------o------------------o----------------------------o |
− | = |u | \ / \ / \ / | v| =
| + | | | | | | |
− | o o--+--o o o--+--o o
| + | | EX% | = [x, dx] | Extended | [B^1 x D^1] | |
− | //\ | \ / \ / | / \
| + | | | | Target Universe | | |
− | ////\ | du \ / \ / dv | / \
| + | | | | | | |
− | o/////o o-----o o-----o o o
| + | o------o-------------------------o------------------o----------------------------o |
− | //\/////\ \ / /\\ /\\ | + | | | | | | |
− | ////\/////\ \ / /\\\\ /\\\\
| + | | J | J : U -> B | Proposition | (B^2 -> B) c [B^2] | |
− | o/////o/////o o o\\\\\o\\\\\o
| + | | | | | | |
− | / \/////\//// \ = = /\\\\\/ \\\\/\\ | + | o------o-------------------------o------------------o----------------------------o |
− | / \/////\// \ = = /\\\\\/ \\/\\\\
| + | | | | | | |
− | o o/////o o = = o\\\\\o o\\\\\o | + | | J | J : U% -> X% | Transformation, | [B^2] -> [B^1] | |
− | / \ / \//// \ / \ = = / \\\\/\\ /\\\\\/ \
| + | | | | or Mapping | | |
− | / \ / \// \ / \ = = / \\/\\\\ /\\\\\/ \
| + | | | | | | |
− | o o o o o o o\\\\\o\\\\\o o | + | o------o-------------------------o------------------o----------------------------o |
− | |\ / \ / \ / \ /| |\ / \\\\/ \\\\/ \ /| | + | | | | | | |
− | | \ / \ / \ / \ / | | \ / \\/ \\/ \ / | | + | | W | W : | Operator | | |
− | | o o o o | | o o o o | | + | | | U% -> EU%, | | [B^2] -> [B^2 x D^2], | |
− | | |\ / \ / \ /| | | |\ / \ / \ /| | | + | | | X% -> EX%, | | [B^1] -> [B^1 x D^1], | |
− | |u | \ / \ / \ / | v| |u | \ / \ / \ / | v| | + | | | (U%->X%)->(EU%->EX%), | | ([B^2] -> [B^1]) | |
− | o--+--o o o--+--o o o--+--o o o--+--o | + | | | for each W among: | | -> | |
− | . | \ / \ / | /X\ | \ / \ / | . | + | | | e!, !h!, E, D, d | | ([B^2 x D^2]->[B^1 x D^1]) | |
− | .| du \ / \ / dv | /XXX\ | du \ / \ / dv |. | + | | | | | | |
− | o-----o o-----o /XXXXX\ o-----o o-----o
| + | o------o-------------------------o------------------o----------------------------o |
− | . \ / /XXXXXXX\ \ / .
| + | | | | | |
− | . \ / /XXXXXXXXX\ \ / . | + | | !e! | | Tacit Extension Operator !e! | |
− | . o oXXXXXXXXXXXo o .
| + | | !h! | | Trope Extension Operator !h! | |
− | . //\XXXXXXXXX/\\ .
| + | | E | | Enlargement Operator E | |
− | . ////\XXXXXXX/\\\\ . | + | | D | | Difference Operator D | |
− | !e!J //////\XXXXX/\\\\\\ dJ
| + | | d | | Differential Operator d | |
− | . ////////\XXX/\\\\\\\\ .
| + | | | | | |
− | . //////////\X/\\\\\\\\\\ .
| + | o------o-------------------------o------------------o----------------------------o |
− | . o///////////o\\\\\\\\\\\o .
| + | | | | | | |
− | . |\////////// \\\\\\\\\\/| .
| + | | $W$ | $W$ : | Operator | | |
− | . | \//////// \\\\\\\\/ | .
| + | | | U% -> $T$U% = EU%, | | [B^2] -> [B^2 x D^2], | |
− | . | \////// \\\\\\/ | .
| + | | | X% -> $T$X% = EX%, | | [B^1] -> [B^1 x D^1], | |
− | . | \//// \\\\/ | .
| + | | | (U%->X%)->($T$U%->$T$X%)| | ([B^2] -> [B^1]) | |
− | .| x \// \\/ dx |. | + | | | for each $W$ among: | | -> | |
− | o-----o o-----o
| + | | | $e$, $E$, $D$, $T$ | | ([B^2 x D^2]->[B^1 x D^1]) | |
− | \ /
| + | | | | | | |
− | \ /
| + | o------o-------------------------o------------------o----------------------------o |
− | x = uv \ / dx = u dv + v du
| + | | | | | |
− | \ /
| + | | $e$ | | Radius Operator $e$ = <!e!, !h!> | |
− | \ /
| + | | $E$ | | Secant Operator $E$ = <!e!, E > | |
− | o
| + | | $D$ | | Chord Operator $D$ = <!e!, D > | |
− | | + | | $T$ | | Tangent Functor $T$ = <!e!, d > | |
− | Figure 56-a4. Tangent Map of the Conjunction J = uv
| + | | | | | |
| + | o------o-------------------------o-----------------------------------------------o |
| </pre> | | </pre> |
| | | |
− | ===Figure 56-b1. Radius Map of the Conjunction J = uv=== | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:left; width:96%" |
− | | + | |+ '''Table 54. Cast of Characters: Expansive Subtypes of Objects and Operators''' |
− | <pre>
| + | |- style="background:paleturquoise" |
− | o-----------------------o
| + | ! Item |
− | | | | + | ! Notation |
− | | | | + | ! Description |
− | | | | + | ! Type |
− | | o--o o--o | | + | |- |
− | | / \ / \ | | + | | ''U''<sup> •</sup> |
− | | / o \ | | + | | = [''u'', ''v''] |
− | | / du / \ dv \ | | + | | Source Universe |
− | | o / \ o | | + | | ['''B'''<sup>2</sup>] |
− | | | o o | | | + | |- |
− | | | | | | | | + | | ''X''<sup> •</sup> |
− | | | o o | | | + | | = [''x''] |
− | | o \ / o | | + | | Target Universe |
− | | \ \ / / | | + | | ['''B'''<sup>1</sup>] |
− | | \ o / | | + | |- |
− | | \ / \ / | | + | | E''U''<sup> •</sup> |
− | | o--o o--o | | + | | = [''u'', ''v'', d''u'', d''v''] |
− | | | | + | | Extended Source Universe |
− | | | | + | | ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] |
− | | | | + | |- |
− | o-----------------------@
| + | | E''X''<sup> •</sup> |
− | \
| + | | = [''x'', d''x''] |
− | o-----------------------o \
| + | | Extended Target Universe |
− | | | \ | + | | ['''B'''<sup>1</sup> × '''D'''<sup>1</sup>] |
− | | | \ | + | |- |
− | | | \ | + | | ''J'' |
− | | o--o o--o | \ | + | | ''J'' : ''U'' → '''B''' |
− | | / \ / \ | \ | + | | Proposition |
− | | / o \ | \ | + | | ('''B'''<sup>2</sup> → '''B''') ∈ ['''B'''<sup>2</sup>] |
− | | / du / \ dv \ | \ | + | |- |
− | | o / \ o | \ | + | | ''J'' |
− | | | o o | @ \ | + | | ''J'' : ''U''<sup> •</sup> → ''X''<sup> •</sup> |
− | | | | | | |\ \ | + | | Transformation, or Mapping |
− | | | o o | | \ \ | + | | ['''B'''<sup>2</sup>] → ['''B'''<sup>1</sup>] |
− | | o \ / o | \ \ | + | |- |
− | | \ \ / / | \ \ | + | | valign="top" | |
− | | \ o / | \ \ | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | \ / \ / | \ \ | + | | W |
− | | o--o o--o | \ \ | + | |} |
− | | | \ \ | + | | valign="top" | |
− | | | \ \ | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | | \ \ | + | | W : |
− | o-----------------------o \ \
| + | |- |
− | \ \
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , |
− | o-----------------------@ o--------\----------\---o o-----------------------o
| + | |- |
− | | |\ | \ \ | |```````````````````````| | + | | ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
− | | | \ | \ @ | |```````````````````````| | + | |- |
− | | | \| \ | |```````````````````````| | + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) |
− | | o--o o--o | \ o--o \o--o | |``````o--o```o--o``````| | + | |- |
− | | / \ / \ | |\ / \ /\ \ | |`````/````\`/````\`````| | + | | → |
− | | / o \ | | \ / o @ \ | |````/``````o``````\````| | + | |- |
− | | / du / \ dv \ | | \/ du /`\ dv \ | |```/``du``/`\``dv``\```| | + | | (E''U''<sup> •</sup> → E''X''<sup> •</sup>) , |
− | | o / \ o | | o\ /```\ o | |``o``````/```\``````o``| | + | |- |
− | | | o o | | | | \ o`````o | | |``|`````o`````o`````|``| | + | | for each W in the set: |
− | | | | | | | | | @ |``@--|-----|------@``|`````|`````|`````|``| | + | |- |
− | | | o o | | | | o`````o | | |``|`````o`````o`````|``| | + | | {<math>\epsilon</math>, <math>\eta</math>, E, D, d} |
− | | o \ / o | | o \```/ o | |``o``````\```/``````o``| | + | |} |
− | | \ \ / / | | \ \`/ / | |```\``````\`/``````/```| | + | | valign="top" | |
− | | \ o / | | \ o / | |````\``````o``````/````| | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | \ / \ / | | \ / \ / | |`````\````/`\````/`````| | + | | Operator |
− | | o--o o--o | | o--o o--o | |``````o--o```o--o``````| | + | |} |
− | | | | | |```````````````````````| | + | | valign="top" | |
− | | | | | |```````````````````````| | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100" |
− | | | | | |```````````````````````| | + | | |
− | o-----------------------o o-----------------------o o-----------------------o
| + | |- |
− | \ / \ / \ /
| + | | ['''B'''<sup>2</sup>] → ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] , |
− | \ !h!J / \ J / \ !h!J /
| + | |- |
− | \ / \ / \ /
| + | | ['''B'''<sup>1</sup>] → ['''B'''<sup>1</sup> × '''D'''<sup>1</sup>] , |
− | \ / o----------\---------/----------o \ /
| + | |- |
− | \ / | \ / | \ /
| + | | (['''B'''<sup>2</sup>] → ['''B'''<sup>1</sup>]) |
− | \ / | \ / | \ /
| + | |- |
− | \ / | o-----o-----o | \ /
| + | | → |
− | \ / | /`````````````\ | \ /
| + | |- |
− | \ / | /```````````````\ | \ /
| + | | (['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''B'''<sup>1</sup> × '''D'''<sup>1</sup>]) |
− | o------\---/------o | /`````````````````\ | o------\---/------o
| + | |- |
− | | \ / | | /```````````````````\ | | \ / |
| + | | |
− | | o--o--o | | /`````````````````````\ | | o--o--o |
| + | |- |
− | | /```````\ | | o```````````````````````o | | /```````\ |
| + | | |
− | | /`````````\ | | |```````````````````````| | | /`````````\ |
| + | |} |
− | | o```````````o | | |```````````````````````| | | o```````````o |
| + | |- |
− | | |````dx`````| @----@ |```````````x`````@-----|------@ |``` dx ````| |
| + | | |
− | | o```````````o | | |```````````````````````| | | o```````````o |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | \`````````/ | | |```````````````````````| | | \`````````/ |
| + | | <math>\epsilon</math> |
− | | \```````/ | | o```````````````````````o | | \```````/ |
| + | |- |
− | | o-----o | | \`````````````````````/ | | o-----o |
| + | | <math>\eta</math> |
− | | | | \```````````````````/ | | |
| + | |- |
− | o-----------------o | \`````````````````/ | o-----------------o
| + | | E |
− | | \```````````````/ |
| + | |- |
− | | \`````````````/ |
| + | | D |
− | | o-----------o |
| + | |- |
− | | |
| + | | d |
− | | |
| + | |} |
− | o-------------------------------o
| + | | valign="top" | |
| + | | colspan="2" | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:60%" |
| + | | Tacit Extension Operator || <math>\epsilon</math> |
| + | |- |
| + | | Trope Extension Operator || <math>\eta</math> |
| + | |- |
| + | | Enlargement Operator || E |
| + | |- |
| + | | Difference Operator || D |
| + | |- |
| + | | Differential Operator || d |
| + | |} |
| + | |- |
| + | | valign="top" | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <font face=georgia>'''W'''</font> |
| + | |} |
| + | | valign="top" | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <font face=georgia>'''W'''</font> : |
| + | |- |
| + | | ''U''<sup> •</sup> → <font face=georgia>'''T'''</font>''U''<sup> •</sup> = E''U''<sup> •</sup> , |
| + | |- |
| + | | ''X''<sup> •</sup> → <font face=georgia>'''T'''</font>''X''<sup> •</sup> = E''X''<sup> •</sup> , |
| + | |- |
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) |
| + | |- |
| + | | → |
| + | |- |
| + | | (<font face=georgia>'''T'''</font>''U''<sup> •</sup> → <font face=georgia>'''T'''</font>''X''<sup> •</sup>) , |
| + | |- |
| + | | for each <font face=georgia>'''W'''</font> in the set: |
| + | |- |
| + | | {<font face=georgia>'''e'''</font>, <font face=georgia>'''E'''</font>, <font face=georgia>'''D'''</font>, <font face=georgia>'''T'''</font>} |
| + | |} |
| + | | valign="top" | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | Operator |
| + | |} |
| + | | valign="top" | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100" |
| + | | |
| + | |- |
| + | | ['''B'''<sup>2</sup>] → ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] , |
| + | |- |
| + | | ['''B'''<sup>1</sup>] → ['''B'''<sup>1</sup> × '''D'''<sup>1</sup>] , |
| + | |- |
| + | | (['''B'''<sup>2</sup>] → ['''B'''<sup>1</sup>]) |
| + | |- |
| + | | → |
| + | |- |
| + | | (['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''B'''<sup>1</sup> × '''D'''<sup>1</sup>]) |
| + | |- |
| + | | |
| + | |- |
| + | | |
| + | |} |
| + | |- |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <font face=georgia>'''e'''</font> |
| + | |- |
| + | | <font face=georgia>'''E'''</font> |
| + | |- |
| + | | <font face=georgia>'''D'''</font> |
| + | |- |
| + | | <font face=georgia>'''T'''</font> |
| + | |} |
| + | | valign="top" | |
| + | | colspan="2" | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:60%" |
| + | | Radius Operator || <font face=georgia>'''e'''</font> = ‹<math>\epsilon</math>, <math>\eta</math>› |
| + | |- |
| + | | Secant Operator || <font face=georgia>'''E'''</font> = ‹<math>\epsilon</math>, E› |
| + | |- |
| + | | Chord Operator || <font face=georgia>'''D'''</font> = ‹<math>\epsilon</math>, D› |
| + | |- |
| + | | Tangent Functor || <font face=georgia>'''T'''</font> = ‹<math>\epsilon</math>, d› |
| + | |} |
| + | |}<br> |
| | | |
− | Figure 56-b1. Radius Map of the Conjunction J = uv
| + | ===Table 55. Synopsis of Terminology: Restrictive and Alternative Subtypes=== |
− | </pre>
| |
− | | |
− | ===Figure 56-b2. Secant Map of the Conjunction J = uv=== | |
| | | |
| <pre> | | <pre> |
− | o-----------------------o | + | Table 55. Synopsis of Terminology: Restrictive and Alternative Subtypes |
− | | |
| + | o--------------o----------------------o--------------------o----------------------o |
− | | |
| + | | | Operator | Proposition | Map | |
− | | |
| + | o--------------o----------------------o--------------------o----------------------o |
− | | o--o o--o |
| + | | | | | | |
− | | / \ / \ |
| + | | Tacit | !e! : | !e!J : | !e!J : | |
− | | / o \ |
| + | | Extension | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> B | [u,v,du,dv]->[x] | |
− | | / du /`\ dv \ |
| + | | | (U%->X%)->(EU%->X%) | B^2 x D^2 -> B | [B^2 x D^2]->[B^1] | |
− | | o /```\ o |
| + | | | | | | |
− | | | o`````o | | | + | o--------------o----------------------o--------------------o----------------------o |
− | | | |`````| | |
| + | | | | | | |
− | | | o`````o | |
| + | | Trope | !h! : | !h!J : | !h!J : | |
− | | o \```/ o |
| + | | Extension | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx] | |
− | | \ \`/ / |
| + | | | (U%->X%)->(EU%->dX%) | B^2 x D^2 -> D | [B^2 x D^2]->[D^1] | |
− | | \ o / |
| + | | | | | | |
− | | \ / \ / |
| + | o--------------o----------------------o--------------------o----------------------o |
− | | o--o o--o |
| + | | | | | | |
− | | |
| + | | Enlargement | E : | EJ : | EJ : | |
− | | |
| + | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx] | |
− | | |
| + | | | (U%->X%)->(EU%->dX%) | B^2 x D^2 -> D | [B^2 x D^2]->[D^1] | |
− | o-----------------------@
| + | | | | | | |
− | \
| + | o--------------o----------------------o--------------------o----------------------o |
− | o-----------------------o \
| + | | | | | | |
− | | | \ | + | | Difference | D : | DJ : | DJ : | |
− | | | \ | + | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx] | |
− | | | \ | + | | | (U%->X%)->(EU%->dX%) | B^2 x D^2 -> D | [B^2 x D^2]->[D^1] | |
− | | o--o o--o | \ | + | | | | | | |
− | | /````\ / \ | \ | + | o--------------o----------------------o--------------------o----------------------o |
− | | /``````o \ | \ | + | | | | | | |
− | | /``du``/ \ dv \ | \ | + | | Differential | d : | dJ : | dJ : | |
− | | o``````/ \ o | \ | + | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx] | |
− | | |`````o o | @ \
| + | | | (U%->X%)->(EU%->dX%) | B^2 x D^2 -> D | [B^2 x D^2]->[D^1] | |
− | | |`````| | | |\ \
| + | | | | | | |
− | | |`````o o | | \ \
| + | o--------------o----------------------o--------------------o----------------------o |
− | | o``````\ / o | \ \
| + | | | | | | |
− | | \``````\ / / | \ \
| + | | Remainder | r : | rJ : | rJ : | |
− | | \``````o / | \ \ | + | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx] | |
− | | \````/ \ / | \ \ | + | | | (U%->X%)->(EU%->dX%) | B^2 x D^2 -> D | [B^2 x D^2]->[D^1] | |
− | | o--o o--o | \ \ | + | | | | | | |
− | | | \ \ | + | o--------------o----------------------o--------------------o----------------------o |
− | | | \ \ | + | | | | | | |
− | | | \ \ | + | | Radius | $e$ = <!e!, !h!> : | | $e$J : | |
− | o-----------------------o \ \
| + | | Operator | U%->EU%, X%->EX%, | | [u,v,du,dv]->[x, dx] | |
− | \ \
| + | | | (U%->X%)->(EU%->EX%) | | [B^2 x D^2]->[B x D] | |
− | o-----------------------@ o--------\----------\---o o-----------------------o | + | | | | | | |
− | | |\ | \ \ | |```````````````````````| | + | o--------------o----------------------o--------------------o----------------------o |
− | | | \ | \ @ | |```````````````````````| | + | | | | | | |
− | | | \| \ | |```````````````````````| | + | | Secant | $E$ = <!e!, E> : | | $E$J : | |
− | | o--o o--o | \ o--o \o--o | |``````o--o```o--o``````| | + | | Operator | U%->EU%, X%->EX%, | | [u,v,du,dv]->[x, dx] | |
− | | / \ /````\ | |\ / \ /\ \ | |`````/ \`/ \`````|
| + | | | (U%->X%)->(EU%->EX%) | | [B^2 x D^2]->[B x D] | |
− | | / o``````\ | | \ / o @ \ | |````/ o \````|
| + | | | | | | |
− | | / du / \``dv``\ | | \/ du /`\ dv \ | |```/ du / \ dv \```| | + | o--------------o----------------------o--------------------o----------------------o |
− | | o / \``````o | | o\ /```\ o | |``o / \ o``| | + | | | | | | |
− | | | o o`````| | | | \ o`````o | | |``| o o |``| | + | | Chord | $D$ = <!e!, D> : | | $D$J : | |
− | | | | |`````| | | | @ |``@--|-----|------@``| | | |``| | + | | Operator | U%->EU%, X%->EX%, | | [u,v,du,dv]->[x, dx] | |
− | | | o o`````| | | | o`````o | | |``| o o |``|
| + | | | (U%->X%)->(EU%->EX%) | | [B^2 x D^2]->[B x D] | |
− | | o \ /``````o | | o \```/ o | |``o \ / o``| | + | | | | | | |
− | | \ \ /``````/ | | \ \`/ / | |```\ \ / /```| | + | o--------------o----------------------o--------------------o----------------------o |
− | | \ o``````/ | | \ o / | |````\ o /````| | + | | | | | | |
− | | \ / \````/ | | \ / \ / | |`````\ /`\ /`````| | + | | Tangent | $T$ = <!e!, d> : | dJ : | $T$J : | |
− | | o--o o--o | | o--o o--o | |``````o--o```o--o``````|
| + | | Functor | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[x, dx] | |
− | | | | | |```````````````````````|
| + | | | (U%->X%)->(EU%->EX%) | B^2 x D^2 -> D | [B^2 x D^2]->[B x D] | |
− | | | | | |```````````````````````|
| + | | | | | | |
− | | | | | |```````````````````````|
| + | o--------------o----------------------o--------------------o----------------------o |
− | o-----------------------o o-----------------------o o-----------------------o
| |
− | \ / \ / \ /
| |
− | \ EJ / \ J / \ EJ /
| |
− | \ / \ / \ /
| |
− | \ / o----------\---------/----------o \ /
| |
− | \ / | \ / | \ /
| |
− | \ / | \ / | \ /
| |
− | \ / | o-----o-----o | \ /
| |
− | \ / | /`````````````\ | \ /
| |
− | \ / | /```````````````\ | \ /
| |
− | o------\---/------o | /`````````````````\ | o------\---/------o
| |
− | | \ / | | /```````````````````\ | | \ / |
| |
− | | o--o--o | | /`````````````````````\ | | o--o--o |
| |
− | | /```````\ | | o```````````````````````o | | /```````\ |
| |
− | | /`````````\ | | |```````````````````````| | | /`````````\ |
| |
− | | o```````````o | | |```````````````````````| | | o```````````o |
| |
− | | |````dx`````| @----@ |```````````x`````@-----|------@ |``` dx ````| |
| |
− | | o```````````o | | |```````````````````````| | | o```````````o |
| |
− | | \`````````/ | | |```````````````````````| | | \`````````/ |
| |
− | | \```````/ | | o```````````````````````o | | \```````/ |
| |
− | | o-----o | | \`````````````````````/ | | o-----o |
| |
− | | | | \```````````````````/ | | |
| |
− | o-----------------o | \`````````````````/ | o-----------------o
| |
− | | \```````````````/ |
| |
− | | \`````````````/ |
| |
− | | o-----------o |
| |
− | | |
| |
− | | |
| |
− | o-------------------------------o
| |
− | | |
− | Figure 56-b2. Secant Map of the Conjunction J = uv
| |
| </pre> | | </pre> |
| | | |
− | ===Figure 56-b3. Chord Map of the Conjunction J = uv=== | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:left; width:96%" |
− | | + | |+ '''Table 55. Synopsis of Terminology: Restrictive and Alternative Subtypes''' |
− | <pre>
| + | |- style="background:paleturquoise" |
− | o-----------------------o
| + | ! |
− | | | | + | ! Operator |
− | | |
| + | ! Proposition |
− | | | | + | ! Map |
− | | o--o o--o | | + | |- |
− | | / \ / \ |
| + | | |
− | | / o \ | | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | / du /`\ dv \ | | + | | Tacit |
− | | o /```\ o | | + | |- |
− | | | o`````o | | | + | | Extension |
− | | | |`````| | | | + | |} |
− | | | o`````o | | | + | | |
− | | o \```/ o | | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | \ \`/ / | | + | | <math>\epsilon</math> : |
− | | \ o / | | + | |- |
− | | \ / \ / | | + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
− | | o--o o--o | | + | |- |
− | | | | + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → ''X''<sup> •</sup>) |
− | | | | + | |} |
− | | | | + | | |
− | o-----------------------@
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | \
| + | | <math>\epsilon</math>''J'' : |
− | o-----------------------o \
| + | |- |
− | | | \ | + | | 〈''u'', ''v'', d''u'', d''v''〉 → '''B''' |
− | | | \
| + | |- |
− | | | \ | + | | '''B'''<sup>2</sup> × '''D'''<sup>2</sup> → '''B''' |
− | | o--o o--o | \
| + | |} |
− | | /````\ / \ | \ | + | | |
− | | /``````o \ | \ | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | /``du``/ \ dv \ | \ | + | | <math>\epsilon</math>''J'' : |
− | | o``````/ \ o | \ | + | |- |
− | | |`````o o | @ \ | + | | [''u'', ''v'', d''u'', d''v''] → [''x''] |
− | | |`````| | | |\ \ | + | |- |
− | | |`````o o | | \ \ | + | | ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''B'''<sup>1</sup>] |
− | | o``````\ / o | \ \ | + | |} |
− | | \``````\ / / | \ \ | + | |- |
− | | \``````o / | \ \ | + | | |
− | | \````/ \ / | \ \ | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | o--o o--o | \ \ | + | | Trope |
− | | | \ \ | + | |- |
− | | | \ \ | + | | Extension |
− | | | \ \ | + | |} |
− | o-----------------------o \ \
| + | | |
− | \ \
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | o-----------------------@ o--------\----------\---o o-----------------------o
| + | | <math>\eta</math> : |
− | | |\ | \ \ | | | | + | |- |
− | | | \ | \ @ | | | | + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
− | | | \| \ | | | | + | |- |
− | | o--o o--o | \ o--o \o--o | | o--o o--o | | + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>) |
− | | / \ /````\ | |\ / \ /\ \ | | /````\ /````\ | | + | |} |
− | | / o``````\ | | \ / o @ \ | | /``````o``````\ | | + | | |
− | | / du / \``dv``\ | | \/ du /`\ dv \ | | /``du``/`\``dv``\ | | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | o / \``````o | | o\ /```\ o | | o``````/```\``````o | | + | | <math>\eta</math>''J'' : |
− | | | o o`````| | | | \ o`````o | | | |`````o`````o`````| | | + | |- |
− | | | | |`````| | | | @ |``@--|-----|------@ |`````|`````|`````| | | + | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' |
− | | | o o`````| | | | o`````o | | | |`````o`````o`````| | | + | |- |
− | | o \ /``````o | | o \```/ o | | o``````\```/``````o | | + | | '''B'''<sup>2</sup> × '''D'''<sup>2</sup> → '''D''' |
− | | \ \ /``````/ | | \ \`/ / | | \``````\`/``````/ | | + | |} |
− | | \ o``````/ | | \ o / | | \``````o``````/ | | + | | |
− | | \ / \````/ | | \ / \ / | | \````/ \````/ | | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | o--o o--o | | o--o o--o | | o--o o--o | | + | | <math>\eta</math>''J'' : |
− | | | | | | | | + | |- |
− | | | | | | | | + | | [''u'', ''v'', d''u'', d''v''] → [d''x''] |
− | | | | | | | | + | |- |
− | o-----------------------o o-----------------------o o-----------------------o
| + | | ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''D'''<sup>1</sup>] |
− | \ / \ / \ /
| + | |} |
− | \ DJ / \ J / \ DJ /
| + | |- |
− | \ / \ / \ /
| + | | |
− | \ / o----------\---------/----------o \ /
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | \ / | \ / | \ /
| + | | Enlargement |
− | \ / | \ / | \ /
| + | |- |
− | \ / | o-----o-----o | \ /
| + | | Operator |
− | \ / | /`````````````\ | \ /
| + | |} |
− | \ / | /```````````````\ | \ /
| + | | |
− | o------\---/------o | /`````````````````\ | o------\---/------o
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | \ / | | /```````````````````\ | | \ / |
| + | | E : |
− | | o--o--o | | /`````````````````````\ | | o--o--o |
| + | |- |
− | | /```````\ | | o```````````````````````o | | /```````\ |
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
− | | /`````````\ | | |```````````````````````| | | /`````````\ |
| + | |- |
− | | o```````````o | | |```````````````````````| | | o```````````o |
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>) |
− | | |````dx`````| @----@ |```````````x`````@-----|------@ |``` dx ````| |
| + | |} |
− | | o```````````o | | |```````````````````````| | | o```````````o | | + | | |
− | | \`````````/ | | |```````````````````````| | | \`````````/ |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | \```````/ | | o```````````````````````o | | \```````/ |
| + | | E''J'' : |
− | | o-----o | | \`````````````````````/ | | o-----o |
| + | |- |
− | | | | \```````````````````/ | | |
| + | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' |
− | o-----------------o | \`````````````````/ | o-----------------o
| + | |- |
− | | \```````````````/ |
| + | | '''B'''<sup>2</sup> × '''D'''<sup>2</sup> → '''D''' |
− | | \`````````````/ |
| + | |} |
− | | o-----------o |
| + | | |
− | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | |
| + | | E''J'' : |
− | o-------------------------------o
| + | |- |
− | | + | | [''u'', ''v'', d''u'', d''v''] → [d''x''] |
− | Figure 56-b3. Chord Map of the Conjunction J = uv
| + | |- |
− | </pre>
| + | | ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''D'''<sup>1</sup>] |
− | | + | |} |
− | ===Figure 56-b4. Tangent Map of the Conjunction J = uv===
| + | |- |
− | | + | | |
− | <pre>
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | o-----------------------o | + | | Difference |
− | | |
| + | |- |
− | | |
| + | | Operator |
− | | |
| + | |} |
− | | o--o o--o |
| + | | |
− | | / \ / \ |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | / o \ |
| + | | D : |
− | | / du / \ dv \ |
| + | |- |
− | | o / \ o |
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
− | | | o o | |
| + | |- |
− | | | | | | |
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>) |
− | | | o o | |
| + | |} |
− | | o \ / o | | + | | |
− | | \ \ / / | | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | \ o / | | + | | D''J'' : |
− | | \ / \ / | | + | |- |
− | | o--o o--o | | + | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' |
− | | |
| + | |- |
− | | | | + | | '''B'''<sup>2</sup> × '''D'''<sup>2</sup> → '''D''' |
− | | | | + | |} |
− | o-----------------------@
| + | | |
− | \
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | o-----------------------o \ | + | | D''J'' : |
− | | | \ | + | |- |
− | | | \
| + | | [''u'', ''v'', d''u'', d''v''] → [d''x''] |
− | | | \ | + | |- |
− | | o--o o--o | \ | + | | ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''D'''<sup>1</sup>] |
− | | /````\ / \ | \
| + | |} |
− | | /``````o \ | \ | + | |- |
− | | /``du``/`\ dv \ | \ | + | | |
− | | o``````/```\ o | \
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | |`````o`````o | @ \
| + | | Differential |
− | | |`````|`````| | |\ \
| + | |- |
− | | |`````o`````o | | \ \
| + | | Operator |
− | | o``````\```/ o | \ \
| + | |} |
− | | \``````\`/ / | \ \
| + | | |
− | | \``````o / | \ \
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | \````/ \ / | \ \
| + | | d : |
− | | o--o o--o | \ \
| + | |- |
− | | | \ \
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
− | | | \ \
| + | |- |
− | | | \ \
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>) |
− | o-----------------------o \ \
| + | |} |
− | \ \
| + | | |
− | o-----------------------@ o--------\----------\---o o-----------------------o
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | |\ | \ \ | | |
| + | | d''J'' : |
− | | | \ | \ @ | | |
| + | |- |
− | | | \| \ | | |
| + | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' |
− | | o--o o--o | \ o--o \o--o | | o--o o--o | | + | |- |
− | | / \ /````\ | |\ / \ /\ \ | | /````\ /````\ |
| + | | '''B'''<sup>2</sup> × '''D'''<sup>2</sup> → '''D''' |
− | | / o``````\ | | \ / o @ \ | | /``````o``````\ |
| + | |} |
− | | / du /`\``dv``\ | | \/ du /`\ dv \ | | /``du``/ \``dv``\ |
| + | | |
− | | o /```\``````o | | o\ /```\ o | | o``````/ \``````o |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | | o`````o`````| | | | \ o`````o | | | |`````o o`````| |
| + | | d''J'' : |
− | | | |`````|`````| | | | @ |``@--|-----|------@ |`````| |`````| |
| + | |- |
− | | | o`````o`````| | | | o`````o | | | |`````o o`````| |
| + | | [''u'', ''v'', d''u'', d''v''] → [d''x''] |
− | | o \```/``````o | | o \```/ o | | o``````\ /``````o |
| + | |- |
− | | \ \`/``````/ | | \ \`/ / | | \``````\ /``````/ |
| + | | ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''D'''<sup>1</sup>] |
− | | \ o``````/ | | \ o / | | \``````o``````/ |
| + | |} |
− | | \ / \````/ | | \ / \ / | | \````/ \````/ |
| + | |- |
− | | o--o o--o | | o--o o--o | | o--o o--o |
| + | | |
− | | | | | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | | | | | |
| + | | Remainder |
− | | | | | | |
| + | |- |
− | o-----------------------o o-----------------------o o-----------------------o
| + | | Operator |
− | \ / \ / \ /
| + | |} |
− | \ dJ / \ J / \ dJ /
| + | | |
− | \ / \ / \ /
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | \ / o----------\---------/----------o \ /
| + | | r : |
− | \ / | \ / | \ /
| + | |- |
− | \ / | \ / | \ /
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
− | \ / | o-----o-----o | \ /
| + | |- |
− | \ / | /`````````````\ | \ /
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>) |
− | \ / | /```````````````\ | \ /
| + | |} |
− | o------\---/------o | /`````````````````\ | o------\---/------o
| + | | |
− | | \ / | | /```````````````````\ | | \ / |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | o--o--o | | /`````````````````````\ | | o--o--o |
| + | | r''J'' : |
− | | /```````\ | | o```````````````````````o | | /```````\ |
| + | |- |
− | | /`````````\ | | |```````````````````````| | | /`````````\ |
| + | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' |
− | | o```````````o | | |```````````````````````| | | o```````````o |
| + | |- |
− | | |````dx`````| @----@ |```````````x`````@-----|------@ |``` dx ````| |
| + | | '''B'''<sup>2</sup> × '''D'''<sup>2</sup> → '''D''' |
− | | o```````````o | | |```````````````````````| | | o```````````o |
| + | |} |
− | | \`````````/ | | |```````````````````````| | | \`````````/ |
| + | | |
− | | \```````/ | | o```````````````````````o | | \```````/ |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | o-----o | | \`````````````````````/ | | o-----o |
| + | | r''J'' : |
− | | | | \```````````````````/ | | |
| + | |- |
− | o-----------------o | \`````````````````/ | o-----------------o
| + | | [''u'', ''v'', d''u'', d''v''] → [d''x''] |
− | | \```````````````/ |
| + | |- |
− | | \`````````````/ |
| + | | ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''D'''<sup>1</sup>] |
− | | o-----------o |
| + | |} |
− | | |
| + | |- |
− | | |
| + | | |
− | o-------------------------------o
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | + | | Radius |
− | Figure 56-b4. Tangent Map of the Conjunction J = uv
| + | |- |
− | </pre>
| + | | Operator |
− | | + | |} |
− | ===Figure 57-1. Radius Operator Diagram for the Conjunction J = uv===
| + | | |
− | | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | <pre>
| + | | <font face=georgia>'''e'''</font> = ‹<math>\epsilon</math>, <math>\eta</math>› : |
− | o o
| + | |- |
− | //\ /X\
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
− | ////\ /XXX\
| + | |- |
− | //////\ oXXXXXo
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>) |
− | ////////\ /X\XXX/X\
| + | |} |
− | //////////\ /XXX\X/XXX\
| + | | |
− | o///////////o oXXXXXoXXXXXo
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | / \////////// \ / \XXX/X\XXX/ \
| + | | |
− | / \//////// \ / \X/XXX\X/ \
| + | |- |
− | / \////// \ o oXXXXXo o
| + | | |
− | / \//// \ / \ / \XXX/ \ / \
| + | |- |
− | / \// \ / \ / \X/ \ / \
| + | | |
− | o o o o o o o o
| + | |} |
− | |\ / \ /| |\ / \ / \ / \ /|
| + | | |
− | | \ / \ / | | \ / \ / \ / \ / |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | \ / \ / | | o o o o |
| + | | <font face=georgia>'''e'''</font>''J'' : |
− | | \ / \ / | | |\ / \ / \ /| |
| + | |- |
− | | u \ / \ / v | |u | \ / \ / \ / | v|
| + | | [''u'', ''v'', d''u'', d''v''] → [''x'', d''x''] |
− | o-----o o-----o o--+--o o o--+--o
| + | |- |
− | \ / | \ / \ / |
| + | | ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''B''' × '''D'''] |
− | \ / | du \ / \ / dv |
| + | |} |
− | \ / o-----o o-----o
| + | |- |
− | \ / \ /
| + | | |
− | \ / \ /
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | o o
| + | | Secant |
− | U% $e$ $E$U%
| + | |- |
− | o------------------>o
| + | | Operator |
− | | |
| + | |} |
− | | |
| + | | |
− | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | |
| + | | <font face=georgia>'''E'''</font> = ‹<math>\epsilon</math>, E› : |
− | J | | $e$J
| + | |- |
− | | |
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
− | | |
| + | |- |
− | | |
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>) |
− | v v
| + | |} |
− | o------------------>o
| + | | |
− | X% $e$ $E$X%
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | o o
| + | | |
− | //\ /X\
| + | |- |
− | ////\ /XXX\
| + | | |
− | //////\ /XXXXX\
| + | |- |
− | ////////\ /XXXXXXX\
| + | | |
− | //////////\ /XXXXXXXXX\
| + | |} |
− | ////////////o oXXXXXXXXXXXo
| + | | |
− | ///////////// \ //\XXXXXXXXX/\\
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | ///////////// \ ////\XXXXXXX/\\\\
| + | | <font face=georgia>'''E'''</font>''J'' : |
− | ///////////// \ //////\XXXXX/\\\\\\
| + | |- |
− | ///////////// \ ////////\XXX/\\\\\\\\
| + | | [''u'', ''v'', d''u'', d''v''] → [''x'', d''x''] |
− | ///////////// \ //////////\X/\\\\\\\\\\
| + | |- |
− | o//////////// o o///////////o\\\\\\\\\\\o
| + | | ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''B''' × '''D'''] |
− | |\////////// / |\////////// \\\\\\\\\\/|
| + | |} |
− | | \//////// / | \//////// \\\\\\\\/ |
| + | |- |
− | | \////// / | \////// \\\\\\/ |
| + | | |
− | | \//// / | \//// \\\\/ |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | x \// / | x \// \\/ dx |
| + | | Chord |
− | o-----o / o-----o o-----o
| + | |- |
− | \ / \ /
| + | | Operator |
− | \ / \ /
| + | |} |
− | \ / \ /
| + | | |
− | \ / \ /
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | \ / \ /
| + | | <font face=georgia>'''D'''</font> = ‹<math>\epsilon</math>, D› : |
− | o o
| + | |- |
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
| + | |- |
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>) |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | |
| + | |- |
| + | | |
| + | |- |
| + | | |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <font face=georgia>'''D'''</font>''J'' : |
| + | |- |
| + | | [''u'', ''v'', d''u'', d''v''] → [''x'', d''x''] |
| + | |- |
| + | | ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''B''' × '''D'''] |
| + | |} |
| + | |- |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | Tangent |
| + | |- |
| + | | Functor |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <font face=georgia>'''T'''</font> = ‹<math>\epsilon</math>, d› : |
| + | |- |
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
| + | |- |
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>) |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | d''J'' : |
| + | |- |
| + | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' |
| + | |- |
| + | | '''B'''<sup>2</sup> × '''D'''<sup>2</sup> → '''D''' |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <font face=georgia>'''T'''</font>''J'' : |
| + | |- |
| + | | [''u'', ''v'', d''u'', d''v''] → [''x'', d''x''] |
| + | |- |
| + | | ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''B''' × '''D'''] |
| + | |} |
| + | |}<br> |
| + | |
| + | ===Figure 56-a1. Radius Map of the Conjunction J = uv=== |
| + | |
| + | <pre> |
| + | o |
| + | /X\ |
| + | /XXX\ |
| + | oXXXXXo |
| + | /X\XXX/X\ |
| + | /XXX\X/XXX\ |
| + | oXXXXXoXXXXXo |
| + | / \XXX/X\XXX/ \ |
| + | / \X/XXX\X/ \ |
| + | o oXXXXXo o |
| + | / \ / \XXX/ \ / \ |
| + | / \ / \X/ \ / \ |
| + | o o o o o |
| + | =|\ / \ / \ / \ /|= |
| + | = | \ / \ / \ / \ / | = |
| + | = | o o o o | = |
| + | = | |\ / \ / \ /| | = |
| + | = |u | \ / \ / \ / | v| = |
| + | o o--+--o o o--+--o o |
| + | //\ | \ / \ / | /\\ |
| + | ////\ | du \ / \ / dv | /\\\\ |
| + | o/////o o-----o o-----o o\\\\\o |
| + | //\/////\ \ / /\\\\\/\\ |
| + | ////\/////\ \ / /\\\\\/\\\\ |
| + | o/////o/////o o o\\\\\o\\\\\o |
| + | / \/////\//// \ = = / \\\\/\\\\\/ \ |
| + | / \/////\// \ = = / \\/\\\\\/ \ |
| + | o o/////o o = = o o\\\\\o o |
| + | / \ / \//// \ / \ = = / \ / \\\\/ \ / \ |
| + | / \ / \// \ / \ = = / \ / \\/ \ / \ |
| + | o o o o o o o o o o |
| + | |\ / \ / \ / \ /| |\ / \ / \ / \ /| |
| + | | \ / \ / \ / \ / | | \ / \ / \ / \ / | |
| + | | o o o o | | o o o o | |
| + | | |\ / \ / \ /| | | |\ / \ / \ /| | |
| + | |u | \ / \ / \ / | v| |u | \ / \ / \ / | v| |
| + | o--+--o o o--+--o o o--+--o o o--+--o |
| + | . | \ / \ / | /X\ | \ / \ / | . |
| + | .| du \ / \ / dv | /XXX\ | du \ / \ / dv |. |
| + | o-----o o-----o /XXXXX\ o-----o o-----o |
| + | . \ / /XXXXXXX\ \ / . |
| + | . \ / /XXXXXXXXX\ \ / . |
| + | . o oXXXXXXXXXXXo o . |
| + | . //\XXXXXXXXX/\\ . |
| + | . ////\XXXXXXX/\\\\ . |
| + | !e!J //////\XXXXX/\\\\\\ !h!J |
| + | . ////////\XXX/\\\\\\\\ . |
| + | . //////////\X/\\\\\\\\\\ . |
| + | . o///////////o\\\\\\\\\\\o . |
| + | . |\////////// \\\\\\\\\\/| . |
| + | . | \//////// \\\\\\\\/ | . |
| + | . | \////// \\\\\\/ | . |
| + | . | \//// \\\\/ | . |
| + | .| x \// \\/ dx |. |
| + | o-----o o-----o |
| + | \ / |
| + | \ / |
| + | x = uv \ / dx = uv |
| + | \ / |
| + | \ / |
| + | o |
| | | |
− | Figure 57-1. Radius Operator Diagram for the Conjunction J = uv | + | Figure 56-a1. Radius Map of the Conjunction J = uv |
| </pre> | | </pre> |
| | | |
− | ===Figure 57-2. Secant Operator Diagram for the Conjunction J = uv=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 56-a1 -- Radius Map of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 56-a1. Radius Map of the Conjunction ''J'' = ''uv'''''</font></center></p> |
| + | |
| + | ===Figure 56-a2. Secant Map of the Conjunction J = uv=== |
| | | |
| <pre> | | <pre> |
− | o o
| + | o |
− | //\ /X\
| + | /X\ |
− | ////\ /XXX\
| + | /XXX\ |
− | //////\ oXXXXXo
| + | oXXXXXo |
− | ////////\ //\XXX//\
| + | //\XXX//\ |
− | //////////\ ////\X////\
| + | ////\X////\ |
− | o///////////o o/////o/////o
| + | o/////o/////o |
− | / \////////// \ /\\/////\////\\ | + | /\\/////\////\\ |
− | / \//////// \ /\\\\/////\//\\\\ | + | /\\\\/////\//\\\\ |
− | / \////// \ o\\\\\o/////o\\\\\o | + | o\\\\\o/////o\\\\\o |
− | / \//// \ / \\\\/ \//// \\\\/ \ | + | / \\\\/ \//// \\\\/ \ |
− | / \// \ / \\/ \// \\/ \ | + | / \\/ \// \\/ \ |
− | o o o o o o o o | + | o o o o o |
− | |\ / \ /| |\ / \ /\\ / \ /| | + | =|\ / \ /\\ / \ /|= |
− | | \ / \ / | | \ / \ /\\\\ / \ / | | + | = | \ / \ /\\\\ / \ / | = |
− | | \ / \ / | | o o\\\\\o o | | + | = | o o\\\\\o o | = |
− | | \ / \ / | | |\ / \\\\/ \ /| | | + | = | |\ / \\\\/ \ /| | = |
− | | u \ / \ / v | |u | \ / \\/ \ / | v| | + | = |u | \ / \\/ \ / | v| = |
− | o-----o o-----o o--+--o o o--+--o | + | o o--+--o o o--+--o o |
− | \ / | \ / \ / |
| + | //\ | \ / \ / | /\\ |
− | \ / | du \ / \ / dv |
| + | ////\ | du \ / \ / dv | /\\\\ |
− | \ / o-----o o-----o
| + | o/////o o-----o o-----o o\\\\\o |
− | \ / \ /
| + | //\/////\ \ / / \\\\/ \ |
− | \ / \ /
| + | ////\/////\ \ / / \\/ \ |
− | o o
| + | o/////o/////o o o o o |
− | U% $E$ $E$U%
| + | / \/////\//// \ = = /\\ / \ /\\ |
− | o------------------>o
| + | / \/////\// \ = = /\\\\ / \ /\\\\ |
− | | |
| + | o o/////o o = = o\\\\\o o\\\\\o |
− | | |
| + | / \ / \//// \ / \ = = / \\\\/ \ / \\\\/ \ |
− | | |
| + | / \ / \// \ / \ = = / \\/ \ / \\/ \ |
− | | |
| + | o o o o o o o o o o |
− | J | | $E$J
| + | |\ / \ / \ / \ /| |\ / \ /\\ / \ /| |
− | | |
| + | | \ / \ / \ / \ / | | \ / \ /\\\\ / \ / | |
− | | |
| + | | o o o o | | o o\\\\\o o | |
− | | |
| + | | |\ / \ / \ /| | | |\ / \\\\/ \ /| | |
− | v v
| + | |u | \ / \ / \ / | v| |u | \ / \\/ \ / | v| |
− | o------------------>o
| + | o--+--o o o--+--o o o--+--o o o--+--o |
− | X% $E$ $E$X%
| + | . | \ / \ / | /X\ | \ / \ / | . |
− | o o
| + | .| du \ / \ / dv | /XXX\ | du \ / \ / dv |. |
− | //\ /X\
| + | o-----o o-----o /XXXXX\ o-----o o-----o |
− | ////\ /XXX\ | + | . \ / /XXXXXXX\ \ / . |
− | //////\ /XXXXX\
| + | . \ / /XXXXXXXXX\ \ / . |
− | ////////\ /XXXXXXX\
| + | . o oXXXXXXXXXXXo o . |
− | //////////\ /XXXXXXXXX\
| + | . //\XXXXXXXXX/\\ . |
− | ////////////o oXXXXXXXXXXXo | + | . ////\XXXXXXX/\\\\ . |
− | ///////////// \ //\XXXXXXXXX/\\
| + | !e!J //////\XXXXX/\\\\\\ EJ |
− | ///////////// \ ////\XXXXXXX/\\\\
| + | . ////////\XXX/\\\\\\\\ . |
− | ///////////// \ //////\XXXXX/\\\\\\
| + | . //////////\X/\\\\\\\\\\ . |
− | ///////////// \ ////////\XXX/\\\\\\\\
| + | . o///////////o\\\\\\\\\\\o . |
− | ///////////// \ //////////\X/\\\\\\\\\\
| + | . |\////////// \\\\\\\\\\/| . |
− | o//////////// o o///////////o\\\\\\\\\\\o
| + | . | \//////// \\\\\\\\/ | . |
− | |\////////// / |\////////// \\\\\\\\\\/|
| + | . | \////// \\\\\\/ | . |
− | | \//////// / | \//////// \\\\\\\\/ |
| + | . | \//// \\\\/ | . |
− | | \////// / | \////// \\\\\\/ |
| + | .| x \// \\/ dx |. |
− | | \//// / | \//// \\\\/ |
| + | o-----o o-----o |
− | | x \// / | x \// \\/ dx |
| + | \ / |
− | o-----o / o-----o o-----o
| + | \ / dx = (u, du)(v, dv) |
− | \ / \ /
| + | x = uv \ / |
− | \ / \ /
| + | \ / dx = uv + u dv + v du + du dv |
− | \ / \ /
| + | \ / |
− | \ / \ /
| + | o |
− | \ / \ /
| |
− | o o
| |
| | | |
− | Figure 57-2. Secant Operator Diagram for the Conjunction J = uv | + | Figure 56-a2. Secant Map of the Conjunction J = uv |
| </pre> | | </pre> |
| | | |
− | ===Figure 57-3. Chord Operator Diagram for the Conjunction J = uv=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 56-a2 -- Secant Map of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 56-a2. Secant Map of the Conjunction ''J'' = ''uv'''''</font></center></p> |
| + | |
| + | ===Figure 56-a3. Chord Map of the Conjunction J = uv=== |
| | | |
| <pre> | | <pre> |
− | o o
| + | o |
− | //\ //\
| + | //\ |
− | ////\ ////\
| + | ////\ |
− | //////\ o/////o
| + | o/////o |
− | ////////\ /X\////X\
| + | /X\////X\ |
− | //////////\ /XXX\//XXX\ | + | /XXX\//XXX\ |
− | o///////////o oXXXXXoXXXXXo | + | oXXXXXoXXXXXo |
− | / \////////// \ /\\XXX/X\XXX/\\ | + | /\\XXX/X\XXX/\\ |
− | / \//////// \ /\\\\X/XXX\X/\\\\ | + | /\\\\X/XXX\X/\\\\ |
− | / \////// \ o\\\\\oXXXXXo\\\\\o | + | o\\\\\oXXXXXo\\\\\o |
− | / \//// \ / \\\\/ \XXX/ \\\\/ \ | + | / \\\\/ \XXX/ \\\\/ \ |
− | / \// \ / \\/ \X/ \\/ \ | + | / \\/ \X/ \\/ \ |
− | o o o o o o o o | + | o o o o o |
− | |\ / \ /| |\ / \ /\\ / \ /| | + | =|\ / \ /\\ / \ /|= |
− | | \ / \ / | | \ / \ /\\\\ / \ / | | + | = | \ / \ /\\\\ / \ / | = |
− | | \ / \ / | | o o\\\\\o o | | + | = | o o\\\\\o o | = |
− | | \ / \ / | | |\ / \\\\/ \ /| | | + | = | |\ / \\\\/ \ /| | = |
− | | u \ / \ / v | |u | \ / \\/ \ / | v| | + | = |u | \ / \\/ \ / | v| = |
− | o-----o o-----o o--+--o o o--+--o | + | o o--+--o o o--+--o o |
− | \ / | \ / \ / |
| + | //\ | \ / \ / | / \ |
− | \ / | du \ / \ / dv |
| + | ////\ | du \ / \ / dv | / \ |
− | \ / o-----o o-----o
| + | o/////o o-----o o-----o o o |
− | \ / \ /
| + | //\/////\ \ / /\\ /\\ |
− | \ / \ /
| + | ////\/////\ \ / /\\\\ /\\\\ |
− | o o
| + | o/////o/////o o o\\\\\o\\\\\o |
− | U% $D$ $E$U%
| + | / \/////\//// \ = = /\\\\\/\\\\\/\\ |
− | o------------------>o
| + | / \/////\// \ = = /\\\\\/\\\\\/\\\\ |
− | | |
| + | o o/////o o = = o\\\\\o\\\\\o\\\\\o |
− | | |
| + | / \ / \//// \ / \ = = / \\\\/ \\\\/ \\\\/ \ |
− | | |
| + | / \ / \// \ / \ = = / \\/ \\/ \\/ \ |
− | | |
| + | o o o o o o o o o o |
− | J | | $D$J
| + | |\ / \ / \ / \ /| |\ / \ /\\ / \ /| |
− | | |
| + | | \ / \ / \ / \ / | | \ / \ /\\\\ / \ / | |
− | | |
| + | | o o o o | | o o\\\\\o o | |
− | | |
| + | | |\ / \ / \ /| | | |\ / \\\\/ \ /| | |
− | v v
| + | |u | \ / \ / \ / | v| |u | \ / \\/ \ / | v| |
− | o------------------>o
| + | o--+--o o o--+--o o o--+--o o o--+--o |
− | X% $D$ $E$X%
| + | . | \ / \ / | /X\ | \ / \ / | . |
− | o o
| + | .| du \ / \ / dv | /XXX\ | du \ / \ / dv |. |
− | //\ /X\
| + | o-----o o-----o /XXXXX\ o-----o o-----o |
− | ////\ /XXX\ | + | . \ / /XXXXXXX\ \ / . |
− | //////\ /XXXXX\
| + | . \ / /XXXXXXXXX\ \ / . |
− | ////////\ /XXXXXXX\
| + | . o oXXXXXXXXXXXo o . |
− | //////////\ /XXXXXXXXX\
| + | . //\XXXXXXXXX/\\ . |
− | ////////////o oXXXXXXXXXXXo | + | . ////\XXXXXXX/\\\\ . |
− | ///////////// \ //\XXXXXXXXX/\\
| + | !e!J //////\XXXXX/\\\\\\ DJ |
− | ///////////// \ ////\XXXXXXX/\\\\
| + | . ////////\XXX/\\\\\\\\ . |
− | ///////////// \ //////\XXXXX/\\\\\\
| + | . //////////\X/\\\\\\\\\\ . |
− | ///////////// \ ////////\XXX/\\\\\\\\
| + | . o///////////o\\\\\\\\\\\o . |
− | ///////////// \ //////////\X/\\\\\\\\\\
| + | . |\////////// \\\\\\\\\\/| . |
− | o//////////// o o///////////o\\\\\\\\\\\o
| + | . | \//////// \\\\\\\\/ | . |
− | |\////////// / |\////////// \\\\\\\\\\/|
| + | . | \////// \\\\\\/ | . |
− | | \//////// / | \//////// \\\\\\\\/ |
| + | . | \//// \\\\/ | . |
− | | \////// / | \////// \\\\\\/ |
| + | .| x \// \\/ dx |. |
− | | \//// / | \//// \\\\/ |
| + | o-----o o-----o |
− | | x \// / | x \// \\/ dx |
| + | \ / |
− | o-----o / o-----o o-----o
| + | \ / dx = (u, du)(v, dv) - uv |
− | \ / \ /
| + | x = uv \ / |
− | \ / \ /
| + | \ / dx = u dv + v du + du dv |
− | \ / \ /
| + | \ / |
− | \ / \ /
| + | o |
− | \ / \ /
| |
− | o o
| |
| | | |
− | Figure 57-3. Chord Operator Diagram for the Conjunction J = uv | + | Figure 56-a3. Chord Map of the Conjunction J = uv |
| </pre> | | </pre> |
| | | |
− | ===Figure 57-4. Tangent Functor Diagram for the Conjunction J = uv=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 56-a3 -- Chord Map of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 56-a3. Chord Map of the Conjunction ''J'' = ''uv'''''</font></center></p> |
| + | |
| + | ===Figure 56-a4. Tangent Map of the Conjunction J = uv=== |
| | | |
| <pre> | | <pre> |
− | o o
| + | o |
− | //\ //\
| + | //\ |
− | ////\ ////\
| + | ////\ |
− | //////\ o/////o
| + | o/////o |
− | ////////\ /X\////X\
| + | /X\////X\ |
− | //////////\ /XXX\//XXX\
| + | /XXX\//XXX\ |
− | o///////////o oXXXXXoXXXXXo
| + | oXXXXXoXXXXXo |
− | / \////////// \ /\\XXX//\XXX/\\
| + | /\\XXX//\XXX/\\ |
− | / \//////// \ /\\\\X////\X/\\\\
| + | /\\\\X////\X/\\\\ |
− | / \////// \ o\\\\\o/////o\\\\\o
| + | o\\\\\o/////o\\\\\o |
− | / \//// \ / \\\\/\\////\\\\\/ \ | + | / \\\\/\\////\\\\\/ \ |
− | / \// \ / \\/\\\\//\\\\\/ \ | + | / \\/\\\\//\\\\\/ \ |
− | o o o o o\\\\\o\\\\\o o | + | o o\\\\\o\\\\\o o |
− | |\ / \ /| |\ / \\\\/ \\\\/ \ /| | + | =|\ / \\\\/ \\\\/ \ /|= |
− | | \ / \ / | | \ / \\/ \\/ \ / | | + | = | \ / \\/ \\/ \ / | = |
− | | \ / \ / | | o o o o | | + | = | o o o o | = |
− | | \ / \ / | | |\ / \ / \ /| | | + | = | |\ / \ / \ /| | = |
− | | u \ / \ / v | |u | \ / \ / \ / | v| | + | = |u | \ / \ / \ / | v| = |
− | o-----o o-----o o--+--o o o--+--o | + | o o--+--o o o--+--o o |
− | \ / | \ / \ / |
| + | //\ | \ / \ / | / \ |
− | \ / | du \ / \ / dv |
| + | ////\ | du \ / \ / dv | / \ |
− | \ / o-----o o-----o
| + | o/////o o-----o o-----o o o |
− | \ / \ /
| + | //\/////\ \ / /\\ /\\ |
− | \ / \ /
| + | ////\/////\ \ / /\\\\ /\\\\ |
− | o o
| + | o/////o/////o o o\\\\\o\\\\\o |
− | U% $T$ $E$U%
| + | / \/////\//// \ = = /\\\\\/ \\\\/\\ |
− | o------------------>o
| + | / \/////\// \ = = /\\\\\/ \\/\\\\ |
− | | |
| + | o o/////o o = = o\\\\\o o\\\\\o |
− | | |
| + | / \ / \//// \ / \ = = / \\\\/\\ /\\\\\/ \ |
− | | |
| + | / \ / \// \ / \ = = / \\/\\\\ /\\\\\/ \ |
− | | |
| + | o o o o o o o\\\\\o\\\\\o o |
− | J | | $T$J
| + | |\ / \ / \ / \ /| |\ / \\\\/ \\\\/ \ /| |
− | | |
| + | | \ / \ / \ / \ / | | \ / \\/ \\/ \ / | |
− | | |
| + | | o o o o | | o o o o | |
− | | |
| + | | |\ / \ / \ /| | | |\ / \ / \ /| | |
− | v v
| + | |u | \ / \ / \ / | v| |u | \ / \ / \ / | v| |
− | o------------------>o
| + | o--+--o o o--+--o o o--+--o o o--+--o |
− | X% $T$ $E$X%
| + | . | \ / \ / | /X\ | \ / \ / | . |
− | o o
| + | .| du \ / \ / dv | /XXX\ | du \ / \ / dv |. |
− | //\ /X\
| + | o-----o o-----o /XXXXX\ o-----o o-----o |
− | ////\ /XXX\ | + | . \ / /XXXXXXX\ \ / . |
− | //////\ /XXXXX\
| + | . \ / /XXXXXXXXX\ \ / . |
− | ////////\ /XXXXXXX\
| + | . o oXXXXXXXXXXXo o . |
− | //////////\ /XXXXXXXXX\
| + | . //\XXXXXXXXX/\\ . |
− | ////////////o oXXXXXXXXXXXo | + | . ////\XXXXXXX/\\\\ . |
− | ///////////// \ //\XXXXXXXXX/\\
| + | !e!J //////\XXXXX/\\\\\\ dJ |
− | ///////////// \ ////\XXXXXXX/\\\\
| + | . ////////\XXX/\\\\\\\\ . |
− | ///////////// \ //////\XXXXX/\\\\\\
| + | . //////////\X/\\\\\\\\\\ . |
− | ///////////// \ ////////\XXX/\\\\\\\\
| + | . o///////////o\\\\\\\\\\\o . |
− | ///////////// \ //////////\X/\\\\\\\\\\
| + | . |\////////// \\\\\\\\\\/| . |
− | o//////////// o o///////////o\\\\\\\\\\\o
| + | . | \//////// \\\\\\\\/ | . |
− | |\////////// / |\////////// \\\\\\\\\\/|
| + | . | \////// \\\\\\/ | . |
− | | \//////// / | \//////// \\\\\\\\/ |
| + | . | \//// \\\\/ | . |
− | | \////// / | \////// \\\\\\/ |
| + | .| x \// \\/ dx |. |
− | | \//// / | \//// \\\\/ |
| + | o-----o o-----o |
− | | x \// / | x \// \\/ dx |
| + | \ / |
− | o-----o / o-----o o-----o
| + | \ / |
− | \ / \ /
| + | x = uv \ / dx = u dv + v du |
− | \ / \ /
| + | \ / |
− | \ / \ /
| + | \ / |
− | \ / \ /
| + | o |
− | \ / \ /
| |
− | o o
| |
| | | |
− | Figure 57-4. Tangent Functor Diagram for the Conjunction J = uv | + | Figure 56-a4. Tangent Map of the Conjunction J = uv |
| </pre> | | </pre> |
| | | |
− | ===Formula Display 11=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 56-a4 -- Tangent Map of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 56-a4. Tangent Map of the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | |
− | <pre>
| + | ===Figure 56-b1. Radius Map of the Conjunction J = uv=== |
− | o-----------------------------------------------------------o
| |
− | | |
| |
− | | F = <f, g> = <F_1, F_2> : [u, v] -> [x, y] |
| |
− | | |
| |
− | | where f = F_1 : [u, v] -> [x] |
| |
− | | |
| |
− | | and g = F_2 : [u, v] -> [y] |
| |
− | | |
| |
− | o-----------------------------------------------------------o
| |
− | </pre>
| |
− | | |
− | ===Table 58. Cast of Characters: Expansive Subtypes of Objects and Operators===
| |
| | | |
| <pre> | | <pre> |
− | Table 58. Cast of Characters: Expansive Subtypes of Objects and Operators
| + | o-----------------------o |
− | o------o-------------------------o------------------o----------------------------o | + | | | |
− | | Item | Notation | Description | Type | | + | | | |
− | o------o-------------------------o------------------o----------------------------o | + | | | |
− | | | | | |
| + | | o--o o--o | |
− | | U% | = [u, v] | Source Universe | [B^n] |
| + | | / \ / \ | |
− | | | | | |
| + | | / o \ | |
− | o------o-------------------------o------------------o----------------------------o | + | | / du / \ dv \ | |
− | | | | | | | + | | o / \ o | |
− | | X% | = [x, y] | Target Universe | [B^k] | | + | | | o o | | |
− | | | = [f, g] | | | | + | | | | | | | |
− | | | | | | | + | | | o o | | |
− | o------o-------------------------o------------------o----------------------------o | + | | o \ / o | |
− | | | | | |
| + | | \ \ / / | |
− | | EU% | = [u, v, du, dv] | Extended | [B^n x D^n] |
| + | | \ o / | |
− | | | | Source Universe | |
| + | | \ / \ / | |
− | | | | | |
| + | | o--o o--o | |
− | o------o-------------------------o------------------o----------------------------o
| + | | | |
− | | | | | | | + | | | |
− | | EX% | = [x, y, dx, dy] | Extended | [B^k x D^k] | | + | | | |
− | | | = [f, g, df, dg] | Target Universe | | | + | o-----------------------@ |
− | | | | | | | + | \ |
− | o------o-------------------------o------------------o----------------------------o | + | o-----------------------o \ |
− | | | | | | | + | | | \ |
− | | F | F = <f, g> : U% -> X% | Transformation, | [B^n] -> [B^k] | | + | | | \ |
− | | | | or Mapping | | | + | | | \ |
− | | | | | | | + | | o--o o--o | \ |
− | o------o-------------------------o------------------o----------------------------o | + | | / \ / \ | \ |
− | | | | | |
| + | | / o \ | \ |
− | | | f, g : U -> B | Proposition, | B^n -> B |
| + | | / du / \ dv \ | \ |
− | | | | special case | |
| + | | o / \ o | \ |
− | | f | f : U -> [x] c X% | of a mapping, | c (B^n, B^n -> B) |
| + | | | o o | @ \ |
− | | | | or component | |
| + | | | | | | |\ \ |
− | | g | g : U -> [y] c X% | of a mapping. | = (B^n +-> B) = [B^n] |
| + | | | o o | | \ \ |
− | | | | | |
| + | | o \ / o | \ \ |
− | o------o-------------------------o------------------o----------------------------o
| + | | \ \ / / | \ \ |
− | | | | | | | + | | \ o / | \ \ |
− | | W | W : | Operator | |
| + | | \ / \ / | \ \ |
− | | | U% -> EU%, | | [B^n] -> [B^n x D^n], | | + | | o--o o--o | \ \ |
− | | | X% -> EX%, | | [B^k] -> [B^k x D^k], |
| + | | | \ \ |
− | | | (U%->X%)->(EU%->EX%), | | ([B^n] -> [B^k]) |
| + | | | \ \ |
− | | | for each W among: | | -> | | + | | | \ \ |
− | | | !e!, !h!, E, D, d | | ([B^n x D^n]->[B^k x D^k]) |
| + | o-----------------------o \ \ |
− | | | | | |
| + | \ \ |
− | o------o-------------------------o------------------o----------------------------o
| + | o-----------------------@ o--------\----------\---o o-----------------------o |
− | | | | | | + | | |\ | \ \ | |```````````````````````| |
− | | !e! | | Tacit Extension Operator !e! | | + | | | \ | \ @ | |```````````````````````| |
− | | !h! | | Trope Extension Operator !h! | | + | | | \| \ | |```````````````````````| |
− | | E | | Enlargement Operator E | | + | | o--o o--o | \ o--o \o--o | |``````o--o```o--o``````| |
− | | D | | Difference Operator D | | + | | / \ / \ | |\ / \ /\ \ | |`````/````\`/````\`````| |
− | | d | | Differential Operator d | | + | | / o \ | | \ / o @ \ | |````/``````o``````\````| |
− | | | | |
| + | | / du / \ dv \ | | \/ du /`\ dv \ | |```/``du``/`\``dv``\```| |
− | o------o-------------------------o------------------o----------------------------o
| + | | o / \ o | | o\ /```\ o | |``o``````/```\``````o``| |
− | | | | | | | + | | | o o | | | | \ o`````o | | |``|`````o`````o`````|``| |
− | | $W$ | $W$ : | Operator | | | + | | | | | | | | | @ |``@--|-----|------@``|`````|`````|`````|``| |
− | | | U% -> $T$U% = EU%, | | [B^n] -> [B^n x D^n], | | + | | | o o | | | | o`````o | | |``|`````o`````o`````|``| |
− | | | X% -> $T$X% = EX%, | | [B^k] -> [B^k x D^k], | | + | | o \ / o | | o \```/ o | |``o``````\```/``````o``| |
− | | | (U%->X%)->($T$U%->$T$X%)| | ([B^n] -> [B^k]) |
| + | | \ \ / / | | \ \`/ / | |```\``````\`/``````/```| |
− | | | for each $W$ among: | | -> | | + | | \ o / | | \ o / | |````\``````o``````/````| |
− | | | $e$, $E$, $D$, $T$ | | ([B^n x D^n]->[B^k x D^k]) | | + | | \ / \ / | | \ / \ / | |`````\````/`\````/`````| |
− | | | | | |
| + | | o--o o--o | | o--o o--o | |``````o--o```o--o``````| |
− | o------o-------------------------o------------------o----------------------------o | + | | | | | |```````````````````````| |
− | | | | |
| + | | | | | |```````````````````````| |
− | | $e$ | | Radius Operator $e$ = <!e!, !h!> |
| + | | | | | |```````````````````````| |
− | | $E$ | | Secant Operator $E$ = <!e!, E > |
| + | o-----------------------o o-----------------------o o-----------------------o |
− | | $D$ | | Chord Operator $D$ = <!e!, D > |
| + | \ / \ / \ / |
− | | $T$ | | Tangent Functor $T$ = <!e!, d > |
| + | \ !h!J / \ J / \ !h!J / |
− | | | | |
| + | \ / \ / \ / |
− | o------o-------------------------o-----------------------------------------------o
| + | \ / o----------\---------/----------o \ / |
| + | \ / | \ / | \ / |
| + | \ / | \ / | \ / |
| + | \ / | o-----o-----o | \ / |
| + | \ / | /`````````````\ | \ / |
| + | \ / | /```````````````\ | \ / |
| + | o------\---/------o | /`````````````````\ | o------\---/------o |
| + | | \ / | | /```````````````````\ | | \ / | |
| + | | o--o--o | | /`````````````````````\ | | o--o--o | |
| + | | /```````\ | | o```````````````````````o | | /```````\ | |
| + | | /`````````\ | | |```````````````````````| | | /`````````\ | |
| + | | o```````````o | | |```````````````````````| | | o```````````o | |
| + | | |````dx`````| @----@ |```````````x`````@-----|------@ |``` dx ````| | |
| + | | o```````````o | | |```````````````````````| | | o```````````o | |
| + | | \`````````/ | | |```````````````````````| | | \`````````/ | |
| + | | \```````/ | | o```````````````````````o | | \```````/ | |
| + | | o-----o | | \`````````````````````/ | | o-----o | |
| + | | | | \```````````````````/ | | | |
| + | o-----------------o | \`````````````````/ | o-----------------o |
| + | | \```````````````/ | |
| + | | \`````````````/ | |
| + | | o-----------o | |
| + | | | |
| + | | | |
| + | o-------------------------------o |
| + | |
| + | Figure 56-b1. Radius Map of the Conjunction J = uv |
| </pre> | | </pre> |
| | | |
− | ===Table 59. Synopsis of Terminology: Restrictive and Alternative Subtypes=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 56-b1 -- Radius Map of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 56-b1. Radius Map of the Conjunction ''J'' = ''uv'''''</font></center></p> |
| + | |
| + | ===Figure 56-b2. Secant Map of the Conjunction J = uv=== |
| | | |
| <pre> | | <pre> |
− | Table 59. Synopsis of Terminology: Restrictive and Alternative Subtypes
| + | o-----------------------o |
− | o--------------o----------------------o--------------------o----------------------o | + | | | |
− | | | Operator | Proposition | Transformation | | + | | | |
− | | | or | or | or | | + | | | |
− | | | Operand | Component | Mapping | | + | | o--o o--o | |
− | o--------------o----------------------o--------------------o----------------------o | + | | / \ / \ | |
− | | | | | | | + | | / o \ | |
− | | Operand | F = <F_1, F_2> | F_i : <|u,v|> -> B | F : [u, v] -> [x, y] | | + | | / du /`\ dv \ | |
− | | | | | | | + | | o /```\ o | |
− | | | F = <f, g> : U -> X | F_i : B^n -> B | F : B^n -> B^k | | + | | | o`````o | | |
− | | | | | | | + | | | |`````| | | |
− | o--------------o----------------------o--------------------o----------------------o | + | | | o`````o | | |
− | | | | | |
| + | | o \```/ o | |
− | | Tacit | !e! : | !e!F_i : | !e!F : |
| + | | \ \`/ / | |
− | | Extension | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> B | [u,v,du,dv]->[x, y] |
| + | | \ o / | |
− | | | (U%->X%)->(EU%->X%) | B^n x D^n -> B | [B^n x D^n]->[B^k] |
| + | | \ / \ / | |
− | | | | | |
| + | | o--o o--o | |
− | o--------------o----------------------o--------------------o----------------------o | + | | | |
− | | | | | | | + | | | |
− | | Trope | !h! : | !h!F_i : | !h!F : | | + | | | |
− | | Extension | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] | | + | o-----------------------@ |
− | | | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] |
| + | \ |
− | | | | | |
| + | o-----------------------o \ |
− | o--------------o----------------------o--------------------o----------------------o | + | | | \ |
− | | | | | | | + | | | \ |
− | | Enlargement | E : | EF_i : | EF : |
| + | | | \ |
− | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] | | + | | o--o o--o | \ |
− | | | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] | | + | | /````\ / \ | \ |
− | | | | | | | + | | /``````o \ | \ |
− | o--------------o----------------------o--------------------o----------------------o | + | | /``du``/ \ dv \ | \ |
− | | | | | |
| + | | o``````/ \ o | \ |
− | | Difference | D : | DF_i : | DF : |
| + | | |`````o o | @ \ |
− | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] | | + | | |`````| | | |\ \ |
− | | | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] | | + | | |`````o o | | \ \ |
− | | | | | | | + | | o``````\ / o | \ \ |
− | o--------------o----------------------o--------------------o----------------------o | + | | \``````\ / / | \ \ |
− | | | | | |
| + | | \``````o / | \ \ |
− | | Differential | d : | dF_i : | dF : |
| + | | \````/ \ / | \ \ |
− | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] |
| + | | o--o o--o | \ \ |
− | | | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] |
| + | | | \ \ |
− | | | | | |
| + | | | \ \ |
− | o--------------o----------------------o--------------------o----------------------o
| + | | | \ \ |
− | | | | | | | + | o-----------------------o \ \ |
− | | Remainder | r : | rF_i : | rF : | | + | \ \ |
− | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] | | + | o-----------------------@ o--------\----------\---o o-----------------------o |
− | | | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] |
| + | | |\ | \ \ | |```````````````````````| |
− | | | | | | | + | | | \ | \ @ | |```````````````````````| |
− | o--------------o----------------------o--------------------o----------------------o | + | | | \| \ | |```````````````````````| |
− | | | | | | | + | | o--o o--o | \ o--o \o--o | |``````o--o```o--o``````| |
− | | Radius | $e$ = <!e!, !h!> : | | $e$F : | | + | | / \ /````\ | |\ / \ /\ \ | |`````/ \`/ \`````| |
− | | Operator | | | | | + | | / o``````\ | | \ / o @ \ | |````/ o \````| |
− | | | U%->EU%, X%->EX%, | | [u, v, du, dv] -> | | + | | / du / \``dv``\ | | \/ du /`\ dv \ | |```/ du / \ dv \```| |
− | | | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], | | + | | o / \``````o | | o\ /```\ o | |``o / \ o``| |
− | | | | | | | + | | | o o`````| | | | \ o`````o | | |``| o o |``| |
− | | | | | [B^n x D^n] -> | | + | | | | |`````| | | | @ |``@--|-----|------@``| | | |``| |
− | | | | | [B^k x D^k] | | + | | | o o`````| | | | o`````o | | |``| o o |``| |
− | | | | | | | + | | o \ /``````o | | o \```/ o | |``o \ / o``| |
− | o--------------o----------------------o--------------------o----------------------o | + | | \ \ /``````/ | | \ \`/ / | |```\ \ / /```| |
− | | | | | | | + | | \ o``````/ | | \ o / | |````\ o /````| |
− | | Secant | $E$ = <!e!, E> : | | $E$F : | | + | | \ / \````/ | | \ / \ / | |`````\ /`\ /`````| |
− | | Operator | | | | | + | | o--o o--o | | o--o o--o | |``````o--o```o--o``````| |
− | | | U%->EU%, X%->EX%, | | [u, v, du, dv] -> |
| + | | | | | |```````````````````````| |
− | | | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], |
| + | | | | | |```````````````````````| |
− | | | | | |
| + | | | | | |```````````````````````| |
− | | | | | [B^n x D^n] -> |
| + | o-----------------------o o-----------------------o o-----------------------o |
− | | | | | [B^k x D^k] |
| + | \ / \ / \ / |
− | | | | | |
| + | \ EJ / \ J / \ EJ / |
− | o--------------o----------------------o--------------------o----------------------o
| + | \ / \ / \ / |
− | | | | | |
| + | \ / o----------\---------/----------o \ / |
− | | Chord | $D$ = <!e!, D> : | | $D$F : |
| + | \ / | \ / | \ / |
− | | Operator | | | |
| + | \ / | \ / | \ / |
− | | | U%->EU%, X%->EX%, | | [u, v, du, dv] -> |
| + | \ / | o-----o-----o | \ / |
− | | | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], |
| + | \ / | /`````````````\ | \ / |
− | | | | | |
| + | \ / | /```````````````\ | \ / |
− | | | | | [B^n x D^n] -> |
| + | o------\---/------o | /`````````````````\ | o------\---/------o |
− | | | | | [B^k x D^k] |
| + | | \ / | | /```````````````````\ | | \ / | |
− | | | | | |
| + | | o--o--o | | /`````````````````````\ | | o--o--o | |
− | o--------------o----------------------o--------------------o----------------------o
| + | | /```````\ | | o```````````````````````o | | /```````\ | |
− | | | | | |
| + | | /`````````\ | | |```````````````````````| | | /`````````\ | |
− | | Tangent | $T$ = <!e!, d> : | dF_i : | $T$F : |
| + | | o```````````o | | |```````````````````````| | | o```````````o | |
− | | Functor | | | |
| + | | |````dx`````| @----@ |```````````x`````@-----|------@ |``` dx ````| | |
− | | | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u, v, du, dv] -> |
| + | | o```````````o | | |```````````````````````| | | o```````````o | |
− | | | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], |
| + | | \`````````/ | | |```````````````````````| | | \`````````/ | |
− | | | | | |
| + | | \```````/ | | o```````````````````````o | | \```````/ | |
− | | | | B^n x D^n -> D | [B^n x D^n] -> |
| + | | o-----o | | \`````````````````````/ | | o-----o | |
− | | | | | [B^k x D^k] | | + | | | | \```````````````````/ | | | |
− | | | | | | | + | o-----------------o | \`````````````````/ | o-----------------o |
− | o--------------o----------------------o--------------------o----------------------o | + | | \```````````````/ | |
− | </pre>
| + | | \`````````````/ | |
| + | | o-----------o | |
| + | | | |
| + | | | |
| + | o-------------------------------o |
| | | |
− | ===Formula Display 12===
| + | Figure 56-b2. Secant Map of the Conjunction J = uv |
− | | |
− | <pre>
| |
− | o-----------------------------------------------------------o
| |
− | | |
| |
− | | x = f(u, v) = ((u)(v)) |
| |
− | | |
| |
− | | y = g(u, v) = ((u, v)) |
| |
− | | |
| |
− | o-----------------------------------------------------------o
| |
| </pre> | | </pre> |
| | | |
− | ===Formula Display 13=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 56-b2 -- Secant Map of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 56-b2. Secant Map of the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | |
− | <pre>
| + | ===Figure 56-b3. Chord Map of the Conjunction J = uv=== |
− | o-----------------------------------------------------------o
| |
− | | |
| |
− | | <x, y> = F<u, v> = <((u)(v)), ((u, v))> |
| |
− | | |
| |
− | o-----------------------------------------------------------o
| |
− | </pre>
| |
− | | |
− | ===Table 60. Propositional Transformation===
| |
| | | |
| <pre> | | <pre> |
− | Table 60. Propositional Transformation
| + | o-----------------------o |
− | o-------------o-------------o-------------o-------------o | + | | | |
− | | u | v | f | g | | + | | | |
− | o-------------o-------------o-------------o-------------o | + | | | |
− | | | | | | | + | | o--o o--o | |
− | | 0 | 0 | 0 | 1 | | + | | / \ / \ | |
− | | | | | | | + | | / o \ | |
− | | 0 | 1 | 1 | 0 | | + | | / du /`\ dv \ | |
− | | | | | | | + | | o /```\ o | |
− | | 1 | 0 | 1 | 0 | | + | | | o`````o | | |
− | | | | | |
| + | | | |`````| | | |
− | | 1 | 1 | 1 | 1 |
| + | | | o`````o | | |
− | | | | | |
| + | | o \```/ o | |
− | o-------------o-------------o-------------o-------------o
| + | | \ \`/ / | |
− | | | | ((u)(v)) | ((u, v)) | | + | | \ o / | |
− | o-------------o-------------o-------------o-------------o | + | | \ / \ / | |
− | </pre>
| + | | o--o o--o | |
− | | + | | | |
− | ===Figure 61. Propositional Transformation===
| + | | | |
− | | + | | | |
− | <pre>
| + | o-----------------------@ |
− | o-----------------------------------------------------o
| + | \ |
− | | U |
| + | o-----------------------o \ |
− | | |
| + | | | \ |
− | | o-----------o o-----------o |
| + | | | \ |
− | | / \ / \ |
| + | | | \ |
− | | / o \ |
| + | | o--o o--o | \ |
− | | / / \ \ |
| + | | /````\ / \ | \ |
− | | / / \ \ |
| + | | /``````o \ | \ |
− | | o o o o |
| + | | /``du``/ \ dv \ | \ |
− | | | | | | |
| + | | o``````/ \ o | \ |
− | | | u | | v | |
| + | | |`````o o | @ \ |
− | | | | | | |
| + | | |`````| | | |\ \ |
− | | o o o o |
| + | | |`````o o | | \ \ |
− | | \ \ / / |
| + | | o``````\ / o | \ \ |
− | | \ \ / / |
| + | | \``````\ / / | \ \ |
− | | \ o / |
| + | | \``````o / | \ \ |
− | | \ / \ / |
| + | | \````/ \ / | \ \ |
− | | o-----------o o-----------o |
| + | | o--o o--o | \ \ |
− | | |
| + | | | \ \ |
− | | |
| + | | | \ \ |
− | o-----------------------------------------------------o
| + | | | \ \ |
− | / \ / \
| + | o-----------------------o \ \ |
− | / \ / \
| + | \ \ |
− | / \ / \
| + | o-----------------------@ o--------\----------\---o o-----------------------o |
− | / \ / \
| + | | |\ | \ \ | | | |
− | / \ / \
| + | | | \ | \ @ | | | |
− | / \ / \
| + | | | \| \ | | | |
− | / \ / \
| + | | o--o o--o | \ o--o \o--o | | o--o o--o | |
− | / \ / \
| + | | / \ /````\ | |\ / \ /\ \ | | /````\ /````\ | |
− | / \ / \ | + | | / o``````\ | | \ / o @ \ | | /``````o``````\ | |
− | / \ / \
| + | | / du / \``dv``\ | | \/ du /`\ dv \ | | /``du``/`\``dv``\ | |
− | / \ / \ | + | | o / \``````o | | o\ /```\ o | | o``````/```\``````o | |
− | / \ / \ | + | | | o o`````| | | | \ o`````o | | | |`````o`````o`````| | |
− | o-------------------------o o-------------------------o | + | | | | |`````| | | | @ |``@--|-----|------@ |`````|`````|`````| | |
− | | U | |\U \\\\\\\\\\\\\\\\\\\\\\| | + | | | o o`````| | | | o`````o | | | |`````o`````o`````| | |
− | | o---o o---o | |\\\\\\o---o\\\o---o\\\\\\| | + | | o \ /``````o | | o \```/ o | | o``````\```/``````o | |
− | | //////\ //////\ | |\\\\\/ \\/ \\\\\\| | + | | \ \ /``````/ | | \ \`/ / | | \``````\`/``````/ | |
− | | ////////o///////\ | |\\\\/ o \\\\\| | + | | \ o``````/ | | \ o / | | \``````o``````/ | |
− | | //////////\///////\ | |\\\/ /\\ \\\\|
| + | | \ / \````/ | | \ / \ / | | \````/ \````/ | |
− | | o///////o///o///////o | |\\o o\\\o o\\|
| + | | o--o o--o | | o--o o--o | | o--o o--o | |
− | | |// u //|///|// v //| | |\\| u |\\\| v |\\|
| + | | | | | | | |
− | | o///////o///o///////o | |\\o o\\\o o\\|
| + | | | | | | | |
− | | \///////\////////// | |\\\\ \\/ /\\\| | + | | | | | | | |
− | | \///////o//////// | |\\\\\ o /\\\\| | + | o-----------------------o o-----------------------o o-----------------------o |
− | | \////// \////// | |\\\\\\ /\\ /\\\\\| | + | \ / \ / \ / |
− | | o---o o---o | |\\\\\\o---o\\\o---o\\\\\\| | + | \ DJ / \ J / \ DJ / |
− | | | |\\\\\\\\\\\\\\\\\\\\\\\\\| | + | \ / \ / \ / |
− | o-------------------------o o-------------------------o | + | \ / o----------\---------/----------o \ / |
− | \ | | /
| + | \ / | \ / | \ / |
− | \ | | /
| + | \ / | \ / | \ / |
− | \ | | /
| + | \ / | o-----o-----o | \ / |
− | \ f | | g / | + | \ / | /`````````````\ | \ / |
− | \ | | /
| + | \ / | /```````````````\ | \ / |
− | \ | | /
| + | o------\---/------o | /`````````````````\ | o------\---/------o |
− | \ | | /
| + | | \ / | | /```````````````````\ | | \ / | |
− | \ | | /
| + | | o--o--o | | /`````````````````````\ | | o--o--o | |
− | \ | | /
| + | | /```````\ | | o```````````````````````o | | /```````\ | |
− | \ | | /
| + | | /`````````\ | | |```````````````````````| | | /`````````\ | |
− | o-------\----|---------------------------|----/-------o
| + | | o```````````o | | |```````````````````````| | | o```````````o | |
− | | X \ | | / |
| + | | |````dx`````| @----@ |```````````x`````@-----|------@ |``` dx ````| | |
− | | \| |/ |
| + | | o```````````o | | |```````````````````````| | | o```````````o | |
− | | o-----------o o-----------o |
| + | | \`````````/ | | |```````````````````````| | | \`````````/ | |
− | | //////////////\ /\\\\\\\\\\\\\\ |
| + | | \```````/ | | o```````````````````````o | | \```````/ | |
− | | ////////////////o\\\\\\\\\\\\\\\\ |
| + | | o-----o | | \`````````````````````/ | | o-----o | |
− | | /////////////////X\\\\\\\\\\\\\\\\\ |
| + | | | | \```````````````````/ | | | |
− | | /////////////////XXX\\\\\\\\\\\\\\\\\ |
| + | o-----------------o | \`````````````````/ | o-----------------o |
− | | o///////////////oXXXXXo\\\\\\\\\\\\\\\o |
| + | | \```````````````/ | |
− | | |///////////////|XXXXX|\\\\\\\\\\\\\\\| |
| + | | \`````````````/ | |
− | | |////// x //////|XXXXX|\\\\\\ y \\\\\\| |
| + | | o-----------o | |
− | | |///////////////|XXXXX|\\\\\\\\\\\\\\\| |
| + | | | |
− | | o///////////////oXXXXXo\\\\\\\\\\\\\\\o |
| + | | | |
− | | \///////////////\XXX/\\\\\\\\\\\\\\\/ |
| + | o-------------------------------o |
− | | \///////////////\X/\\\\\\\\\\\\\\\/ |
| + | |
− | | \///////////////o\\\\\\\\\\\\\\\/ |
| + | Figure 56-b3. Chord Map of the Conjunction J = uv |
− | | \////////////// \\\\\\\\\\\\\\/ |
| + | </pre> |
− | | o-----------o o-----------o |
| + | |
− | | |
| + | <br> |
− | | |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 56-b3 -- Chord Map of J.gif|center]]</p> |
− | o-----------------------------------------------------o
| + | <p><center><font size="+1">'''Figure 56-b3. Chord Map of the Conjunction ''J'' = ''uv'''''</font></center></p> |
− | Figure 61. Propositional Transformation
| |
− | </pre> | |
| | | |
− | ===Figure 62. Propositional Transformation (Short Form)=== | + | ===Figure 56-b4. Tangent Map of the Conjunction J = uv=== |
| | | |
| <pre> | | <pre> |
− | o-------------------------o o-------------------------o | + | o-----------------------o |
− | | U | |\U \\\\\\\\\\\\\\\\\\\\\\| | + | | | |
− | | o---o o---o | |\\\\\\o---o\\\o---o\\\\\\| | + | | | |
− | | //////\ //////\ | |\\\\\/ \\/ \\\\\\| | + | | | |
− | | ////////o///////\ | |\\\\/ o \\\\\| | + | | o--o o--o | |
− | | //////////\///////\ | |\\\/ /\\ \\\\| | + | | / \ / \ | |
− | | o///////o///o///////o | |\\o o\\\o o\\| | + | | / o \ | |
− | | |// u //|///|// v //| | |\\| u |\\\| v |\\| | + | | / du / \ dv \ | |
− | | o///////o///o///////o | |\\o o\\\o o\\| | + | | o / \ o | |
− | | \///////\////////// | |\\\\ \\/ /\\\| | + | | | o o | | |
− | | \///////o//////// | |\\\\\ o /\\\\| | + | | | | | | | |
− | | \////// \////// | |\\\\\\ /\\ /\\\\\| | + | | | o o | | |
− | | o---o o---o | |\\\\\\o---o\\\o---o\\\\\\|
| + | | o \ / o | |
− | | | |\\\\\\\\\\\\\\\\\\\\\\\\\|
| + | | \ \ / / | |
− | o-------------------------o o-------------------------o
| + | | \ o / | |
− | \ / \ /
| + | | \ / \ / | |
− | \ / \ /
| + | | o--o o--o | |
− | \ / \ /
| + | | | |
− | \ f / \ g / | + | | | |
− | \ / \ /
| + | | | |
− | \ / \ /
| + | o-----------------------@ |
− | \ / \ /
| + | \ |
− | \ / \ /
| + | o-----------------------o \ |
− | \ / \ /
| + | | | \ |
− | o---------\-----/---------------------\-----/---------o | + | | | \ |
− | | X \ / \ / | | + | | | \ |
− | | \ / \ / | | + | | o--o o--o | \ |
− | | o-----------o o-----------o | | + | | /````\ / \ | \ |
− | | //////////////\ /\\\\\\\\\\\\\\ | | + | | /``````o \ | \ |
− | | ////////////////o\\\\\\\\\\\\\\\\ | | + | | /``du``/`\ dv \ | \ |
− | | /////////////////X\\\\\\\\\\\\\\\\\ | | + | | o``````/```\ o | \ |
− | | /////////////////XXX\\\\\\\\\\\\\\\\\ | | + | | |`````o`````o | @ \ |
− | | o///////////////oXXXXXo\\\\\\\\\\\\\\\o | | + | | |`````|`````| | |\ \ |
− | | |///////////////|XXXXX|\\\\\\\\\\\\\\\| | | + | | |`````o`````o | | \ \ |
− | | |////// x //////|XXXXX|\\\\\\ y \\\\\\| |
| + | | o``````\```/ o | \ \ |
− | | |///////////////|XXXXX|\\\\\\\\\\\\\\\| |
| + | | \``````\`/ / | \ \ |
− | | o///////////////oXXXXXo\\\\\\\\\\\\\\\o |
| + | | \``````o / | \ \ |
− | | \///////////////\XXX/\\\\\\\\\\\\\\\/ |
| + | | \````/ \ / | \ \ |
− | | \///////////////\X/\\\\\\\\\\\\\\\/ | | + | | o--o o--o | \ \ |
− | | \///////////////o\\\\\\\\\\\\\\\/ | | + | | | \ \ |
− | | \////////////// \\\\\\\\\\\\\\/ | | + | | | \ \ |
− | | o-----------o o-----------o | | + | | | \ \ |
− | | | | + | o-----------------------o \ \ |
− | | | | + | \ \ |
− | o-----------------------------------------------------o | + | o-----------------------@ o--------\----------\---o o-----------------------o |
− | Figure 62. Propositional Transformation (Short Form)
| + | | |\ | \ \ | | | |
− | </pre>
| + | | | \ | \ @ | | | |
− | | + | | | \| \ | | | |
− | ===Figure 63. Transformation of Positions=== | + | | o--o o--o | \ o--o \o--o | | o--o o--o | |
− | | + | | / \ /````\ | |\ / \ /\ \ | | /````\ /````\ | |
| + | | / o``````\ | | \ / o @ \ | | /``````o``````\ | |
| + | | / du /`\``dv``\ | | \/ du /`\ dv \ | | /``du``/ \``dv``\ | |
| + | | o /```\``````o | | o\ /```\ o | | o``````/ \``````o | |
| + | | | o`````o`````| | | | \ o`````o | | | |`````o o`````| | |
| + | | | |`````|`````| | | | @ |``@--|-----|------@ |`````| |`````| | |
| + | | | o`````o`````| | | | o`````o | | | |`````o o`````| | |
| + | | o \```/``````o | | o \```/ o | | o``````\ /``````o | |
| + | | \ \`/``````/ | | \ \`/ / | | \``````\ /``````/ | |
| + | | \ o``````/ | | \ o / | | \``````o``````/ | |
| + | | \ / \````/ | | \ / \ / | | \````/ \````/ | |
| + | | o--o o--o | | o--o o--o | | o--o o--o | |
| + | | | | | | | |
| + | | | | | | | |
| + | | | | | | | |
| + | o-----------------------o o-----------------------o o-----------------------o |
| + | \ / \ / \ / |
| + | \ dJ / \ J / \ dJ / |
| + | \ / \ / \ / |
| + | \ / o----------\---------/----------o \ / |
| + | \ / | \ / | \ / |
| + | \ / | \ / | \ / |
| + | \ / | o-----o-----o | \ / |
| + | \ / | /`````````````\ | \ / |
| + | \ / | /```````````````\ | \ / |
| + | o------\---/------o | /`````````````````\ | o------\---/------o |
| + | | \ / | | /```````````````````\ | | \ / | |
| + | | o--o--o | | /`````````````````````\ | | o--o--o | |
| + | | /```````\ | | o```````````````````````o | | /```````\ | |
| + | | /`````````\ | | |```````````````````````| | | /`````````\ | |
| + | | o```````````o | | |```````````````````````| | | o```````````o | |
| + | | |````dx`````| @----@ |```````````x`````@-----|------@ |``` dx ````| | |
| + | | o```````````o | | |```````````````````````| | | o```````````o | |
| + | | \`````````/ | | |```````````````````````| | | \`````````/ | |
| + | | \```````/ | | o```````````````````````o | | \```````/ | |
| + | | o-----o | | \`````````````````````/ | | o-----o | |
| + | | | | \```````````````````/ | | | |
| + | o-----------------o | \`````````````````/ | o-----------------o |
| + | | \```````````````/ | |
| + | | \`````````````/ | |
| + | | o-----------o | |
| + | | | |
| + | | | |
| + | o-------------------------------o |
| + | |
| + | Figure 56-b4. Tangent Map of the Conjunction J = uv |
| + | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 56-b4 -- Tangent Map of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 56-b4. Tangent Map of the Conjunction ''J'' = ''uv'''''</font></center></p> |
| + | |
| + | ===Figure 57-1. Radius Operator Diagram for the Conjunction J = uv=== |
| + | |
| <pre> | | <pre> |
− | o-----------------------------------------------------o
| + | o o |
− | |`U` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `|
| + | //\ /X\ |
− | |` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `|
| + | ////\ /XXX\ |
− | |` ` ` ` ` ` o-----------o ` o-----------o ` ` ` ` ` `|
| + | //////\ oXXXXXo |
− | |` ` ` ` ` `/' ' ' ' ' ' '\`/' ' ' ' ' ' '\` ` ` ` ` `|
| + | ////////\ /X\XXX/X\ |
− | |` ` ` ` ` / ' ' ' ' ' ' ' o ' ' ' ' ' ' ' \ ` ` ` ` `|
| + | //////////\ /XXX\X/XXX\ |
− | |` ` ` ` `/' ' ' ' ' ' ' '/^\' ' ' ' ' ' ' '\` ` ` ` `|
| + | o///////////o oXXXXXoXXXXXo |
− | |` ` ` ` / ' ' ' ' ' ' ' /^^^\ ' ' ' ' ' ' ' \ ` ` ` `|
| + | / \////////// \ / \XXX/X\XXX/ \ |
− | |` ` ` `o' ' ' ' ' ' ' 'o^^^^^o' ' ' ' ' ' ' 'o` ` ` `|
| + | / \//////// \ / \X/XXX\X/ \ |
− | |` ` ` `|' ' ' ' ' ' ' '|^^^^^|' ' ' ' ' ' ' '|` ` ` `|
| + | / \////// \ o oXXXXXo o |
− | |` ` ` `|' ' ' ' u ' ' '|^^^^^|' ' ' v ' ' ' '|` ` ` `|
| + | / \//// \ / \ / \XXX/ \ / \ |
− | |` ` ` `|' ' ' ' ' ' ' '|^^^^^|' ' ' ' ' ' ' '|` ` ` `|
| + | / \// \ / \ / \X/ \ / \ |
− | |` `@` `o' ' ' ' @ ' ' 'o^^@^^o' ' ' @ ' ' ' 'o` ` ` `|
| + | o o o o o o o o |
− | |` ` \ ` \ ' ' ' | ' ' ' \^|^/ ' ' ' | ' ' ' / ` ` ` `|
| + | |\ / \ /| |\ / \ / \ / \ /| |
− | |` ` `\` `\' ' ' | ' ' ' '\|/' ' ' ' | ' ' '/` ` ` ` `|
| + | | \ / \ / | | \ / \ / \ / \ / | |
− | |` ` ` \ ` \ ' ' | ' ' ' ' | ' ' ' ' | ' ' / ` ` ` ` `|
| + | | \ / \ / | | o o o o | |
− | |` ` ` `\` `\' ' | ' ' ' '/|\' ' ' ' | ' '/` ` ` ` ` `|
| + | | \ / \ / | | |\ / \ / \ /| | |
− | |` ` ` ` \ ` o---|-------o | o-------|---o ` ` ` ` ` `|
| + | | u \ / \ / v | |u | \ / \ / \ / | v| |
− | |` ` ` ` `\` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` `|
| + | o-----o o-----o o--+--o o o--+--o |
− | |` ` ` ` ` \ ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` `|
| + | \ / | \ / \ / | |
− | o-----------\----|---------|---------|----------------o
| + | \ / | du \ / \ / dv | |
− | " " \ | | | " "
| + | \ / o-----o o-----o |
− | " " \ | | | " "
| + | \ / \ / |
− | " " \ | | | " "
| + | \ / \ / |
− | " " \| | | " "
| + | o o |
− | o-------------------------o \ | | o-------------------------o
| + | U% $e$ $E$U% |
− | | U | |\ | | |`U```````````````````````|
| + | o------------------>o |
− | | o---o o---o | | \ | | |``````o---o```o---o``````|
| + | | | |
− | | /'''''\ /'''''\ | | \ | | |`````/ \`/ \`````| | + | | | |
− | | /'''''''o'''''''\ | | \ | | |````/ o \````| | + | | | |
− | | /'''''''/'\'''''''\ | | \ | | |```/ /`\ \```|
| + | | | |
− | | o'''''''o'''o'''''''o | | \ | | |``o o```o o``|
| + | J | | $e$J |
− | | |'''u'''|'''|'''v'''| | | \ | | |``| u |```| v |``| | + | | | |
− | | o'''''''o'''o'''''''o | | \ | | |``o o```o o``| | + | | | |
− | | \'''''''\'/'''''''/ | | \| | |```\ \`/ /```|
| + | | | |
− | | \'''''''o'''''''/ | | \ | |````\ o /````|
| + | v v |
− | | \'''''/ \'''''/ | | |\ | |`````\ /`\ /`````| | + | o------------------>o |
− | | o---o o---o | | | \ | |``````o---o```o---o``````|
| + | X% $e$ $E$X% |
− | | | | | \ * |`````````````````````````|
| + | o o |
− | o-------------------------o | | \ / o-------------------------o | + | //\ /X\ |
− | \ | | | \ / | /
| + | ////\ /XXX\ |
− | \ ((u)(v)) | | | \/ | ((u, v)) /
| + | //////\ /XXXXX\ |
− | \ | | | /\ | /
| + | ////////\ /XXXXXXX\ |
− | \ | | | / \ | /
| + | //////////\ /XXXXXXXXX\ |
− | \ | | | / \ | /
| + | ////////////o oXXXXXXXXXXXo |
− | \ | | | / * | /
| + | ///////////// \ //\XXXXXXXXX/\\ |
− | \ | | | / | | /
| + | ///////////// \ ////\XXXXXXX/\\\\ |
− | \ | | |/ | | /
| + | ///////////// \ //////\XXXXX/\\\\\\ |
− | \ | | / | | /
| + | ///////////// \ ////////\XXX/\\\\\\\\ |
− | \ | | /| | | /
| + | ///////////// \ //////////\X/\\\\\\\\\\ |
− | o-------\----|---|-------/-|---------|---|----/-------o
| + | o//////////// o o///////////o\\\\\\\\\\\o |
− | | X \ | | / | | | / |
| + | |\////////// / |\////////// \\\\\\\\\\/| |
− | | \| | / | | |/ |
| + | | \//////// / | \//////// \\\\\\\\/ | |
− | | o---|----/--o | o-------|---o |
| + | | \////// / | \////// \\\\\\/ | |
− | | /' ' | ' / ' '\|/` ` ` ` | ` `\ |
| + | | \//// / | \//// \\\\/ | |
− | | / ' ' | '/' ' ' | ` ` ` ` | ` ` \ |
| + | | x \// / | x \// \\/ dx | |
− | | /' ' ' | / ' ' '/|\` ` ` ` | ` ` `\ |
| + | o-----o / o-----o o-----o |
− | | / ' ' ' |/' ' ' /^|^\ ` ` ` | ` ` ` \ |
| + | \ / \ / |
− | | @ o' ' ' ' @ ' ' 'o^^@^^o` ` ` @ ` ` ` `o |
| + | \ / \ / |
− | | |' ' ' ' ' ' ' '|^^^^^|` ` ` ` ` ` ` `| |
| + | \ / \ / |
− | | |' ' ' ' f ' ' '|^^^^^|` ` ` g ` ` ` `| |
| + | \ / \ / |
− | | |' ' ' ' ' ' ' '|^^^^^|` ` ` ` ` ` ` `| |
| + | \ / \ / |
− | | o' ' ' ' ' ' ' 'o^^^^^o` ` ` ` ` ` ` `o | | + | o o |
− | | \ ' ' ' ' ' ' ' \^^^/ ` ` ` ` ` ` ` / |
| + | |
− | | \' ' ' ' ' ' ' '\^/` ` ` ` ` ` ` `/ |
| + | Figure 57-1. Radius Operator Diagram for the Conjunction J = uv |
− | | \ ' ' ' ' ' ' ' o ` ` ` ` ` ` ` / |
| |
− | | \' ' ' ' ' ' '/ \` ` ` ` ` ` `/ |
| |
− | | o-----------o o-----------o |
| |
− | | |
| |
− | | |
| |
− | o-----------------------------------------------------o
| |
− | Figure 63. Transformation of Positions | |
| </pre> | | </pre> |
| | | |
− | ===Table 64. Transformation of Positions=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 57-1 -- Radius Operator Diagram for J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 57-1. Radius Operator Diagram for the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | |
− | <pre>
| + | ===Figure 57-2. Secant Operator Diagram for the Conjunction J = uv=== |
− | Table 64. Transformation of Positions
| |
− | o-----o----------o----------o-------o-------o--------o--------o-------------o
| |
− | | u v | x | y | x y | x(y) | (x)y | (x)(y) | X% = [x, y] |
| |
− | o-----o----------o----------o-------o-------o--------o--------o-------------o
| |
− | | | | | | | | | ^ |
| |
− | | 0 0 | 0 | 1 | 0 | 0 | 1 | 0 | | |
| |
− | | | | | | | | | |
| |
− | | 0 1 | 1 | 0 | 0 | 1 | 0 | 0 | F |
| |
− | | | | | | | | | = |
| |
− | | 1 0 | 1 | 0 | 0 | 1 | 0 | 0 | <f , g> |
| |
− | | | | | | | | | |
| |
− | | 1 1 | 1 | 1 | 1 | 0 | 0 | 0 | ^ |
| |
− | | | | | | | | | | |
| |
− | o-----o----------o----------o-------o-------o--------o--------o-------------o
| |
− | | | ((u)(v)) | ((u, v)) | u v | (u,v) | (u)(v) | 0 | U% = [u, v] |
| |
− | o-----o----------o----------o-------o-------o--------o--------o-------------o
| |
− | </pre>
| |
− | | |
− | ===Table 65. Induced Transformation on Propositions===
| |
| | | |
| <pre> | | <pre> |
− | Table 65. Induced Transformation on Propositions
| + | o o |
− | o------------o---------------------------------o------------o | + | //\ /X\ |
− | | X% | <--- F = <f , g> <--- | U% |
| + | ////\ /XXX\ |
− | o------------o----------o-----------o----------o------------o | + | //////\ oXXXXXo |
− | | | u = | 1 1 0 0 | = u | | | + | ////////\ //\XXX//\ |
− | | | v = | 1 0 1 0 | = v | | | + | //////////\ ////\X////\ |
− | | f_i <x, y> o----------o-----------o----------o f_j <u, v> |
| + | o///////////o o/////o/////o |
− | | | x = | 1 1 1 0 | = f<u,v> | | | + | / \////////// \ /\\/////\////\\ |
− | | | y = | 1 0 0 1 | = g<u,v> | | | + | / \//////// \ /\\\\/////\//\\\\ |
− | o------------o----------o-----------o----------o------------o | + | / \////// \ o\\\\\o/////o\\\\\o |
− | | | | | | | | + | / \//// \ / \\\\/ \//// \\\\/ \ |
− | | f_0 | () | 0 0 0 0 | () | f_0 | | + | / \// \ / \\/ \// \\/ \ |
− | | | | | | | | + | o o o o o o o o |
− | | f_1 | (x)(y) | 0 0 0 1 | () | f_0 | | + | |\ / \ /| |\ / \ /\\ / \ /| |
− | | | | | | |
| + | | \ / \ / | | \ / \ /\\\\ / \ / | |
− | | f_2 | (x) y | 0 0 1 0 | (u)(v) | f_1 |
| + | | \ / \ / | | o o\\\\\o o | |
− | | | | | | | | + | | \ / \ / | | |\ / \\\\/ \ /| | |
− | | f_3 | (x) | 0 0 1 1 | (u)(v) | f_1 | | + | | u \ / \ / v | |u | \ / \\/ \ / | v| |
− | | | | | | | | + | o-----o o-----o o--+--o o o--+--o |
− | | f_4 | x (y) | 0 1 0 0 | (u, v) | f_6 |
| + | \ / | \ / \ / | |
− | | | | | | |
| + | \ / | du \ / \ / dv | |
− | | f_5 | (y) | 0 1 0 1 | (u, v) | f_6 |
| + | \ / o-----o o-----o |
− | | | | | | |
| + | \ / \ / |
− | | f_6 | (x, y) | 0 1 1 0 | (u v) | f_7 |
| + | \ / \ / |
− | | | | | | |
| + | o o |
− | | f_7 | (x y) | 0 1 1 1 | (u v) | f_7 |
| + | U% $E$ $E$U% |
− | | | | | | |
| + | o------------------>o |
− | o------------o----------o-----------o----------o------------o | + | | | |
− | | | | | | |
| + | | | |
− | | f_8 | x y | 1 0 0 0 | u v | f_8 |
| + | | | |
− | | | | | | |
| + | | | |
− | | f_9 | ((x, y)) | 1 0 0 1 | u v | f_8 |
| + | J | | $E$J |
− | | | | | | |
| + | | | |
− | | f_10 | y | 1 0 1 0 | ((u, v)) | f_9 |
| + | | | |
− | | | | | | |
| + | | | |
− | | f_11 | (x (y)) | 1 0 1 1 | ((u, v)) | f_9 |
| + | v v |
− | | | | | | | | + | o------------------>o |
− | | f_12 | x | 1 1 0 0 | ((u)(v)) | f_14 |
| + | X% $E$ $E$X% |
− | | | | | | | | + | o o |
− | | f_13 | ((x) y) | 1 1 0 1 | ((u)(v)) | f_14 | | + | //\ /X\ |
− | | | | | | | | + | ////\ /XXX\ |
− | | f_14 | ((x)(y)) | 1 1 1 0 | (()) | f_15 | | + | //////\ /XXXXX\ |
− | | | | | | |
| + | ////////\ /XXXXXXX\ |
− | | f_15 | (()) | 1 1 1 1 | (()) | f_15 |
| + | //////////\ /XXXXXXXXX\ |
− | | | | | | |
| + | ////////////o oXXXXXXXXXXXo |
− | o------------o----------o-----------o----------o------------o | + | ///////////// \ //\XXXXXXXXX/\\ |
| + | ///////////// \ ////\XXXXXXX/\\\\ |
| + | ///////////// \ //////\XXXXX/\\\\\\ |
| + | ///////////// \ ////////\XXX/\\\\\\\\ |
| + | ///////////// \ //////////\X/\\\\\\\\\\ |
| + | o//////////// o o///////////o\\\\\\\\\\\o |
| + | |\////////// / |\////////// \\\\\\\\\\/| |
| + | | \//////// / | \//////// \\\\\\\\/ | |
| + | | \////// / | \////// \\\\\\/ | |
| + | | \//// / | \//// \\\\/ | |
| + | | x \// / | x \// \\/ dx | |
| + | o-----o / o-----o o-----o |
| + | \ / \ / |
| + | \ / \ / |
| + | \ / \ / |
| + | \ / \ / |
| + | \ / \ / |
| + | o o |
| + | |
| + | Figure 57-2. Secant Operator Diagram for the Conjunction J = uv |
| </pre> | | </pre> |
| | | |
− | ===Formula Display 14=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 57-2 -- Secant Operator Diagram for J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 57-2. Secant Operator Diagram for the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | |
− | <pre>
| + | ===Figure 57-3. Chord Operator Diagram for the Conjunction J = uv=== |
− | o-------------------------------------------------o
| |
− | | |
| |
− | | EG_i = G_i <u + du, v + dv> |
| |
− | | |
| |
− | o-------------------------------------------------o
| |
− | </pre>
| |
− | | |
− | ===Formula Display 15=== | |
| | | |
| <pre> | | <pre> |
− | o-------------------------------------------------o | + | o o |
− | | | | + | //\ //\ |
− | | DG_i = G_i <u, v> + EG_i <u, v, du, dv> | | + | ////\ ////\ |
− | | | | + | //////\ o/////o |
− | | = G_i <u, v> + G_i <u + du, v + dv> | | + | ////////\ /X\////X\ |
− | | | | + | //////////\ /XXX\//XXX\ |
− | o-------------------------------------------------o | + | o///////////o oXXXXXoXXXXXo |
− | </pre>
| + | / \////////// \ /\\XXX/X\XXX/\\ |
− | | + | / \//////// \ /\\\\X/XXX\X/\\\\ |
− | ===Formula Display 16===
| + | / \////// \ o\\\\\oXXXXXo\\\\\o |
− | | + | / \//// \ / \\\\/ \XXX/ \\\\/ \ |
− | <pre>
| + | / \// \ / \\/ \X/ \\/ \ |
− | o-------------------------------------------------o | + | o o o o o o o o |
− | | | | + | |\ / \ /| |\ / \ /\\ / \ /| |
− | | Ef = ((u + du)(v + dv)) | | + | | \ / \ / | | \ / \ /\\\\ / \ / | |
− | | | | + | | \ / \ / | | o o\\\\\o o | |
− | | Eg = ((u + du, v + dv)) | | + | | \ / \ / | | |\ / \\\\/ \ /| | |
− | | | | + | | u \ / \ / v | |u | \ / \\/ \ / | v| |
− | o-------------------------------------------------o | + | o-----o o-----o o--+--o o o--+--o |
− | </pre>
| + | \ / | \ / \ / | |
− | | + | \ / | du \ / \ / dv | |
− | ===Formula Display 17===
| + | \ / o-----o o-----o |
− | | + | \ / \ / |
− | <pre>
| + | \ / \ / |
− | o-------------------------------------------------o | + | o o |
− | | | | + | U% $D$ $E$U% |
− | | Df = ((u)(v)) + ((u + du)(v + dv)) | | + | o------------------>o |
− | | | | + | | | |
− | | Dg = ((u, v)) + ((u + du, v + dv)) | | + | | | |
− | | |
| + | | | |
− | o-------------------------------------------------o | + | | | |
| + | J | | $D$J |
| + | | | |
| + | | | |
| + | | | |
| + | v v |
| + | o------------------>o |
| + | X% $D$ $E$X% |
| + | o o |
| + | //\ /X\ |
| + | ////\ /XXX\ |
| + | //////\ /XXXXX\ |
| + | ////////\ /XXXXXXX\ |
| + | //////////\ /XXXXXXXXX\ |
| + | ////////////o oXXXXXXXXXXXo |
| + | ///////////// \ //\XXXXXXXXX/\\ |
| + | ///////////// \ ////\XXXXXXX/\\\\ |
| + | ///////////// \ //////\XXXXX/\\\\\\ |
| + | ///////////// \ ////////\XXX/\\\\\\\\ |
| + | ///////////// \ //////////\X/\\\\\\\\\\ |
| + | o//////////// o o///////////o\\\\\\\\\\\o |
| + | |\////////// / |\////////// \\\\\\\\\\/| |
| + | | \//////// / | \//////// \\\\\\\\/ | |
| + | | \////// / | \////// \\\\\\/ | |
| + | | \//// / | \//// \\\\/ | |
| + | | x \// / | x \// \\/ dx | |
| + | o-----o / o-----o o-----o |
| + | \ / \ / |
| + | \ / \ / |
| + | \ / \ / |
| + | \ / \ / |
| + | \ / \ / |
| + | o o |
| + | |
| + | Figure 57-3. Chord Operator Diagram for the Conjunction J = uv |
| </pre> | | </pre> |
| | | |
− | ===Table 66-i. Computation Summary for f‹u, v› = ((u)(v))=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 57-3 -- Chord Operator Diagram for J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 57-3. Chord Operator Diagram for the Conjunction ''J'' = ''uv'''''</font></center></p> |
| + | |
| + | ===Figure 57-4. Tangent Functor Diagram for the Conjunction J = uv=== |
| | | |
| <pre> | | <pre> |
− | Table 66-i. Computation Summary for f<u, v> = ((u)(v))
| + | o o |
− | o--------------------------------------------------------------------------------o | + | //\ //\ |
− | | |
| + | ////\ ////\ |
− | | !e!f = uv. 1 + u(v). 1 + (u)v. 1 + (u)(v). 0 |
| + | //////\ o/////o |
− | | | | + | ////////\ /X\////X\ |
− | | Ef = uv. (du dv) + u(v). (du (dv)) + (u)v.((du) dv) + (u)(v).((du)(dv)) | | + | //////////\ /XXX\//XXX\ |
− | | | | + | o///////////o oXXXXXoXXXXXo |
− | | Df = uv. du dv + u(v). du (dv) + (u)v. (du) dv + (u)(v).((du)(dv)) | | + | / \////////// \ /\\XXX//\XXX/\\ |
− | | | | + | / \//////// \ /\\\\X////\X/\\\\ |
− | | df = uv. 0 + u(v). du + (u)v. dv + (u)(v). (du, dv) | | + | / \////// \ o\\\\\o/////o\\\\\o |
− | | | | + | / \//// \ / \\\\/\\////\\\\\/ \ |
− | | rf = uv. du dv + u(v). du dv + (u)v. du dv + (u)(v). du dv | | + | / \// \ / \\/\\\\//\\\\\/ \ |
− | | |
| + | o o o o o\\\\\o\\\\\o o |
− | o--------------------------------------------------------------------------------o | + | |\ / \ /| |\ / \\\\/ \\\\/ \ /| |
− | </pre>
| + | | \ / \ / | | \ / \\/ \\/ \ / | |
− | | + | | \ / \ / | | o o o o | |
− | ===Table 66-ii. Computation Summary for g‹u, v› = ((u, v))===
| + | | \ / \ / | | |\ / \ / \ /| | |
− | | + | | u \ / \ / v | |u | \ / \ / \ / | v| |
− | <pre>
| + | o-----o o-----o o--+--o o o--+--o |
− | Table 66-ii. Computation Summary for g<u, v> = ((u, v))
| + | \ / | \ / \ / | |
− | o--------------------------------------------------------------------------------o | + | \ / | du \ / \ / dv | |
− | | |
| + | \ / o-----o o-----o |
− | | !e!g = uv. 1 + u(v). 0 + (u)v. 0 + (u)(v). 1 |
| + | \ / \ / |
− | | |
| + | \ / \ / |
− | | Eg = uv.((du, dv)) + u(v). (du, dv) + (u)v. (du, dv) + (u)(v).((du, dv)) |
| + | o o |
− | | | | + | U% $T$ $E$U% |
− | | Dg = uv. (du, dv) + u(v). (du, dv) + (u)v. (du, dv) + (u)(v). (du, dv) | | + | o------------------>o |
− | | | | + | | | |
− | | dg = uv. (du, dv) + u(v). (du, dv) + (u)v. (du, dv) + (u)(v). (du, dv) |
| + | | | |
− | | | | + | | | |
− | | rg = uv. 0 + u(v). 0 + (u)v. 0 + (u)(v). 0 | | + | | | |
− | | |
| + | J | | $T$J |
− | o--------------------------------------------------------------------------------o | + | | | |
− | </pre> | + | | | |
− | | + | | | |
− | ===Table 67. Computation of an Analytic Series in Terms of Coordinates=== | + | v v |
| + | o------------------>o |
| + | X% $T$ $E$X% |
| + | o o |
| + | //\ /X\ |
| + | ////\ /XXX\ |
| + | //////\ /XXXXX\ |
| + | ////////\ /XXXXXXX\ |
| + | //////////\ /XXXXXXXXX\ |
| + | ////////////o oXXXXXXXXXXXo |
| + | ///////////// \ //\XXXXXXXXX/\\ |
| + | ///////////// \ ////\XXXXXXX/\\\\ |
| + | ///////////// \ //////\XXXXX/\\\\\\ |
| + | ///////////// \ ////////\XXX/\\\\\\\\ |
| + | ///////////// \ //////////\X/\\\\\\\\\\ |
| + | o//////////// o o///////////o\\\\\\\\\\\o |
| + | |\////////// / |\////////// \\\\\\\\\\/| |
| + | | \//////// / | \//////// \\\\\\\\/ | |
| + | | \////// / | \////// \\\\\\/ | |
| + | | \//// / | \//// \\\\/ | |
| + | | x \// / | x \// \\/ dx | |
| + | o-----o / o-----o o-----o |
| + | \ / \ / |
| + | \ / \ / |
| + | \ / \ / |
| + | \ / \ / |
| + | \ / \ / |
| + | o o |
| + | |
| + | Figure 57-4. Tangent Functor Diagram for the Conjunction J = uv |
| + | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 57-4 -- Tangent Functor Diagram for J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 57-4. Tangent Functor Diagram for the Conjunction ''J'' = ''uv'''''</font></center></p> |
| + | |
| + | ===Formula Display 11=== |
| | | |
| <pre> | | <pre> |
− | Table 67. Computation of an Analytic Series in Terms of Coordinates
| + | o-----------------------------------------------------------o |
− | o--------o-------o-------o--------o-------o-------o-------o-------o | + | | | |
− | | u v | du dv | u' v' | f g | Ef Eg | Df Dg | df dg | rf rg | | + | | F = <f, g> = <F_1, F_2> : [u, v] -> [x, y] | |
− | o--------o-------o-------o--------o-------o-------o-------o-------o
| + | | | |
− | | | | | | | | | |
| + | | where f = F_1 : [u, v] -> [x] | |
− | | 0 0 | 0 0 | 0 0 | 0 1 | 0 1 | 0 0 | 0 0 | 0 0 |
| + | | | |
− | | | | | | | | | | | + | | and g = F_2 : [u, v] -> [y] | |
− | | | 0 1 | 0 1 | | 1 0 | 1 1 | 1 1 | 0 0 | | + | | | |
− | | | | | | | | | | | + | o-----------------------------------------------------------o |
− | | | 1 0 | 1 0 | | 1 0 | 1 1 | 1 1 | 0 0 | | + | </pre> |
− | | | | | | | | | |
| + | |
− | | | 1 1 | 1 1 | | 1 1 | 1 0 | 0 0 | 1 0 | | + | <br><font face="courier new"> |
− | | | | | | | | | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" |
− | o--------o-------o-------o--------o-------o-------o-------o-------o | + | | |
− | | | | | | | | | |
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" |
− | | 0 1 | 0 0 | 0 1 | 1 0 | 1 0 | 0 0 | 0 0 | 0 0 | | + | | ''F'' |
− | | | | | | | | | | | + | | = |
− | | | 0 1 | 0 0 | | 0 1 | 1 1 | 1 1 | 0 0 | | + | | align="center" | ‹''f'', ''g''› |
− | | | | | | | | | | | + | | = |
− | | | 1 0 | 1 1 | | 1 1 | 0 1 | 0 1 | 0 0 | | + | | align="center" | ‹''F''<sub>1</sub>, ''F''<sub>2</sub>› |
− | | | | | | | | | | | + | | : |
− | | | 1 1 | 1 0 | | 1 0 | 0 0 | 1 0 | 1 0 | | + | | <nowiki>[</nowiki>''u'', ''v''<nowiki>]</nowiki> |
− | | | | | | | | | | | + | | → |
− | o--------o-------o-------o--------o-------o-------o-------o-------o
| + | | <nowiki>[</nowiki>''x'', ''y''<nowiki>]</nowiki> |
− | | | | | | | | | | | + | |- |
− | | 1 0 | 0 0 | 1 0 | 1 0 | 1 0 | 0 0 | 0 0 | 0 0 | | + | | colspan="2" | where |
− | | | | | | | | | | | + | | align="center" | ''f'' |
− | | | 0 1 | 1 1 | | 1 1 | 0 1 | 0 1 | 0 0 | | + | | = |
− | | | | | | | | | | | + | | align="center" | ''F''<sub>1</sub> |
− | | | 1 0 | 0 0 | | 0 1 | 1 1 | 1 1 | 0 0 | | + | | : |
− | | | | | | | | | | | + | | <nowiki>[</nowiki>''u'', ''v''<nowiki>]</nowiki> |
− | | | 1 1 | 0 1 | | 1 0 | 0 0 | 1 0 | 1 0 | | + | | → |
− | | | | | | | | | | | + | | <nowiki>[</nowiki>''x''<nowiki>]</nowiki> |
− | o--------o-------o-------o--------o-------o-------o-------o-------o
| + | |- |
− | | | | | | | | | | | + | | colspan="2" | and |
− | | 1 1 | 0 0 | 1 1 | 1 1 | 1 1 | 0 0 | 0 0 | 0 0 | | + | | align="center" | ''g'' |
− | | | | | | | | | | | + | | = |
− | | | 0 1 | 1 0 | | 1 0 | 0 1 | 0 1 | 0 0 | | + | | align="center" | ''F''<sub>2</sub> |
− | | | | | | | | | | | + | | : |
− | | | 1 0 | 0 1 | | 1 0 | 0 1 | 0 1 | 0 0 | | + | | <nowiki>[</nowiki>''u'', ''v''<nowiki>]</nowiki> |
− | | | | | | | | | | | + | | → |
− | | | 1 1 | 0 0 | | 0 1 | 1 0 | 0 0 | 1 0 | | + | | <nowiki>[</nowiki>''y''<nowiki>]</nowiki> |
− | | | | | | | | | | | + | |} |
− | o--------o-------o-------o--------o-------o-------o-------o-------o
| + | |} |
− | </pre> | + | </font><br> |
| | | |
− | ===Table 68. Computation of an Analytic Series in Symbolic Terms=== | + | <br><font face="courier new"> |
− | | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
− | <pre>
| + | | |
− | Table 68. Computation of an Analytic Series in Symbolic Terms
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | o-----o-----o------------o----------o----------o----------o----------o----------o
| + | | align="left" | ''F'' |
− | | u v | f g | Df | Dg | df | dg | rf | rf | | + | | = |
− | o-----o-----o------------o----------o----------o----------o----------o----------o
| + | | ‹''f'', ''g''› |
− | | | | | | | | | | | + | | = |
− | | 0 0 | 0 1 | ((du)(dv)) | (du, dv) | (du, dv) | (du, dv) | du dv | () | | + | | ‹''F''<sub>1</sub>, ''F''<sub>2</sub>› |
− | | | | | | | | | | | + | | : |
− | | 0 1 | 1 0 | (du) dv | (du, dv) | dv | (du, dv) | du dv | () | | + | | <nowiki>[</nowiki>''u'', ''v''<nowiki>]</nowiki> |
− | | | | | | | | | | | + | | → |
− | | 1 0 | 1 0 | du (dv) | (du, dv) | du | (du, dv) | du dv | () | | + | | <nowiki>[</nowiki>''x'', ''y''<nowiki>]</nowiki> |
− | | | | | | | | | | | + | |- |
− | | 1 1 | 1 1 | du dv | (du, dv) | () | (du, dv) | du dv | () | | + | | align="left" colspan="2" | where |
− | | | | | | | | | | | + | | ''f'' |
− | o-----o-----o------------o----------o----------o----------o----------o----------o
| + | | = |
− | </pre> | + | | ''F''<sub>1</sub> |
| + | | : |
| + | | <nowiki>[</nowiki>''u'', ''v''<nowiki>]</nowiki> |
| + | | → |
| + | | <nowiki>[</nowiki>''x''<nowiki>]</nowiki> |
| + | |- |
| + | | align="left" colspan="2" | and |
| + | | ''g'' |
| + | | = |
| + | | ''F''<sub>2</sub> |
| + | | : |
| + | | <nowiki>[</nowiki>''u'', ''v''<nowiki>]</nowiki> |
| + | | → |
| + | | <nowiki>[</nowiki>''y''<nowiki>]</nowiki> |
| + | |} |
| + | |} |
| + | </font><br> |
| | | |
− | ===Formula Display 18=== | + | ===Table 58. Cast of Characters: Expansive Subtypes of Objects and Operators=== |
| | | |
| <pre> | | <pre> |
− | o-------------------------------------------------------------------------o | + | Table 58. Cast of Characters: Expansive Subtypes of Objects and Operators |
− | | | | + | o------o-------------------------o------------------o----------------------------o |
− | | Df = uv. du dv + u(v). du (dv) + (u)v.(du) dv + (u)(v).((du)(dv)) | | + | | Item | Notation | Description | Type | |
− | | |
| + | o------o-------------------------o------------------o----------------------------o |
− | | Dg = uv.(du, dv) + u(v).(du, dv) + (u)v.(du, dv) + (u)(v). (du, dv) |
| + | | | | | | |
− | | | | + | | U% | = [u, v] | Source Universe | [B^n] | |
− | o-------------------------------------------------------------------------o
| + | | | | | | |
− | </pre>
| + | o------o-------------------------o------------------o----------------------------o |
− | | + | | | | | | |
− | ===Figure 69. Difference Map of F = ‹f, g› = ‹((u)(v)), ((u, v))›=== | + | | X% | = [x, y] | Target Universe | [B^k] | |
− | | + | | | = [f, g] | | | |
− | <pre>
| + | | | | | | |
− | o-----------------------------------o o-----------------------------------o | + | o------o-------------------------o------------------o----------------------------o |
− | | U | |`U`````````````````````````````````| | + | | | | | | |
− | | | |```````````````````````````````````| | + | | EU% | = [u, v, du, dv] | Extended | [B^n x D^n] | |
− | | ^ | |```````````````````````````````````| | + | | | | Source Universe | | |
− | | | | |```````````````````````````````````| | + | | | | | | |
− | | o-------o | o-------o | |```````o-------o```o-------o```````|
| + | o------o-------------------------o------------------o----------------------------o |
− | | ^ /`````````\|/`````````\ ^ | | ^ ```/ ^ \`/ ^ \``` ^ |
| + | | | | | | |
− | | \ /```````````|```````````\ / | |``\``/ \ o / \``/``|
| + | | EX% | = [x, y, dx, dy] | Extended | [B^k x D^k] | |
− | | \/`````u`````/|\`````v`````\/ | |```\/ u \/`\/ v \/```|
| + | | | = [f, g, df, dg] | Target Universe | | |
− | | /\``````````/`|`\``````````/\ | |```/\ /\`/\ /\```| | + | | | | | | |
− | | o``\````````o``@``o````````/``o | |``o \ o``@``o / o``| | + | o------o-------------------------o------------------o----------------------------o |
− | | |```\```````|`````|```````/```| | |``| \ |`````| / |``| | + | | | | | | |
− | | |````@``````|`````|``````@````| | |``| @-------->`<--------@ |``|
| + | | F | F = <f, g> : U% -> X% | Transformation, | [B^n] -> [B^k] | |
− | | |```````````|`````|```````````| | |``| |`````| |``|
| + | | | | or Mapping | | |
− | | o```````````o` ^ `o```````````o | |``o o`````o o``|
| + | | | | | | |
− | | \```````````\`|`/```````````/ | |```\ \```/ /```| | + | o------o-------------------------o------------------o----------------------------o |
− | | \```` ^ ````\|/```` ^ ````/ | |````\ ^ \`/ ^ /````| | + | | | | | | |
− | | \`````\`````|`````/`````/ | |`````\ \ o / /`````| | + | | | f, g : U -> B | Proposition, | B^n -> B | |
− | | \`````\```/|\```/`````/ | |``````\ \ /`\ / /``````| | + | | | | special case | | |
− | | o-----\-o | o-/-----o | |```````o-----\-o```o-/-----o```````|
| + | | f | f : U -> [x] c X% | of a mapping, | c (B^n, B^n -> B) | |
− | | \ | / | |``````````````\`````/``````````````|
| + | | | | or component | | |
− | | \ | / | |```````````````\```/```````````````|
| + | | g | g : U -> [y] c X% | of a mapping. | = (B^n +-> B) = [B^n] | |
− | | \|/ | |````````````````\`/````````````````|
| + | | | | | | |
− | | @ | |`````````````````@`````````````````|
| + | o------o-------------------------o------------------o----------------------------o |
− | o-----------------------------------o o-----------------------------------o
| + | | | | | | |
− | \ / \ /
| + | | W | W : | Operator | | |
− | \ / \ /
| + | | | U% -> EU%, | | [B^n] -> [B^n x D^n], | |
− | \ ((u)(v)) / \ ((u, v)) /
| + | | | X% -> EX%, | | [B^k] -> [B^k x D^k], | |
− | \ / \ /
| + | | | (U%->X%)->(EU%->EX%), | | ([B^n] -> [B^k]) | |
− | \ / \ /
| + | | | for each W among: | | -> | |
− | o----------\-------------/-----------------------\-------------/----------o
| + | | | !e!, !h!, E, D, d | | ([B^n x D^n]->[B^k x D^k]) | |
− | | X \ / \ / |
| + | | | | | | |
− | | \ / \ / |
| + | o------o-------------------------o------------------o----------------------------o |
− | | \ / \ / |
| + | | | | | |
− | | o----------------o o----------------o |
| + | | !e! | | Tacit Extension Operator !e! | |
− | | / \ / \ |
| + | | !h! | | Trope Extension Operator !h! | |
− | | / o \ | | + | | E | | Enlargement Operator E | |
− | | / / \ \ | | + | | D | | Difference Operator D | |
− | | / / \ \ | | + | | d | | Differential Operator d | |
− | | / / \ \ | | + | | | | | |
− | | / / \ \ | | + | o------o-------------------------o------------------o----------------------------o |
− | | / / \ \ | | + | | | | | | |
− | | o o o o | | + | | $W$ | $W$ : | Operator | | |
− | | | | | | | | + | | | U% -> $T$U% = EU%, | | [B^n] -> [B^n x D^n], | |
− | | | | | | | | + | | | X% -> $T$X% = EX%, | | [B^k] -> [B^k x D^k], | |
− | | | f | | g | | | + | | | (U%->X%)->($T$U%->$T$X%)| | ([B^n] -> [B^k]) | |
− | | | | | | |
| + | | | for each $W$ among: | | -> | |
− | | | | | | |
| + | | | $e$, $E$, $D$, $T$ | | ([B^n x D^n]->[B^k x D^k]) | |
− | | o o o o |
| + | | | | | | |
− | | \ \ / / |
| + | o------o-------------------------o------------------o----------------------------o |
− | | \ \ / / |
| + | | | | | |
− | | \ \ / / |
| + | | $e$ | | Radius Operator $e$ = <!e!, !h!> | |
− | | \ \ / / |
| + | | $E$ | | Secant Operator $E$ = <!e!, E > | |
− | | \ \ / / |
| + | | $D$ | | Chord Operator $D$ = <!e!, D > | |
− | | \ o / |
| + | | $T$ | | Tangent Functor $T$ = <!e!, d > | |
− | | \ / \ / |
| + | | | | | |
− | | o----------------o o----------------o |
| + | o------o-------------------------o-----------------------------------------------o |
− | | | | |
− | | | | |
− | | | | |
− | o-------------------------------------------------------------------------o
| |
− | Figure 69. Difference Map of F = <f, g> = <((u)(v)), ((u, v))>
| |
| </pre> | | </pre> |
| | | |
− | ===Formula Display 19=== | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:left; width:96%" |
− | | + | |+ '''Table 58. Cast of Characters: Expansive Subtypes of Objects and Operators''' |
− | <pre> | + | |- style="background:paleturquoise" |
− | o-------------------------------------------------------------------------------o
| + | ! Item |
− | | | | + | ! Notation |
− | | df = uv. 0 + u(v). du + (u)v. dv + (u)(v).(du, dv) | | + | ! Description |
− | | | | + | ! Type |
− | | dg = uv.(du, dv) + u(v).(du, dv) + (u)v.(du, dv) + (u)(v).(du, dv) | | + | |- |
− | | | | + | | valign="top" | ''U''<sup> •</sup> |
− | o-------------------------------------------------------------------------------o
| + | | valign="top" | <font face="courier new">= </font>[''u'', ''v''] |
− | </pre> | + | | valign="top" | Source Universe |
− | | + | | valign="top" | ['''B'''<sup>''n''</sup>] |
− | ===Figure 70-a. Tangent Functor Diagram for F‹u, v› = ‹((u)(v)), ((u, v))›=== | + | |- |
− | | + | | valign="top" | ''X''<sup> •</sup> |
− | <pre> | + | | valign="top" | |
− | o o
| + | {| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | / \ / \
| + | | <font face="courier new">= </font>[''x'', ''y''] |
− | / \ / \
| + | |- |
− | / \ / O \
| + | | <font face="courier new">= </font>[''f'', ''g''] |
− | / \ o /@\ o
| + | |} |
− | / \ / \ / \
| + | | valign="top" | Target Universe |
− | / \ / \ / \
| + | | valign="top" | ['''B'''<sup>''k''</sup>] |
− | / O \ / O \ / O \
| + | |- |
− | o /@\ o o /@\ o /@\ o
| + | | valign="top" | E''U''<sup> •</sup> |
− | / \ / \ / \ \ / \ \ / \
| + | | valign="top" | <font face="courier new">= </font>[''u'', ''v'', d''u'', d''v''] |
− | / \ / \ / \ / \ / \
| + | | valign="top" | Extended Source Universe |
− | / \ / \ / O \ / O \ / O \
| + | | valign="top" | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] |
− | / \ / \ o /@ o /@\ o /@ o
| + | |- |
− | / \ / \ / \ \ / \ / \ \ / \
| + | | valign="top" | E''X''<sup> •</sup> |
− | / \ / \ / \ / \ / \ / \
| + | | valign="top" | |
− | / O \ / O \ / O \ / O \ / O \ / O \
| + | {| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | o /@ o /@ o o /@ o /@ o /@ o /@ o
| + | | <font face="courier new">= </font>[''x'', ''y'', d''x'', d''y''] |
− | |\ / \ /| |\ / \ / / \ / / \ /| | + | |- |
− | | \ / \ / | | \ / \ / \ / \ / | | + | | <font face="courier new">= </font>[''f'', ''g'', d''f'', d''g''] |
− | | \ / \ / | | \ / O \ / O \ / O \ / | | + | |} |
− | | \ / \ / | | o /@ o @\ o /@ o | | + | | valign="top" | Extended Target Universe |
− | | \ / \ / | | |\ / \ / \ / \ / \ /| | | + | | valign="top" | ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>] |
− | | \ / \ / | | | \ / \ / \ / | | | + | |- |
− | | u \ / O \ / v | | u | \ / O \ / O \ / | v | | + | | ''F'' |
− | o-------o @\ o-------o o---+---o @\ o @\ o---+---o
| + | | ''F'' = ‹''f'', ''g''› : ''U''<sup> •</sup> → ''X''<sup> •</sup> |
− | \ / | \ / \ / \ / \ / |
| + | | Transformation, or Mapping |
− | \ / | \ / \ / |
| + | | ['''B'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup>] |
− | \ / | du \ / O \ / dv |
| + | |- |
− | \ / o-------o @\ o-------o
| + | | valign="top" | |
− | \ / \ /
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | \ / \ /
| + | | |
− | \ / \ /
| + | |- |
− | o o
| + | | ''f'' |
− | U% $T$ $E$U%
| + | |- |
− | o------------------>o
| + | | ''g'' |
− | | |
| + | |} |
− | | |
| + | | valign="top" | |
− | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | |
| + | | ''f'', ''g'' : ''U'' → '''B''' |
− | F | | $T$F
| + | |- |
− | | |
| + | | ''f'' : ''U'' → [''x''] ⊆ ''X''<sup> •</sup> |
− | | |
| + | |- |
− | | |
| + | | ''g'' : ''U'' → [''y''] ⊆ ''X''<sup> •</sup> |
− | v v
| + | |} |
− | o------------------>o
| + | | valign="top" | |
− | X% $T$ $E$X%
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | o o
| + | | Proposition |
− | / \ / \
| + | |} |
− | / \ / \
| + | | valign="top" | |
− | / \ / O \
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100" |
− | / \ o /@\ o
| + | | '''B'''<sup>''n''</sup> → '''B''' |
− | / \ / \ / \
| + | |- |
− | / \ / \ / \
| + | | ∈ ('''B'''<sup>''n''</sup>, '''B'''<sup>''n''</sup> → '''B''') |
− | / O \ / O \ / O \
| + | |- |
− | o /@\ o o /@\ o /@\ o
| + | | = ('''B'''<sup>''n''</sup> +→ '''B''') = ['''B'''<sup>''n''</sup>] |
− | / \ / \ / \ \ / \ / / \
| + | |} |
− | / \ / \ / \ / \ / \
| + | |- |
− | / \ / \ / O \ / O \ / O \
| + | | valign="top" | |
− | / \ / \ o /@ o /@\ o @\ o
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | / \ / \ / \ \ / \ / \ / \ / / \
| + | | W |
− | / \ / \ / \ / \ / \ / \
| + | |} |
− | / O \ / O \ / O \ / O \ / O \ / O \
| + | | valign="top" | |
− | o /@ o @\ o o /@ o /@ o @\ o @\ o
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | |\ / \ /| |\ / \ / \ / \ / \ / \ /| | + | | W : |
− | | \ / \ / | | \ / \ / \ / \ / | | + | |- |
− | | \ / \ / | | \ / O \ / O \ / O \ / | | + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , |
− | | \ / \ / | | o /@ o @ o @\ o | | + | |- |
− | | \ / \ / | | |\ / / \ / \ / \ \ /| | | + | | ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
− | | \ / \ / | | | \ / \ / \ / | | | + | |- |
− | | x \ / O \ / y | | x | \ / O \ / O \ / | y | | + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) |
− | o-------o @ o-------o o---+---o @ o @ o---+---o
| + | |- |
− | \ / | \ / / \ \ / |
| + | | → |
− | \ / | \ / \ / |
| + | |- |
− | \ / | dx \ / O \ / dy |
| + | | (E''U''<sup> •</sup> → E''X''<sup> •</sup>) , |
− | \ / o-------o @ o-------o
| + | |- |
− | \ / \ /
| + | | for each W in the set: |
− | \ / \ /
| + | |- |
− | \ / \ /
| + | | {<math>\epsilon</math>, <math>\eta</math>, E, D, d} |
− | o o
| + | |} |
| + | | valign="top" | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | Operator |
| + | |} |
| + | | valign="top" | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100" |
| + | | |
| + | |- |
| + | | ['''B'''<sup>''n''</sup>] → ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] , |
| + | |- |
| + | | ['''B'''<sup>''k''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>] , |
| + | |- |
| + | | (['''B'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup>]) |
| + | |- |
| + | | → |
| + | |- |
| + | | (['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>]) |
| + | |- |
| + | | |
| + | |- |
| + | | |
| + | |} |
| + | |- |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <math>\epsilon</math> |
| + | |- |
| + | | <math>\eta</math> |
| + | |- |
| + | | E |
| + | |- |
| + | | D |
| + | |- |
| + | | d |
| + | |} |
| + | | valign="top" | |
| + | | colspan="2" | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:60%" |
| + | | Tacit Extension Operator || <math>\epsilon</math> |
| + | |- |
| + | | Trope Extension Operator || <math>\eta</math> |
| + | |- |
| + | | Enlargement Operator || E |
| + | |- |
| + | | Difference Operator || D |
| + | |- |
| + | | Differential Operator || d |
| + | |} |
| + | |- |
| + | | valign="top" | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <font face=georgia>'''W'''</font> |
| + | |} |
| + | | valign="top" | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <font face=georgia>'''W'''</font> : |
| + | |- |
| + | | ''U''<sup> •</sup> → <font face=georgia>'''T'''</font>''U''<sup> •</sup> = E''U''<sup> •</sup> , |
| + | |- |
| + | | ''X''<sup> •</sup> → <font face=georgia>'''T'''</font>''X''<sup> •</sup> = E''X''<sup> •</sup> , |
| + | |- |
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) |
| + | |- |
| + | | → |
| + | |- |
| + | | (<font face=georgia>'''T'''</font>''U''<sup> •</sup> → <font face=georgia>'''T'''</font>''X''<sup> •</sup>) , |
| + | |- |
| + | | for each <font face=georgia>'''W'''</font> in the set: |
| + | |- |
| + | | {<font face=georgia>'''e'''</font>, <font face=georgia>'''E'''</font>, <font face=georgia>'''D'''</font>, <font face=georgia>'''T'''</font>} |
| + | |} |
| + | | valign="top" | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | Operator |
| + | |} |
| + | | valign="top" | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100" |
| + | | |
| + | |- |
| + | | ['''B'''<sup>''n''</sup>] → ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] , |
| + | |- |
| + | | ['''B'''<sup>''k''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>] , |
| + | |- |
| + | | (['''B'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup>]) |
| + | |- |
| + | | → |
| + | |- |
| + | | (['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>]) |
| + | |- |
| + | | |
| + | |- |
| + | | |
| + | |} |
| + | |- |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <font face=georgia>'''e'''</font> |
| + | |- |
| + | | <font face=georgia>'''E'''</font> |
| + | |- |
| + | | <font face=georgia>'''D'''</font> |
| + | |- |
| + | | <font face=georgia>'''T'''</font> |
| + | |} |
| + | | valign="top" | |
| + | | colspan="2" | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:60%" |
| + | | Radius Operator || <font face=georgia>'''e'''</font> = ‹<math>\epsilon</math>, <math>\eta</math>› |
| + | |- |
| + | | Secant Operator || <font face=georgia>'''E'''</font> = ‹<math>\epsilon</math>, E› |
| + | |- |
| + | | Chord Operator || <font face=georgia>'''D'''</font> = ‹<math>\epsilon</math>, D› |
| + | |- |
| + | | Tangent Functor || <font face=georgia>'''T'''</font> = ‹<math>\epsilon</math>, d› |
| + | |} |
| + | |}<br> |
| | | |
− | Figure 70-a. Tangent Functor Diagram for F‹u, v› = <((u)(v)), ((u, v))>
| + | ===Table 59. Synopsis of Terminology: Restrictive and Alternative Subtypes=== |
− | </pre>
| |
− | | |
− | ===Figure 70-b. Tangent Functor Ferris Wheel for F‹u, v› = ‹((u)(v)), ((u, v))›=== | |
| | | |
| <pre> | | <pre> |
− | o-----------------------o o-----------------------o o-----------------------o | + | Table 59. Synopsis of Terminology: Restrictive and Alternative Subtypes |
− | | dU | | dU | | dU | | + | o--------------o----------------------o--------------------o----------------------o |
− | | o--o o--o | | o--o o--o | | o--o o--o | | + | | | Operator | Proposition | Transformation | |
− | | /////\ /////\ | | /XXXX\ /XXXX\ | | /\\\\\ /\\\\\ |
| + | | | or | or | or | |
− | | ///////o//////\ | | /XXXXXXoXXXXXX\ | | /\\\\\\o\\\\\\\ | | + | | | Operand | Component | Mapping | |
− | | //////// \//////\ | | /XXXXXX/ \XXXXXX\ | | /\\\\\\/ \\\\\\\\ | | + | o--------------o----------------------o--------------------o----------------------o |
− | | o/////// \//////o | | oXXXXXX/ \XXXXXXo | | o\\\\\\/ \\\\\\\o | | + | | | | | | |
− | | |/////o o/////| | | |XXXXXo oXXXXX| | | |\\\\\o o\\\\\| | | + | | Operand | F = <F_1, F_2> | F_i : <|u,v|> -> B | F : [u, v] -> [x, y] | |
− | | |/du//| |//dv/| | | |XXXXX| |XXXXX| | | |\du\\| |\\dv\| |
| + | | | | | | |
− | | |/////o o/////| | | |XXXXXo oXXXXX| | | |\\\\\o o\\\\\| | | + | | | F = <f, g> : U -> X | F_i : B^n -> B | F : B^n -> B^k | |
− | | o//////\ ///////o | | oXXXXXX\ /XXXXXXo | | o\\\\\\\ /\\\\\\o | | + | | | | | | |
− | | \//////\ //////// | | \XXXXXX\ /XXXXXX/ | | \\\\\\\\ /\\\\\\/ |
| + | o--------------o----------------------o--------------------o----------------------o |
− | | \//////o/////// | | \XXXXXXoXXXXXX/ | | \\\\\\\o\\\\\\/ |
| + | | | | | | |
− | | \///// \///// | | \XXXX/ \XXXX/ | | \\\\\/ \\\\\/ |
| + | | Tacit | !e! : | !e!F_i : | !e!F : | |
− | | o--o o--o | | o--o o--o | | o--o o--o | | + | | Extension | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> B | [u,v,du,dv]->[x, y] | |
− | | | | | | | | + | | | (U%->X%)->(EU%->X%) | B^n x D^n -> B | [B^n x D^n]->[B^k] | |
− | o-----------------------o o-----------------------o o-----------------------o
| + | | | | | | |
− | = du' @ (u)(v) o-----------------------o dv' @ (u)(v) =
| + | o--------------o----------------------o--------------------o----------------------o |
− | = | dU' | =
| + | | | | | | |
− | = | o--o o--o | =
| + | | Trope | !h! : | !h!F_i : | !h!F : | |
− | = | /////\ /\\\\\ | =
| + | | Extension | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] | |
− | = | ///////o\\\\\\\ | =
| + | | | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] | |
− | = | ////////X\\\\\\\\ | =
| + | | | | | | |
− | = | o///////XXX\\\\\\\o | =
| + | o--------------o----------------------o--------------------o----------------------o |
− | = | |/////oXXXXXo\\\\\| | =
| + | | | | | | |
− | = = = = = = = = = = =|/du'/|XXXXX|\dv'\|= = = = = = = = = = =
| + | | Enlargement | E : | EF_i : | EF : | |
− | | |/////oXXXXXo\\\\\| |
| + | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] | |
− | | o//////\XXX/\\\\\\o |
| + | | | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] | |
− | | \//////\X/\\\\\\/ |
| + | | | | | | |
− | | \//////o\\\\\\/ |
| + | o--------------o----------------------o--------------------o----------------------o |
− | | \///// \\\\\/ |
| + | | | | | | |
− | | o--o o--o |
| + | | Difference | D : | DF_i : | DF : | |
− | | |
| + | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] | |
− | o-----------------------o
| + | | | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] | |
− | | + | | | | | | |
− | o-----------------------o o-----------------------o o-----------------------o
| + | o--------------o----------------------o--------------------o----------------------o |
− | | dU | | dU | | dU |
| + | | | | | | |
− | | o--o o--o | | o--o o--o | | o--o o--o |
| + | | Differential | d : | dF_i : | dF : | |
− | | / \ /////\ | | /\\\\\ /XXXX\ | | /\\\\\ /\\\\\ |
| + | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] | |
− | | / o//////\ | | /\\\\\\oXXXXXX\ | | /\\\\\\o\\\\\\\ | | + | | | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] | |
− | | / //\//////\ | | /\\\\\\//\XXXXXX\ | | /\\\\\\/ \\\\\\\\ | | + | | | | | | |
− | | o ////\//////o | | o\\\\\\////\XXXXXXo | | o\\\\\\/ \\\\\\\o | | + | o--------------o----------------------o--------------------o----------------------o |
− | | | o/////o/////| | | |\\\\\o/////oXXXXX| | | |\\\\\o o\\\\\| |
| + | | | | | | |
− | | | du |/////|//dv/| | | |\\\\\|/////|XXXXX| | | |\du\\| |\\dv\| | | + | | Remainder | r : | rF_i : | rF : | |
− | | | o/////o/////| | | |\\\\\o/////oXXXXX| | | |\\\\\o o\\\\\| | | + | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] | |
− | | o \//////////o | | o\\\\\\\////XXXXXXo | | o\\\\\\\ /\\\\\\o | | + | | | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] | |
− | | \ \///////// | | \\\\\\\\//XXXXXX/ | | \\\\\\\\ /\\\\\\/ |
| + | | | | | | |
− | | \ o/////// | | \\\\\\\oXXXXXX/ | | \\\\\\\o\\\\\\/ |
| + | o--------------o----------------------o--------------------o----------------------o |
− | | \ / \///// | | \\\\\/ \XXXX/ | | \\\\\/ \\\\\/ | | + | | | | | | |
− | | o--o o--o | | o--o o--o | | o--o o--o | | + | | Radius | $e$ = <!e!, !h!> : | | $e$F : | |
− | | | | | | | | + | | Operator | | | | |
− | o-----------------------o o-----------------------o o-----------------------o
| + | | | U%->EU%, X%->EX%, | | [u, v, du, dv] -> | |
− | = du' @ (u) v o-----------------------o dv' @ (u) v =
| + | | | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], | |
− | = | dU' | =
| + | | | | | | |
− | = | o--o o--o | =
| + | | | | | [B^n x D^n] -> | |
− | = | /////\ /\\\\\ | = | + | | | | | [B^k x D^k] | |
− | = | ///////o\\\\\\\ | =
| + | | | | | | |
− | = | ////////X\\\\\\\\ | =
| + | o--------------o----------------------o--------------------o----------------------o |
− | = | o///////XXX\\\\\\\o | =
| + | | | | | | |
− | = | |/////oXXXXXo\\\\\| | =
| + | | Secant | $E$ = <!e!, E> : | | $E$F : | |
− | = = = = = = = = = = =|/du'/|XXXXX|\dv'\|= = = = = = = = = = =
| + | | Operator | | | | |
− | | |/////oXXXXXo\\\\\| |
| + | | | U%->EU%, X%->EX%, | | [u, v, du, dv] -> | |
− | | o//////\XXX/\\\\\\o |
| + | | | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], | |
− | | \//////\X/\\\\\\/ |
| + | | | | | | |
− | | \//////o\\\\\\/ |
| + | | | | | [B^n x D^n] -> | |
− | | \///// \\\\\/ |
| + | | | | | [B^k x D^k] | |
− | | o--o o--o |
| + | | | | | | |
− | | |
| + | o--------------o----------------------o--------------------o----------------------o |
− | o-----------------------o
| + | | | | | | |
− | | + | | Chord | $D$ = <!e!, D> : | | $D$F : | |
− | o-----------------------o o-----------------------o o-----------------------o | + | | Operator | | | | |
− | | dU | | dU | | dU |
| + | | | U%->EU%, X%->EX%, | | [u, v, du, dv] -> | |
− | | o--o o--o | | o--o o--o | | o--o o--o |
| + | | | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], | |
− | | /////\ / \ | | /XXXX\ /\\\\\ | | /\\\\\ /\\\\\ |
| + | | | | | | |
− | | ///////o \ | | /XXXXXXo\\\\\\\ | | /\\\\\\o\\\\\\\ |
| + | | | | | [B^n x D^n] -> | |
− | | /////////\ \ | | /XXXXXX//\\\\\\\\ | | /\\\\\\/ \\\\\\\\ |
| + | | | | | [B^k x D^k] | |
− | | o//////////\ o | | oXXXXXX////\\\\\\\o | | o\\\\\\/ \\\\\\\o |
| + | | | | | | |
− | | |/////o/////o | | | |XXXXXo/////o\\\\\| | | |\\\\\o o\\\\\| |
| + | o--------------o----------------------o--------------------o----------------------o |
− | | |/du//|/////| dv | | | |XXXXX|/////|\\\\\| | | |\du\\| |\\dv\| |
| + | | | | | | |
− | | |/////o/////o | | | |XXXXXo/////o\\\\\| | | |\\\\\o o\\\\\| |
| + | | Tangent | $T$ = <!e!, d> : | dF_i : | $T$F : | |
− | | o//////\//// o | | oXXXXXX\////\\\\\\o | | o\\\\\\\ /\\\\\\o |
| + | | Functor | | | | |
− | | \//////\// / | | \XXXXXX\//\\\\\\/ | | \\\\\\\\ /\\\\\\/ |
| + | | | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u, v, du, dv] -> | |
− | | \//////o / | | \XXXXXXo\\\\\\/ | | \\\\\\\o\\\\\\/ |
| + | | | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], | |
− | | \///// \ / | | \XXXX/ \\\\\/ | | \\\\\/ \\\\\/ |
| + | | | | | | |
− | | o--o o--o | | o--o o--o | | o--o o--o |
| + | | | | B^n x D^n -> D | [B^n x D^n] -> | |
− | | | | | | |
| + | | | | | [B^k x D^k] | |
− | o-----------------------o o-----------------------o o-----------------------o
| + | | | | | | |
− | = du' @ u (v) o-----------------------o dv' @ u (v) =
| + | o--------------o----------------------o--------------------o----------------------o |
− | = | dU' | =
| + | </pre> |
− | = | o--o o--o | =
| |
− | = | /////\ /\\\\\ | =
| |
− | = | ///////o\\\\\\\ | =
| |
− | = | ////////X\\\\\\\\ | =
| |
− | = | o///////XXX\\\\\\\o | =
| |
− | = | |/////oXXXXXo\\\\\| | =
| |
− | = = = = = = = = = = =|/du'/|XXXXX|\dv'\|= = = = = = = = = = =
| |
− | | |/////oXXXXXo\\\\\| |
| |
− | | o//////\XXX/\\\\\\o |
| |
− | | \//////\X/\\\\\\/ |
| |
− | | \//////o\\\\\\/ |
| |
− | | \///// \\\\\/ |
| |
− | | o--o o--o |
| |
− | | |
| |
− | o-----------------------o
| |
| | | |
− | o-----------------------o o-----------------------o o-----------------------o
| + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; text-align:left; width:96%" |
− | | dU | | dU | | dU | | + | |+ '''Table 59. Synopsis of Terminology: Restrictive and Alternative Subtypes''' |
− | | o--o o--o | | o--o o--o | | o--o o--o | | + | |- style="background:paleturquoise" |
− | | / \ / \ | | /\\\\\ /\\\\\ | | /\\\\\ /\\\\\ | | + | | |
− | | / o \ | | /\\\\\\o\\\\\\\ | | /\\\\\\o\\\\\\\ | | + | | align="center" | '''Operator<br>or<br>Operand''' |
− | | / / \ \ | | /\\\\\\/ \\\\\\\\ | | /\\\\\\/ \\\\\\\\ | | + | | align="center" | '''Proposition<br>or<br>Component''' |
− | | o / \ o | | o\\\\\\/ \\\\\\\o | | o\\\\\\/ \\\\\\\o | | + | | align="center" | '''Transformation<br>or<br>Mapping''' |
− | | | o o | | | |\\\\\o o\\\\\| | | |\\\\\o o\\\\\| | | + | |- |
− | | | du | | dv | | | |\\\\\| |\\\\\| | | |\du\\| |\\dv\| | | + | | Operand |
− | | | o o | | | |\\\\\o o\\\\\| | | |\\\\\o o\\\\\| | | + | | valign="top" | |
− | | o \ / o | | o\\\\\\\ /\\\\\\o | | o\\\\\\\ /\\\\\\o | | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | \ \ / / | | \\\\\\\\ /\\\\\\/ | | \\\\\\\\ /\\\\\\/ | | + | | ''F'' = ‹''F''<sub>1</sub>, ''F''<sub>2</sub>› |
− | | \ o / | | \\\\\\\o\\\\\\/ | | \\\\\\\o\\\\\\/ | | + | |- |
− | | \ / \ / | | \\\\\/ \\\\\/ | | \\\\\/ \\\\\/ |
| + | | ''F'' = ‹''f'', ''g''› : ''U'' → ''X'' |
| + | |} |
| + | | valign="top" | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | ''F''<sub>''i''</sub> : 〈''u'', ''v''〉 → '''B''' |
| + | |- |
| + | | ''F''<sub>''i''</sub> : '''B'''<sup>''n''</sup> → '''B''' |
| + | |} |
| + | | valign="top" | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100" |
| + | | ''F'' : [''u'', ''v''] → [''x'', ''y''] |
| + | |- |
| + | | ''F'' : '''B'''<sup>''n''</sup> → '''B'''<sup>''k''</sup> |
| + | |} |
| + | |- |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | Tacit |
| + | |- |
| + | | Extension |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <math>\epsilon</math> : |
| + | |- |
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
| + | |- |
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → ''X''<sup> •</sup>) |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <math>\epsilon</math>''F''<sub>''i''</sub> : |
| + | |- |
| + | | 〈''u'', ''v'', d''u'', d''v''〉 → '''B''' |
| + | |- |
| + | | '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''B''' |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <math>\epsilon</math>''F'' : |
| + | |- |
| + | | [''u'', ''v'', d''u'', d''v''] → [''x'', ''y''] |
| + | |- |
| + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup>] |
| + | |} |
| + | |- |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | Trope |
| + | |- |
| + | | Extension |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <math>\eta</math> : |
| + | |- |
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
| + | |- |
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>) |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <math>\eta</math>''F''<sub>''i''</sub> : |
| + | |- |
| + | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' |
| + | |- |
| + | | '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D''' |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <math>\eta</math>''F'' : |
| + | |- |
| + | | [''u'', ''v'', d''u'', d''v''] → [d''x'', d''y''] |
| + | |- |
| + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''D'''<sup>''k''</sup>] |
| + | |} |
| + | |- |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | Enlargement |
| + | |- |
| + | | Operator |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | E : |
| + | |- |
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
| + | |- |
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>) |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | E''F''<sub>''i''</sub> : |
| + | |- |
| + | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' |
| + | |- |
| + | | '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D''' |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | E''F'' : |
| + | |- |
| + | | [''u'', ''v'', d''u'', d''v''] → [d''x'', d''y''] |
| + | |- |
| + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''D'''<sup>''k''</sup>] |
| + | |} |
| + | |- |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | Difference |
| + | |- |
| + | | Operator |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | D : |
| + | |- |
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
| + | |- |
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>) |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | D''F''<sub>''i''</sub> : |
| + | |- |
| + | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' |
| + | |- |
| + | | '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D''' |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | D''F'' : |
| + | |- |
| + | | [''u'', ''v'', d''u'', d''v''] → [d''x'', d''y''] |
| + | |- |
| + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''D'''<sup>''k''</sup>] |
| + | |} |
| + | |- |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | Differential |
| + | |- |
| + | | Operator |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | d : |
| + | |- |
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
| + | |- |
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>) |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | d''F''<sub>''i''</sub> : |
| + | |- |
| + | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' |
| + | |- |
| + | | '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D''' |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | d''F'' : |
| + | |- |
| + | | [''u'', ''v'', d''u'', d''v''] → [d''x'', d''y''] |
| + | |- |
| + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''D'''<sup>''k''</sup>] |
| + | |} |
| + | |- |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | Remainder |
| + | |- |
| + | | Operator |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | r : |
| + | |- |
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
| + | |- |
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>) |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | r''F''<sub>''i''</sub> : |
| + | |- |
| + | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' |
| + | |- |
| + | | '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D''' |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | r''F'' : |
| + | |- |
| + | | [''u'', ''v'', d''u'', d''v''] → [d''x'', d''y''] |
| + | |- |
| + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''D'''<sup>''k''</sup>] |
| + | |} |
| + | |- |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | Radius |
| + | |- |
| + | | Operator |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <font face=georgia>'''e'''</font> = ‹<math>\epsilon</math>, <math>\eta</math>› : |
| + | |- |
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
| + | |- |
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>) |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | |
| + | |- |
| + | | |
| + | |- |
| + | | |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <font face=georgia>'''e'''</font>''F'' : |
| + | |- |
| + | | [''u'', ''v'', d''u'', d''v''] → [''x'', ''y'', d''x'', d''y''] |
| + | |- |
| + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>] |
| + | |} |
| + | |- |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | Secant |
| + | |- |
| + | | Operator |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <font face=georgia>'''E'''</font> = ‹<math>\epsilon</math>, E› : |
| + | |- |
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
| + | |- |
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>) |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | |
| + | |- |
| + | | |
| + | |- |
| + | | |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <font face=georgia>'''E'''</font>''F'' : |
| + | |- |
| + | | [''u'', ''v'', d''u'', d''v''] → [''x'', ''y'', d''x'', d''y''] |
| + | |- |
| + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>] |
| + | |} |
| + | |- |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | Chord |
| + | |- |
| + | | Operator |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <font face=georgia>'''D'''</font> = ‹<math>\epsilon</math>, D› : |
| + | |- |
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
| + | |- |
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>) |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | |
| + | |- |
| + | | |
| + | |- |
| + | | |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <font face=georgia>'''D'''</font>''F'' : |
| + | |- |
| + | | [''u'', ''v'', d''u'', d''v''] → [''x'', ''y'', d''x'', d''y''] |
| + | |- |
| + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>] |
| + | |} |
| + | |- |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | Tangent |
| + | |- |
| + | | Functor |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <font face=georgia>'''T'''</font> = ‹<math>\epsilon</math>, d› : |
| + | |- |
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
| + | |- |
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>) |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | d''F''<sub>''i''</sub> : |
| + | |- |
| + | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' |
| + | |- |
| + | | '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D''' |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <font face=georgia>'''T'''</font>''F'' : |
| + | |- |
| + | | [''u'', ''v'', d''u'', d''v''] → [''x'', ''y'', d''x'', d''y''] |
| + | |- |
| + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>] |
| + | |} |
| + | |}<br> |
| + | |
| + | ===Formula Display 12=== |
| + | |
| + | <pre> |
| + | o-----------------------------------------------------------o |
| + | | | |
| + | | x = f(u, v) = ((u)(v)) | |
| + | | | |
| + | | y = g(u, v) = ((u, v)) | |
| + | | | |
| + | o-----------------------------------------------------------o |
| + | </pre> |
| + | |
| + | <br><font face="courier new"> |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
| + | | |
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | |
| + | | ''x'' |
| + | | = |
| + | | ''f''‹''u'', ''v''› |
| + | | = |
| + | | ((''u'')(''v'')) |
| + | | |
| + | |- |
| + | | |
| + | | ''y'' |
| + | | = |
| + | | ''g''‹''u'', ''v''› |
| + | | = |
| + | | ((''u'', ''v'')) |
| + | | |
| + | |} |
| + | |} |
| + | </font><br> |
| + | |
| + | ===Formula Display 13=== |
| + | |
| + | <pre> |
| + | o-----------------------------------------------------------o |
| + | | | |
| + | | <x, y> = F<u, v> = <((u)(v)), ((u, v))> | |
| + | | | |
| + | o-----------------------------------------------------------o |
| + | </pre> |
| + | |
| + | <br><font face="courier new"> |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
| + | | |
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | ‹''x'', ''y''› |
| + | | = |
| + | | ''F''‹''u'', ''v''› |
| + | | = |
| + | | ‹((''u'')(''v'')), ((''u'', ''v''))› |
| + | |} |
| + | |} |
| + | </font><br> |
| + | |
| + | <br><font face="courier new"> |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
| + | | |
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | |
| + | | ‹''x'', ''y''› |
| + | | = |
| + | | ''F''‹''u'', ''v''› |
| + | | = |
| + | | ‹((''u'')(''v'')), ((''u'', ''v''))› |
| + | | |
| + | |} |
| + | |} |
| + | </font><br> |
| + | |
| + | ===Table 60. Propositional Transformation=== |
| + | |
| + | <pre> |
| + | Table 60. Propositional Transformation |
| + | o-------------o-------------o-------------o-------------o |
| + | | u | v | f | g | |
| + | o-------------o-------------o-------------o-------------o |
| + | | | | | | |
| + | | 0 | 0 | 0 | 1 | |
| + | | | | | | |
| + | | 0 | 1 | 1 | 0 | |
| + | | | | | | |
| + | | 1 | 0 | 1 | 0 | |
| + | | | | | | |
| + | | 1 | 1 | 1 | 1 | |
| + | | | | | | |
| + | o-------------o-------------o-------------o-------------o |
| + | | | | ((u)(v)) | ((u, v)) | |
| + | o-------------o-------------o-------------o-------------o |
| + | </pre> |
| + | |
| + | <font face="courier new"> |
| + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
| + | |+ '''Table 60. Propositional Transformation''' |
| + | |- style="background:paleturquoise" |
| + | | width="25%" | ''u'' |
| + | | width="25%" | ''v'' |
| + | | width="25%" | ''f'' |
| + | | width="25%" | ''g'' |
| + | |- |
| + | | width="25%" | |
| + | {| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 1 |
| + | |- |
| + | | 1 |
| + | |} |
| + | | width="25%" | |
| + | {| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 |
| + | |- |
| + | | 1 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 1 |
| + | |} |
| + | | width="25%" | |
| + | {| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 |
| + | |- |
| + | | 1 |
| + | |- |
| + | | 1 |
| + | |- |
| + | | 1 |
| + | |} |
| + | | width="25%" | |
| + | {| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 1 |
| + | |} |
| + | |- |
| + | | width="25%" | |
| + | | width="25%" | |
| + | | width="25%" | ((''u'')(''v'')) |
| + | | width="25%" | ((''u'', ''v'')) |
| + | |} |
| + | </font><br> |
| + | |
| + | ===Figure 61. Propositional Transformation=== |
| + | |
| + | <pre> |
| + | o-----------------------------------------------------o |
| + | | U | |
| + | | | |
| + | | o-----------o o-----------o | |
| + | | / \ / \ | |
| + | | / o \ | |
| + | | / / \ \ | |
| + | | / / \ \ | |
| + | | o o o o | |
| + | | | | | | | |
| + | | | u | | v | | |
| + | | | | | | | |
| + | | o o o o | |
| + | | \ \ / / | |
| + | | \ \ / / | |
| + | | \ o / | |
| + | | \ / \ / | |
| + | | o-----------o o-----------o | |
| + | | | |
| + | | | |
| + | o-----------------------------------------------------o |
| + | / \ / \ |
| + | / \ / \ |
| + | / \ / \ |
| + | / \ / \ |
| + | / \ / \ |
| + | / \ / \ |
| + | / \ / \ |
| + | / \ / \ |
| + | / \ / \ |
| + | / \ / \ |
| + | / \ / \ |
| + | / \ / \ |
| + | o-------------------------o o-------------------------o |
| + | | U | |\U \\\\\\\\\\\\\\\\\\\\\\| |
| + | | o---o o---o | |\\\\\\o---o\\\o---o\\\\\\| |
| + | | //////\ //////\ | |\\\\\/ \\/ \\\\\\| |
| + | | ////////o///////\ | |\\\\/ o \\\\\| |
| + | | //////////\///////\ | |\\\/ /\\ \\\\| |
| + | | o///////o///o///////o | |\\o o\\\o o\\| |
| + | | |// u //|///|// v //| | |\\| u |\\\| v |\\| |
| + | | o///////o///o///////o | |\\o o\\\o o\\| |
| + | | \///////\////////// | |\\\\ \\/ /\\\| |
| + | | \///////o//////// | |\\\\\ o /\\\\| |
| + | | \////// \////// | |\\\\\\ /\\ /\\\\\| |
| + | | o---o o---o | |\\\\\\o---o\\\o---o\\\\\\| |
| + | | | |\\\\\\\\\\\\\\\\\\\\\\\\\| |
| + | o-------------------------o o-------------------------o |
| + | \ | | / |
| + | \ | | / |
| + | \ | | / |
| + | \ f | | g / |
| + | \ | | / |
| + | \ | | / |
| + | \ | | / |
| + | \ | | / |
| + | \ | | / |
| + | \ | | / |
| + | o-------\----|---------------------------|----/-------o |
| + | | X \ | | / | |
| + | | \| |/ | |
| + | | o-----------o o-----------o | |
| + | | //////////////\ /\\\\\\\\\\\\\\ | |
| + | | ////////////////o\\\\\\\\\\\\\\\\ | |
| + | | /////////////////X\\\\\\\\\\\\\\\\\ | |
| + | | /////////////////XXX\\\\\\\\\\\\\\\\\ | |
| + | | o///////////////oXXXXXo\\\\\\\\\\\\\\\o | |
| + | | |///////////////|XXXXX|\\\\\\\\\\\\\\\| | |
| + | | |////// x //////|XXXXX|\\\\\\ y \\\\\\| | |
| + | | |///////////////|XXXXX|\\\\\\\\\\\\\\\| | |
| + | | o///////////////oXXXXXo\\\\\\\\\\\\\\\o | |
| + | | \///////////////\XXX/\\\\\\\\\\\\\\\/ | |
| + | | \///////////////\X/\\\\\\\\\\\\\\\/ | |
| + | | \///////////////o\\\\\\\\\\\\\\\/ | |
| + | | \////////////// \\\\\\\\\\\\\\/ | |
| + | | o-----------o o-----------o | |
| + | | | |
| + | | | |
| + | o-----------------------------------------------------o |
| + | Figure 61. Propositional Transformation |
| + | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 61 -- Propositional Transformation.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 61. Propositional Transformation'''</font></center></p> |
| + | |
| + | ===Figure 62. Propositional Transformation (Short Form)=== |
| + | |
| + | <pre> |
| + | o-------------------------o o-------------------------o |
| + | | U | |\U \\\\\\\\\\\\\\\\\\\\\\| |
| + | | o---o o---o | |\\\\\\o---o\\\o---o\\\\\\| |
| + | | //////\ //////\ | |\\\\\/ \\/ \\\\\\| |
| + | | ////////o///////\ | |\\\\/ o \\\\\| |
| + | | //////////\///////\ | |\\\/ /\\ \\\\| |
| + | | o///////o///o///////o | |\\o o\\\o o\\| |
| + | | |// u //|///|// v //| | |\\| u |\\\| v |\\| |
| + | | o///////o///o///////o | |\\o o\\\o o\\| |
| + | | \///////\////////// | |\\\\ \\/ /\\\| |
| + | | \///////o//////// | |\\\\\ o /\\\\| |
| + | | \////// \////// | |\\\\\\ /\\ /\\\\\| |
| + | | o---o o---o | |\\\\\\o---o\\\o---o\\\\\\| |
| + | | | |\\\\\\\\\\\\\\\\\\\\\\\\\| |
| + | o-------------------------o o-------------------------o |
| + | \ / \ / |
| + | \ / \ / |
| + | \ / \ / |
| + | \ f / \ g / |
| + | \ / \ / |
| + | \ / \ / |
| + | \ / \ / |
| + | \ / \ / |
| + | \ / \ / |
| + | o---------\-----/---------------------\-----/---------o |
| + | | X \ / \ / | |
| + | | \ / \ / | |
| + | | o-----------o o-----------o | |
| + | | //////////////\ /\\\\\\\\\\\\\\ | |
| + | | ////////////////o\\\\\\\\\\\\\\\\ | |
| + | | /////////////////X\\\\\\\\\\\\\\\\\ | |
| + | | /////////////////XXX\\\\\\\\\\\\\\\\\ | |
| + | | o///////////////oXXXXXo\\\\\\\\\\\\\\\o | |
| + | | |///////////////|XXXXX|\\\\\\\\\\\\\\\| | |
| + | | |////// x //////|XXXXX|\\\\\\ y \\\\\\| | |
| + | | |///////////////|XXXXX|\\\\\\\\\\\\\\\| | |
| + | | o///////////////oXXXXXo\\\\\\\\\\\\\\\o | |
| + | | \///////////////\XXX/\\\\\\\\\\\\\\\/ | |
| + | | \///////////////\X/\\\\\\\\\\\\\\\/ | |
| + | | \///////////////o\\\\\\\\\\\\\\\/ | |
| + | | \////////////// \\\\\\\\\\\\\\/ | |
| + | | o-----------o o-----------o | |
| + | | | |
| + | | | |
| + | o-----------------------------------------------------o |
| + | Figure 62. Propositional Transformation (Short Form) |
| + | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 62 -- Propositional Transformation (Short Form).gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 62. Propositional Transformation (Short Form)'''</font></center></p> |
| + | |
| + | ===Figure 63. Transformation of Positions=== |
| + | |
| + | <pre> |
| + | o-----------------------------------------------------o |
| + | |`U` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `| |
| + | |` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `| |
| + | |` ` ` ` ` ` o-----------o ` o-----------o ` ` ` ` ` `| |
| + | |` ` ` ` ` `/' ' ' ' ' ' '\`/' ' ' ' ' ' '\` ` ` ` ` `| |
| + | |` ` ` ` ` / ' ' ' ' ' ' ' o ' ' ' ' ' ' ' \ ` ` ` ` `| |
| + | |` ` ` ` `/' ' ' ' ' ' ' '/^\' ' ' ' ' ' ' '\` ` ` ` `| |
| + | |` ` ` ` / ' ' ' ' ' ' ' /^^^\ ' ' ' ' ' ' ' \ ` ` ` `| |
| + | |` ` ` `o' ' ' ' ' ' ' 'o^^^^^o' ' ' ' ' ' ' 'o` ` ` `| |
| + | |` ` ` `|' ' ' ' ' ' ' '|^^^^^|' ' ' ' ' ' ' '|` ` ` `| |
| + | |` ` ` `|' ' ' ' u ' ' '|^^^^^|' ' ' v ' ' ' '|` ` ` `| |
| + | |` ` ` `|' ' ' ' ' ' ' '|^^^^^|' ' ' ' ' ' ' '|` ` ` `| |
| + | |` `@` `o' ' ' ' @ ' ' 'o^^@^^o' ' ' @ ' ' ' 'o` ` ` `| |
| + | |` ` \ ` \ ' ' ' | ' ' ' \^|^/ ' ' ' | ' ' ' / ` ` ` `| |
| + | |` ` `\` `\' ' ' | ' ' ' '\|/' ' ' ' | ' ' '/` ` ` ` `| |
| + | |` ` ` \ ` \ ' ' | ' ' ' ' | ' ' ' ' | ' ' / ` ` ` ` `| |
| + | |` ` ` `\` `\' ' | ' ' ' '/|\' ' ' ' | ' '/` ` ` ` ` `| |
| + | |` ` ` ` \ ` o---|-------o | o-------|---o ` ` ` ` ` `| |
| + | |` ` ` ` `\` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` `| |
| + | |` ` ` ` ` \ ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` `| |
| + | o-----------\----|---------|---------|----------------o |
| + | " " \ | | | " " |
| + | " " \ | | | " " |
| + | " " \ | | | " " |
| + | " " \| | | " " |
| + | o-------------------------o \ | | o-------------------------o |
| + | | U | |\ | | |`U```````````````````````| |
| + | | o---o o---o | | \ | | |``````o---o```o---o``````| |
| + | | /'''''\ /'''''\ | | \ | | |`````/ \`/ \`````| |
| + | | /'''''''o'''''''\ | | \ | | |````/ o \````| |
| + | | /'''''''/'\'''''''\ | | \ | | |```/ /`\ \```| |
| + | | o'''''''o'''o'''''''o | | \ | | |``o o```o o``| |
| + | | |'''u'''|'''|'''v'''| | | \ | | |``| u |```| v |``| |
| + | | o'''''''o'''o'''''''o | | \ | | |``o o```o o``| |
| + | | \'''''''\'/'''''''/ | | \| | |```\ \`/ /```| |
| + | | \'''''''o'''''''/ | | \ | |````\ o /````| |
| + | | \'''''/ \'''''/ | | |\ | |`````\ /`\ /`````| |
| + | | o---o o---o | | | \ | |``````o---o```o---o``````| |
| + | | | | | \ * |`````````````````````````| |
| + | o-------------------------o | | \ / o-------------------------o |
| + | \ | | | \ / | / |
| + | \ ((u)(v)) | | | \/ | ((u, v)) / |
| + | \ | | | /\ | / |
| + | \ | | | / \ | / |
| + | \ | | | / \ | / |
| + | \ | | | / * | / |
| + | \ | | | / | | / |
| + | \ | | |/ | | / |
| + | \ | | / | | / |
| + | \ | | /| | | / |
| + | o-------\----|---|-------/-|---------|---|----/-------o |
| + | | X \ | | / | | | / | |
| + | | \| | / | | |/ | |
| + | | o---|----/--o | o-------|---o | |
| + | | /' ' | ' / ' '\|/` ` ` ` | ` `\ | |
| + | | / ' ' | '/' ' ' | ` ` ` ` | ` ` \ | |
| + | | /' ' ' | / ' ' '/|\` ` ` ` | ` ` `\ | |
| + | | / ' ' ' |/' ' ' /^|^\ ` ` ` | ` ` ` \ | |
| + | | @ o' ' ' ' @ ' ' 'o^^@^^o` ` ` @ ` ` ` `o | |
| + | | |' ' ' ' ' ' ' '|^^^^^|` ` ` ` ` ` ` `| | |
| + | | |' ' ' ' f ' ' '|^^^^^|` ` ` g ` ` ` `| | |
| + | | |' ' ' ' ' ' ' '|^^^^^|` ` ` ` ` ` ` `| | |
| + | | o' ' ' ' ' ' ' 'o^^^^^o` ` ` ` ` ` ` `o | |
| + | | \ ' ' ' ' ' ' ' \^^^/ ` ` ` ` ` ` ` / | |
| + | | \' ' ' ' ' ' ' '\^/` ` ` ` ` ` ` `/ | |
| + | | \ ' ' ' ' ' ' ' o ` ` ` ` ` ` ` / | |
| + | | \' ' ' ' ' ' '/ \` ` ` ` ` ` `/ | |
| + | | o-----------o o-----------o | |
| + | | | |
| + | | | |
| + | o-----------------------------------------------------o |
| + | Figure 63. Transformation of Positions |
| + | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 63 -- Transformation of Positions.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 63. Transformation of Positions'''</font></center></p> |
| + | |
| + | ===Table 64. Transformation of Positions=== |
| + | |
| + | <pre> |
| + | Table 64. Transformation of Positions |
| + | o-----o----------o----------o-------o-------o--------o--------o-------------o |
| + | | u v | x | y | x y | x(y) | (x)y | (x)(y) | X% = [x, y] | |
| + | o-----o----------o----------o-------o-------o--------o--------o-------------o |
| + | | | | | | | | | ^ | |
| + | | 0 0 | 0 | 1 | 0 | 0 | 1 | 0 | | | |
| + | | | | | | | | | | |
| + | | 0 1 | 1 | 0 | 0 | 1 | 0 | 0 | F | |
| + | | | | | | | | | = | |
| + | | 1 0 | 1 | 0 | 0 | 1 | 0 | 0 | <f , g> | |
| + | | | | | | | | | | |
| + | | 1 1 | 1 | 1 | 1 | 0 | 0 | 0 | ^ | |
| + | | | | | | | | | | | |
| + | o-----o----------o----------o-------o-------o--------o--------o-------------o |
| + | | | ((u)(v)) | ((u, v)) | u v | (u,v) | (u)(v) | 0 | U% = [u, v] | |
| + | o-----o----------o----------o-------o-------o--------o--------o-------------o |
| + | </pre> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
| + | |+ '''Table 64. Transformation of Positions''' |
| + | |- style="background:paleturquoise" |
| + | | ''u'' ''v'' |
| + | | ''x'' |
| + | | ''y'' |
| + | | ''x'' ''y'' |
| + | | ''x'' (''y'') |
| + | | (''x'') ''y'' |
| + | | (''x'')(''y'') |
| + | | ''X''<sup> •</sup> = [''x'', ''y'' ] |
| + | |- |
| + | | width="12%" | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 0 |
| + | |- |
| + | | 0 1 |
| + | |- |
| + | | 1 0 |
| + | |- |
| + | | 1 1 |
| + | |} |
| + | | width="12%" | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 |
| + | |- |
| + | | 1 |
| + | |- |
| + | | 1 |
| + | |- |
| + | | 1 |
| + | |} |
| + | | width="12%" | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 1 |
| + | |} |
| + | | width="12%" | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 1 |
| + | |} |
| + | | width="12%" | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 |
| + | |- |
| + | | 1 |
| + | |- |
| + | | 1 |
| + | |- |
| + | | 0 |
| + | |} |
| + | | width="12%" | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 0 |
| + | |} |
| + | | width="12%" | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 0 |
| + | |} |
| + | | width="12%" | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | ↑ |
| + | |- |
| + | | ''F'' |
| + | |- |
| + | | ‹''f'', ''g'' › |
| + | |- |
| + | | ↑ |
| + | |} |
| + | |- |
| + | | |
| + | | ((''u'')(''v'')) |
| + | | ((''u'', ''v'')) |
| + | | ''u'' ''v'' |
| + | | (''u'', ''v'') |
| + | | (''u'')(''v'') |
| + | | ( ) |
| + | | ''U''<sup> •</sup> = [''u'', ''v'' ] |
| + | |} |
| + | <br> |
| + | |
| + | ===Table 65. Induced Transformation on Propositions=== |
| + | |
| + | <pre> |
| + | Table 65. Induced Transformation on Propositions |
| + | o------------o---------------------------------o------------o |
| + | | X% | <--- F = <f , g> <--- | U% | |
| + | o------------o----------o-----------o----------o------------o |
| + | | | u = | 1 1 0 0 | = u | | |
| + | | | v = | 1 0 1 0 | = v | | |
| + | | f_i <x, y> o----------o-----------o----------o f_j <u, v> | |
| + | | | x = | 1 1 1 0 | = f<u,v> | | |
| + | | | y = | 1 0 0 1 | = g<u,v> | | |
| + | o------------o----------o-----------o----------o------------o |
| + | | | | | | | |
| + | | f_0 | () | 0 0 0 0 | () | f_0 | |
| + | | | | | | | |
| + | | f_1 | (x)(y) | 0 0 0 1 | () | f_0 | |
| + | | | | | | | |
| + | | f_2 | (x) y | 0 0 1 0 | (u)(v) | f_1 | |
| + | | | | | | | |
| + | | f_3 | (x) | 0 0 1 1 | (u)(v) | f_1 | |
| + | | | | | | | |
| + | | f_4 | x (y) | 0 1 0 0 | (u, v) | f_6 | |
| + | | | | | | | |
| + | | f_5 | (y) | 0 1 0 1 | (u, v) | f_6 | |
| + | | | | | | | |
| + | | f_6 | (x, y) | 0 1 1 0 | (u v) | f_7 | |
| + | | | | | | | |
| + | | f_7 | (x y) | 0 1 1 1 | (u v) | f_7 | |
| + | | | | | | | |
| + | o------------o----------o-----------o----------o------------o |
| + | | | | | | | |
| + | | f_8 | x y | 1 0 0 0 | u v | f_8 | |
| + | | | | | | | |
| + | | f_9 | ((x, y)) | 1 0 0 1 | u v | f_8 | |
| + | | | | | | | |
| + | | f_10 | y | 1 0 1 0 | ((u, v)) | f_9 | |
| + | | | | | | | |
| + | | f_11 | (x (y)) | 1 0 1 1 | ((u, v)) | f_9 | |
| + | | | | | | | |
| + | | f_12 | x | 1 1 0 0 | ((u)(v)) | f_14 | |
| + | | | | | | | |
| + | | f_13 | ((x) y) | 1 1 0 1 | ((u)(v)) | f_14 | |
| + | | | | | | | |
| + | | f_14 | ((x)(y)) | 1 1 1 0 | (()) | f_15 | |
| + | | | | | | | |
| + | | f_15 | (()) | 1 1 1 1 | (()) | f_15 | |
| + | | | | | | | |
| + | o------------o----------o-----------o----------o------------o |
| + | </pre> |
| + | |
| + | <br><font face="courier new"> |
| + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
| + | |+ Table 65. Induced Transformation on Propositions |
| + | |- style="background:paleturquoise" |
| + | | ''X''<sup> •</sup> |
| + | | colspan="3" | |
| + | {| align="center" border="0" cellpadding="4" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:80%" |
| + | | ← |
| + | | ''F'' = ‹''f'' , ''g''› |
| + | | ← |
| + | |} |
| + | | ''U''<sup> •</sup> |
| + | |- style="background:paleturquoise" |
| + | | rowspan="2" | ''f''<sub>''i''</sub>‹''x'', ''y''› |
| + | | |
| + | {| align="right" style="background:paleturquoise; text-align:right" |
| + | | ''u'' = |
| + | |- |
| + | | ''v'' = |
| + | |} |
| + | | |
| + | {| align="center" style="background:paleturquoise; text-align:center" |
| + | | 1 1 0 0 |
| + | |- |
| + | | 1 0 1 0 |
| + | |} |
| + | | |
| + | {| align="left" style="background:paleturquoise; text-align:left" |
| + | | = ''u'' |
| + | |- |
| + | | = ''v'' |
| + | |} |
| + | | rowspan="2" | ''f''<sub>''j''</sub>‹''u'', ''v''› |
| + | |- style="background:paleturquoise" |
| + | | |
| + | {| align="right" style="background:paleturquoise; text-align:right" |
| + | | ''x'' = |
| + | |- |
| + | | ''y'' = |
| + | |} |
| + | | |
| + | {| align="center" style="background:paleturquoise; text-align:center" |
| + | | 1 1 1 0 |
| + | |- |
| + | | 1 0 0 1 |
| + | |} |
| + | | |
| + | {| align="left" style="background:paleturquoise; text-align:left" |
| + | | = ''f''‹''u'', ''v''› |
| + | |- |
| + | | = ''g''‹''u'', ''v''› |
| + | |} |
| + | |- |
| + | | |
| + | {| cellpadding="2" style="background:lightcyan" |
| + | | ''f''<sub>0</sub> |
| + | |- |
| + | | ''f''<sub>1</sub> |
| + | |- |
| + | | ''f''<sub>2</sub> |
| + | |- |
| + | | ''f''<sub>3</sub> |
| + | |- |
| + | | ''f''<sub>4</sub> |
| + | |- |
| + | | ''f''<sub>5</sub> |
| + | |- |
| + | | ''f''<sub>6</sub> |
| + | |- |
| + | | ''f''<sub>7</sub> |
| + | |} |
| + | | |
| + | {| cellpadding="2" style="background:lightcyan" |
| + | | () |
| + | |- |
| + | | (''x'')(''y'') |
| + | |- |
| + | | (''x'') ''y'' |
| + | |- |
| + | | (''x'') |
| + | |- |
| + | | ''x'' (''y'') |
| + | |- |
| + | | (''y'') |
| + | |- |
| + | | (''x'', ''y'') |
| + | |- |
| + | | (''x'' ''y'') |
| + | |} |
| + | | |
| + | {| cellpadding="2" style="background:lightcyan" |
| + | | 0 0 0 0 |
| + | |- |
| + | | 0 0 0 1 |
| + | |- |
| + | | 0 0 1 0 |
| + | |- |
| + | | 0 0 1 1 |
| + | |- |
| + | | 0 1 0 0 |
| + | |- |
| + | | 0 1 0 1 |
| + | |- |
| + | | 0 1 1 0 |
| + | |- |
| + | | 0 1 1 1 |
| + | |} |
| + | | |
| + | {| cellpadding="2" style="background:lightcyan" |
| + | | () |
| + | |- |
| + | | () |
| + | |- |
| + | | (''u'')(''v'') |
| + | |- |
| + | | (''u'')(''v'') |
| + | |- |
| + | | (''u'', ''v'') |
| + | |- |
| + | | (''u'', ''v'') |
| + | |- |
| + | | (''u'' ''v'') |
| + | |- |
| + | | (''u'' ''v'') |
| + | |} |
| + | | |
| + | {| cellpadding="2" style="background:lightcyan" |
| + | | ''f''<sub>0</sub> |
| + | |- |
| + | | ''f''<sub>0</sub> |
| + | |- |
| + | | ''f''<sub>1</sub> |
| + | |- |
| + | | ''f''<sub>1</sub> |
| + | |- |
| + | | ''f''<sub>6</sub> |
| + | |- |
| + | | ''f''<sub>6</sub> |
| + | |- |
| + | | ''f''<sub>7</sub> |
| + | |- |
| + | | ''f''<sub>7</sub> |
| + | |} |
| + | |- |
| + | | |
| + | {| cellpadding="2" style="background:lightcyan" |
| + | | ''f''<sub>8</sub> |
| + | |- |
| + | | ''f''<sub>9</sub> |
| + | |- |
| + | | ''f''<sub>10</sub> |
| + | |- |
| + | | ''f''<sub>11</sub> |
| + | |- |
| + | | ''f''<sub>12</sub> |
| + | |- |
| + | | ''f''<sub>13</sub> |
| + | |- |
| + | | ''f''<sub>14</sub> |
| + | |- |
| + | | ''f''<sub>15</sub> |
| + | |} |
| + | | |
| + | {| cellpadding="2" style="background:lightcyan" |
| + | | ''x'' ''y'' |
| + | |- |
| + | | ((''x'', ''y'')) |
| + | |- |
| + | | ''y'' |
| + | |- |
| + | | (''x'' (''y'')) |
| + | |- |
| + | | ''x'' |
| + | |- |
| + | | ((''x'') ''y'') |
| + | |- |
| + | | ((''x'')(''y'')) |
| + | |- |
| + | | (()) |
| + | |} |
| + | | |
| + | {| cellpadding="2" style="background:lightcyan" |
| + | | 1 0 0 0 |
| + | |- |
| + | | 1 0 0 1 |
| + | |- |
| + | | 1 0 1 0 |
| + | |- |
| + | | 1 0 1 1 |
| + | |- |
| + | | 1 1 0 0 |
| + | |- |
| + | | 1 1 0 1 |
| + | |- |
| + | | 1 1 1 0 |
| + | |- |
| + | | 1 1 1 1 |
| + | |} |
| + | | |
| + | {| cellpadding="2" style="background:lightcyan" |
| + | | ''u'' ''v'' |
| + | |- |
| + | | ''u'' ''v'' |
| + | |- |
| + | | ((''u'', ''v'')) |
| + | |- |
| + | | ((''u'', ''v'')) |
| + | |- |
| + | | ((''u'')(''v'')) |
| + | |- |
| + | | ((''u'')(''v'')) |
| + | |- |
| + | | (()) |
| + | |- |
| + | | (()) |
| + | |} |
| + | | |
| + | {| cellpadding="2" style="background:lightcyan" |
| + | | ''f''<sub>8</sub> |
| + | |- |
| + | | ''f''<sub>8</sub> |
| + | |- |
| + | | ''f''<sub>9</sub> |
| + | |- |
| + | | ''f''<sub>9</sub> |
| + | |- |
| + | | ''f''<sub>14</sub> |
| + | |- |
| + | | ''f''<sub>14</sub> |
| + | |- |
| + | | ''f''<sub>15</sub> |
| + | |- |
| + | | ''f''<sub>15</sub> |
| + | |} |
| + | |} |
| + | </font><br> |
| + | |
| + | ===Formula Display 14=== |
| + | |
| + | <pre> |
| + | o-------------------------------------------------o |
| + | | | |
| + | | EG_i = G_i <u + du, v + dv> | |
| + | | | |
| + | o-------------------------------------------------o |
| + | </pre> |
| + | |
| + | <br><font face="courier new"> |
| + | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" |
| + | | |
| + | {| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" |
| + | | width="8%" | E''G''<sub>''i''</sub> |
| + | | width="4%" | = |
| + | | width="88%" | ''G''<sub>''i''</sub>‹''u'' + d''u'', ''v'' + d''v''› |
| + | |} |
| + | |} |
| + | </font><br> |
| + | |
| + | ===Formula Display 15=== |
| + | |
| + | <pre> |
| + | o-------------------------------------------------o |
| + | | | |
| + | | DG_i = G_i <u, v> + EG_i <u, v, du, dv> | |
| + | | | |
| + | | = G_i <u, v> + G_i <u + du, v + dv> | |
| + | | | |
| + | o-------------------------------------------------o |
| + | </pre> |
| + | |
| + | <br><font face="courier new"> |
| + | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" |
| + | | |
| + | {| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" |
| + | | width="8%" | D''G''<sub>''i''</sub> |
| + | | width="4%" | = |
| + | | width="20%" | ''G''<sub>''i''</sub>‹''u'', ''v''› |
| + | | width="4%" | + |
| + | | width="64%" | E''G''<sub>''i''</sub>‹''u'', ''v'', d''u'', d''v''› |
| + | |- |
| + | | width="8%" | |
| + | | width="4%" | = |
| + | | width="20%" | ''G''<sub>''i''</sub>‹''u'', ''v''› |
| + | | width="4%" | + |
| + | | width="64%" | ''G''<sub>''i''</sub>‹''u'' + d''u'', ''v'' + d''v''› |
| + | |} |
| + | |} |
| + | </font><br> |
| + | |
| + | ===Formula Display 16=== |
| + | |
| + | <pre> |
| + | o-------------------------------------------------o |
| + | | | |
| + | | Ef = ((u + du)(v + dv)) | |
| + | | | |
| + | | Eg = ((u + du, v + dv)) | |
| + | | | |
| + | o-------------------------------------------------o |
| + | </pre> |
| + | |
| + | <br><font face="courier new"> |
| + | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" |
| + | | |
| + | {| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" |
| + | | width="8%" | E''f'' |
| + | | width="4%" | = |
| + | | width="88%" | ((''u'' + d''u'')(''v'' + d''v'')) |
| + | |- |
| + | | width="8%" | E''g'' |
| + | | width="4%" | = |
| + | | width="88%" | ((''u'' + d''u'', ''v'' + d''v'')) |
| + | |} |
| + | |} |
| + | </font><br> |
| + | |
| + | ===Formula Display 17=== |
| + | |
| + | <pre> |
| + | o-------------------------------------------------o |
| + | | | |
| + | | Df = ((u)(v)) + ((u + du)(v + dv)) | |
| + | | | |
| + | | Dg = ((u, v)) + ((u + du, v + dv)) | |
| + | | | |
| + | o-------------------------------------------------o |
| + | </pre> |
| + | |
| + | <br><font face="courier new"> |
| + | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" |
| + | | |
| + | {| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" |
| + | | width="8%" | D''f'' |
| + | | width="4%" | = |
| + | | width="20%" | ((''u'')(''v'')) |
| + | | width="4%" | + |
| + | | width="64%" | ((''u'' + d''u'')(''v'' + d''v'')) |
| + | |- |
| + | | width="8%" | D''g'' |
| + | | width="4%" | = |
| + | | width="20%" | ((''u'', ''v'')) |
| + | | width="4%" | + |
| + | | width="64%" | ((''u'' + d''u'', ''v'' + d''v'')) |
| + | |} |
| + | |} |
| + | </font><br> |
| + | |
| + | ===Table 66-i. Computation Summary for f‹u, v› = ((u)(v))=== |
| + | |
| + | <pre> |
| + | Table 66-i. Computation Summary for f<u, v> = ((u)(v)) |
| + | o--------------------------------------------------------------------------------o |
| + | | | |
| + | | !e!f = uv. 1 + u(v). 1 + (u)v. 1 + (u)(v). 0 | |
| + | | | |
| + | | Ef = uv. (du dv) + u(v). (du (dv)) + (u)v.((du) dv) + (u)(v).((du)(dv)) | |
| + | | | |
| + | | Df = uv. du dv + u(v). du (dv) + (u)v. (du) dv + (u)(v).((du)(dv)) | |
| + | | | |
| + | | df = uv. 0 + u(v). du + (u)v. dv + (u)(v). (du, dv) | |
| + | | | |
| + | | rf = uv. du dv + u(v). du dv + (u)v. du dv + (u)(v). du dv | |
| + | | | |
| + | o--------------------------------------------------------------------------------o |
| + | </pre> |
| + | |
| + | <font face="courier new"> |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
| + | |+ Table 66-i. Computation Summary for ''f''‹''u'', ''v''› = ((''u'')(''v'')) |
| + | | |
| + | {| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | <math>\epsilon</math>''f'' |
| + | | = || ''uv'' || <math>\cdot</math> || 1 |
| + | | + || ''u''(''v'') || <math>\cdot</math> || 1 |
| + | | + || (''u'')''v'' || <math>\cdot</math> || 1 |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || 0 |
| + | |- |
| + | | E''f'' |
| + | | = || ''uv'' || <math>\cdot</math> || (d''u'' d''v'') |
| + | | + || ''u''(''v'') || <math>\cdot</math> || (d''u (d''v'')) |
| + | | + || (''u'')''v'' || <math>\cdot</math> || ((d''u'') d''v'') |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || ((d''u'')(d''v'')) |
| + | |- |
| + | | D''f'' |
| + | | = || ''uv'' || <math>\cdot</math> || d''u'' d''v'' |
| + | | + || ''u''(''v'') || <math>\cdot</math> || d''u'' (d''v'') |
| + | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'') d''v'' |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || ((d''u'')(d''v'')) |
| + | |- |
| + | | d''f'' |
| + | | = || ''uv'' || <math>\cdot</math> || 0 |
| + | | + || ''u''(''v'') || <math>\cdot</math> || d''u'' |
| + | | + || (''u'')''v'' || <math>\cdot</math> || d''v'' |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| + | |- |
| + | | r''f'' |
| + | | = || ''uv'' || <math>\cdot</math> || d''u'' d''v'' |
| + | | + || ''u''(''v'') || <math>\cdot</math> || d''u'' d''v'' |
| + | | + || (''u'')''v'' || <math>\cdot</math> || d''u'' d''v'' |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || d''u'' d''v'' |
| + | |} |
| + | |} |
| + | </font><br> |
| + | |
| + | ===Table 66-ii. Computation Summary for g‹u, v› = ((u, v))=== |
| + | |
| + | <pre> |
| + | Table 66-ii. Computation Summary for g<u, v> = ((u, v)) |
| + | o--------------------------------------------------------------------------------o |
| + | | | |
| + | | !e!g = uv. 1 + u(v). 0 + (u)v. 0 + (u)(v). 1 | |
| + | | | |
| + | | Eg = uv.((du, dv)) + u(v). (du, dv) + (u)v. (du, dv) + (u)(v).((du, dv)) | |
| + | | | |
| + | | Dg = uv. (du, dv) + u(v). (du, dv) + (u)v. (du, dv) + (u)(v). (du, dv) | |
| + | | | |
| + | | dg = uv. (du, dv) + u(v). (du, dv) + (u)v. (du, dv) + (u)(v). (du, dv) | |
| + | | | |
| + | | rg = uv. 0 + u(v). 0 + (u)v. 0 + (u)(v). 0 | |
| + | | | |
| + | o--------------------------------------------------------------------------------o |
| + | </pre> |
| + | |
| + | <font face="courier new"> |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
| + | |+ Table 66-ii. Computation Summary for g‹''u'', ''v''› = ((''u'', ''v'')) |
| + | | |
| + | {| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | <math>\epsilon</math>''g'' |
| + | | = || ''uv'' || <math>\cdot</math> || 1 |
| + | | + || ''u''(''v'') || <math>\cdot</math> || 0 |
| + | | + || (''u'')''v'' || <math>\cdot</math> || 0 |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || 1 |
| + | |- |
| + | | E''g'' |
| + | | = || ''uv'' || <math>\cdot</math> || ((d''u'', d''v'')) |
| + | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || ((d''u'', d''v'')) |
| + | |- |
| + | | D''g'' |
| + | | = || ''uv'' || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| + | |- |
| + | | d''g'' |
| + | | = || ''uv'' || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| + | |- |
| + | | r''g'' |
| + | | = || ''uv'' || <math>\cdot</math> || 0 |
| + | | + || ''u''(''v'') || <math>\cdot</math> || 0 |
| + | | + || (''u'')''v'' || <math>\cdot</math> || 0 |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || 0 |
| + | |} |
| + | |} |
| + | </font><br> |
| + | |
| + | ===Table 67. Computation of an Analytic Series in Terms of Coordinates=== |
| + | |
| + | <pre> |
| + | Table 67. Computation of an Analytic Series in Terms of Coordinates |
| + | o--------o-------o-------o--------o-------o-------o-------o-------o |
| + | | u v | du dv | u' v' | f g | Ef Eg | Df Dg | df dg | rf rg | |
| + | o--------o-------o-------o--------o-------o-------o-------o-------o |
| + | | | | | | | | | | |
| + | | 0 0 | 0 0 | 0 0 | 0 1 | 0 1 | 0 0 | 0 0 | 0 0 | |
| + | | | | | | | | | | |
| + | | | 0 1 | 0 1 | | 1 0 | 1 1 | 1 1 | 0 0 | |
| + | | | | | | | | | | |
| + | | | 1 0 | 1 0 | | 1 0 | 1 1 | 1 1 | 0 0 | |
| + | | | | | | | | | | |
| + | | | 1 1 | 1 1 | | 1 1 | 1 0 | 0 0 | 1 0 | |
| + | | | | | | | | | | |
| + | o--------o-------o-------o--------o-------o-------o-------o-------o |
| + | | | | | | | | | | |
| + | | 0 1 | 0 0 | 0 1 | 1 0 | 1 0 | 0 0 | 0 0 | 0 0 | |
| + | | | | | | | | | | |
| + | | | 0 1 | 0 0 | | 0 1 | 1 1 | 1 1 | 0 0 | |
| + | | | | | | | | | | |
| + | | | 1 0 | 1 1 | | 1 1 | 0 1 | 0 1 | 0 0 | |
| + | | | | | | | | | | |
| + | | | 1 1 | 1 0 | | 1 0 | 0 0 | 1 0 | 1 0 | |
| + | | | | | | | | | | |
| + | o--------o-------o-------o--------o-------o-------o-------o-------o |
| + | | | | | | | | | | |
| + | | 1 0 | 0 0 | 1 0 | 1 0 | 1 0 | 0 0 | 0 0 | 0 0 | |
| + | | | | | | | | | | |
| + | | | 0 1 | 1 1 | | 1 1 | 0 1 | 0 1 | 0 0 | |
| + | | | | | | | | | | |
| + | | | 1 0 | 0 0 | | 0 1 | 1 1 | 1 1 | 0 0 | |
| + | | | | | | | | | | |
| + | | | 1 1 | 0 1 | | 1 0 | 0 0 | 1 0 | 1 0 | |
| + | | | | | | | | | | |
| + | o--------o-------o-------o--------o-------o-------o-------o-------o |
| + | | | | | | | | | | |
| + | | 1 1 | 0 0 | 1 1 | 1 1 | 1 1 | 0 0 | 0 0 | 0 0 | |
| + | | | | | | | | | | |
| + | | | 0 1 | 1 0 | | 1 0 | 0 1 | 0 1 | 0 0 | |
| + | | | | | | | | | | |
| + | | | 1 0 | 0 1 | | 1 0 | 0 1 | 0 1 | 0 0 | |
| + | | | | | | | | | | |
| + | | | 1 1 | 0 0 | | 0 1 | 1 0 | 0 0 | 1 0 | |
| + | | | | | | | | | | |
| + | o--------o-------o-------o--------o-------o-------o-------o-------o |
| + | </pre> |
| + | |
| + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
| + | |+ Table 67. Computation of an Analytic Series in Terms of Coordinates |
| + | | |
| + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| + | | ''u'' |
| + | | ''v'' |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| + | | d''u'' |
| + | | d''v'' |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| + | | ''u''<font face="courier new">’</font> |
| + | | ''v''<font face="courier new">’</font> |
| + | |} |
| + | |- |
| + | | valign="top" | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |} |
| + | |- |
| + | | valign="top" | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 1 |
| + | |- |
| + | | 0 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |} |
| + | |- |
| + | | valign="top" | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |} |
| + | |- |
| + | | valign="top" | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 || 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 0 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |} |
| + | |} |
| + | | |
| + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| + | | <math>\epsilon</math>''f'' |
| + | | <math>\epsilon</math>''g'' |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| + | | E''f'' |
| + | | E''g'' |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| + | | D''f'' |
| + | | D''g'' |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| + | | d''f'' |
| + | | d''g'' |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| + | | d<sup>2</sup>''f'' |
| + | | d<sup>2</sup>''g'' |
| + | |} |
| + | |- |
| + | | valign="top" | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 0 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 0 |
| + | |- |
| + | | 1 || 0 |
| + | |} |
| + | |- |
| + | | valign="top" | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 0 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 0 |
| + | |- |
| + | | 1 || 0 |
| + | |} |
| + | |- |
| + | | valign="top" | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 0 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 0 |
| + | |- |
| + | | 1 || 0 |
| + | |} |
| + | |- |
| + | | valign="top" | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 || 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 0 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 0 |
| + | |- |
| + | | 1 || 0 |
| + | |} |
| + | |} |
| + | |} |
| + | <br> |
| + | |
| + | ===Table 68. Computation of an Analytic Series in Symbolic Terms=== |
| + | |
| + | <pre> |
| + | Table 68. Computation of an Analytic Series in Symbolic Terms |
| + | o-----o-----o------------o----------o----------o----------o----------o----------o |
| + | | u v | f g | Df | Dg | df | dg | rf | rg | |
| + | o-----o-----o------------o----------o----------o----------o----------o----------o |
| + | | | | | | | | | | |
| + | | 0 0 | 0 1 | ((du)(dv)) | (du, dv) | (du, dv) | (du, dv) | du dv | () | |
| + | | | | | | | | | | |
| + | | 0 1 | 1 0 | (du) dv | (du, dv) | dv | (du, dv) | du dv | () | |
| + | | | | | | | | | | |
| + | | 1 0 | 1 0 | du (dv) | (du, dv) | du | (du, dv) | du dv | () | |
| + | | | | | | | | | | |
| + | | 1 1 | 1 1 | du dv | (du, dv) | () | (du, dv) | du dv | () | |
| + | | | | | | | | | | |
| + | o-----o-----o------------o----------o----------o----------o----------o----------o |
| + | </pre> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
| + | |+ '''Table 68. Computation of an Analytic Series in Symbolic Terms''' |
| + | |- style="background:paleturquoise" |
| + | | ''u'' ''v'' |
| + | | ''f'' ''g'' |
| + | | D''f'' |
| + | | D''g'' |
| + | | d''f'' |
| + | | d''g'' |
| + | | d<sup>2</sup>''f'' |
| + | | d<sup>2</sup>''g'' |
| + | |- |
| + | | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 0 |
| + | |- |
| + | | 0 1 |
| + | |- |
| + | | 1 0 |
| + | |- |
| + | | 1 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 1 |
| + | |- |
| + | | 1 0 |
| + | |- |
| + | | 1 0 |
| + | |- |
| + | | 1 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | ((d''u'')(d''v'')) |
| + | |- |
| + | | (d''u'') d''v'' |
| + | |- |
| + | | d''u'' (d''v'') |
| + | |- |
| + | | d''u'' d''v'' |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | (d''u'', d''v'') |
| + | |- |
| + | | (d''u'', d''v'') |
| + | |- |
| + | | (d''u'', d''v'') |
| + | |- |
| + | | (d''u'', d''v'') |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | (d''u'', d''v'') |
| + | |- |
| + | | d''v'' |
| + | |- |
| + | | d''u'' |
| + | |- |
| + | | ( ) |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | (d''u'', d''v'') |
| + | |- |
| + | | (d''u'', d''v'') |
| + | |- |
| + | | (d''u'', d''v'') |
| + | |- |
| + | | (d''u'', d''v'') |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | d''u'' d''v'' |
| + | |- |
| + | | d''u'' d''v'' |
| + | |- |
| + | | d''u'' d''v'' |
| + | |- |
| + | | d''u'' d''v'' |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | ( ) |
| + | |- |
| + | | ( ) |
| + | |- |
| + | | ( ) |
| + | |- |
| + | | ( ) |
| + | |} |
| + | |} |
| + | <br> |
| + | |
| + | ===Formula Display 18=== |
| + | |
| + | <pre> |
| + | o-------------------------------------------------------------------------o |
| + | | | |
| + | | Df = uv. du dv + u(v). du (dv) + (u)v.(du) dv + (u)(v).((du)(dv)) | |
| + | | | |
| + | | Dg = uv.(du, dv) + u(v).(du, dv) + (u)v.(du, dv) + (u)(v). (du, dv) | |
| + | | | |
| + | o-------------------------------------------------------------------------o |
| + | </pre> |
| + | |
| + | <br><font face="courier new"> |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
| + | | |
| + | {| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | |
| + | |- |
| + | | D''f'' |
| + | | = || ''uv'' || <math>\cdot</math> || d''u'' d''v'' |
| + | | + || ''u''(''v'') || <math>\cdot</math> || d''u'' (d''v'') |
| + | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'') d''v'' |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || ((d''u'')(d''v'')) |
| + | |- |
| + | | |
| + | |- |
| + | | D''g'' |
| + | | = || ''uv'' || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| + | |- |
| + | | |
| + | |} |
| + | |} |
| + | </font><br> |
| + | |
| + | ===Figure 69. Difference Map of F = ‹f, g› = ‹((u)(v)), ((u, v))›=== |
| + | |
| + | <pre> |
| + | o-----------------------------------o o-----------------------------------o |
| + | | U | |`U`````````````````````````````````| |
| + | | | |```````````````````````````````````| |
| + | | ^ | |```````````````````````````````````| |
| + | | | | |```````````````````````````````````| |
| + | | o-------o | o-------o | |```````o-------o```o-------o```````| |
| + | | ^ /`````````\|/`````````\ ^ | | ^ ```/ ^ \`/ ^ \``` ^ | |
| + | | \ /```````````|```````````\ / | |``\``/ \ o / \``/``| |
| + | | \/`````u`````/|\`````v`````\/ | |```\/ u \/`\/ v \/```| |
| + | | /\``````````/`|`\``````````/\ | |```/\ /\`/\ /\```| |
| + | | o``\````````o``@``o````````/``o | |``o \ o``@``o / o``| |
| + | | |```\```````|`````|```````/```| | |``| \ |`````| / |``| |
| + | | |````@``````|`````|``````@````| | |``| @-------->`<--------@ |``| |
| + | | |```````````|`````|```````````| | |``| |`````| |``| |
| + | | o```````````o` ^ `o```````````o | |``o o`````o o``| |
| + | | \```````````\`|`/```````````/ | |```\ \```/ /```| |
| + | | \```` ^ ````\|/```` ^ ````/ | |````\ ^ \`/ ^ /````| |
| + | | \`````\`````|`````/`````/ | |`````\ \ o / /`````| |
| + | | \`````\```/|\```/`````/ | |``````\ \ /`\ / /``````| |
| + | | o-----\-o | o-/-----o | |```````o-----\-o```o-/-----o```````| |
| + | | \ | / | |``````````````\`````/``````````````| |
| + | | \ | / | |```````````````\```/```````````````| |
| + | | \|/ | |````````````````\`/````````````````| |
| + | | @ | |`````````````````@`````````````````| |
| + | o-----------------------------------o o-----------------------------------o |
| + | \ / \ / |
| + | \ / \ / |
| + | \ ((u)(v)) / \ ((u, v)) / |
| + | \ / \ / |
| + | \ / \ / |
| + | o----------\-------------/-----------------------\-------------/----------o |
| + | | X \ / \ / | |
| + | | \ / \ / | |
| + | | \ / \ / | |
| + | | o----------------o o----------------o | |
| + | | / \ / \ | |
| + | | / o \ | |
| + | | / / \ \ | |
| + | | / / \ \ | |
| + | | / / \ \ | |
| + | | / / \ \ | |
| + | | / / \ \ | |
| + | | o o o o | |
| + | | | | | | | |
| + | | | | | | | |
| + | | | f | | g | | |
| + | | | | | | | |
| + | | | | | | | |
| + | | o o o o | |
| + | | \ \ / / | |
| + | | \ \ / / | |
| + | | \ \ / / | |
| + | | \ \ / / | |
| + | | \ \ / / | |
| + | | \ o / | |
| + | | \ / \ / | |
| + | | o----------------o o----------------o | |
| + | | | |
| + | | | |
| + | | | |
| + | o-------------------------------------------------------------------------o |
| + | Figure 69. Difference Map of F = <f, g> = <((u)(v)), ((u, v))> |
| + | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 69 -- Difference Map (Short Form).gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 69. Difference Map of F = ‹f, g› = ‹((u)(v)), ((u, v))›'''</font></center></p> |
| + | |
| + | ===Formula Display 19=== |
| + | |
| + | <pre> |
| + | o-------------------------------------------------------------------------------o |
| + | | | |
| + | | df = uv. 0 + u(v). du + (u)v. dv + (u)(v).(du, dv) | |
| + | | | |
| + | | dg = uv.(du, dv) + u(v).(du, dv) + (u)v.(du, dv) + (u)(v).(du, dv) | |
| + | | | |
| + | o-------------------------------------------------------------------------------o |
| + | </pre> |
| + | |
| + | <br><font face="courier new"> |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
| + | | |
| + | {| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | |
| + | |- |
| + | | d''f'' |
| + | | = || ''uv'' || <math>\cdot</math> || 0 |
| + | | + || ''u''(''v'') || <math>\cdot</math> || d''u'' |
| + | | + || (''u'')''v'' || <math>\cdot</math> || d''v'' |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| + | |- |
| + | | |
| + | |- |
| + | | d''g'' |
| + | | = || ''uv'' || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| + | |- |
| + | | |
| + | |} |
| + | |} |
| + | </font><br> |
| + | |
| + | ===Figure 70-a. Tangent Functor Diagram for F‹u, v› = ‹((u)(v)), ((u, v))›=== |
| + | |
| + | <pre> |
| + | o o |
| + | / \ / \ |
| + | / \ / \ |
| + | / \ / O \ |
| + | / \ o /@\ o |
| + | / \ / \ / \ |
| + | / \ / \ / \ |
| + | / O \ / O \ / O \ |
| + | o /@\ o o /@\ o /@\ o |
| + | / \ / \ / \ \ / \ \ / \ |
| + | / \ / \ / \ / \ / \ |
| + | / \ / \ / O \ / O \ / O \ |
| + | / \ / \ o /@ o /@\ o /@ o |
| + | / \ / \ / \ \ / \ / \ \ / \ |
| + | / \ / \ / \ / \ / \ / \ |
| + | / O \ / O \ / O \ / O \ / O \ / O \ |
| + | o /@ o /@ o o /@ o /@ o /@ o /@ o |
| + | |\ / \ /| |\ / \ / / \ / / \ /| |
| + | | \ / \ / | | \ / \ / \ / \ / | |
| + | | \ / \ / | | \ / O \ / O \ / O \ / | |
| + | | \ / \ / | | o /@ o @\ o /@ o | |
| + | | \ / \ / | | |\ / \ / \ / \ / \ /| | |
| + | | \ / \ / | | | \ / \ / \ / | | |
| + | | u \ / O \ / v | | u | \ / O \ / O \ / | v | |
| + | o-------o @\ o-------o o---+---o @\ o @\ o---+---o |
| + | \ / | \ / \ / \ / \ / | |
| + | \ / | \ / \ / | |
| + | \ / | du \ / O \ / dv | |
| + | \ / o-------o @\ o-------o |
| + | \ / \ / |
| + | \ / \ / |
| + | \ / \ / |
| + | o o |
| + | U% $T$ $E$U% |
| + | o------------------>o |
| + | | | |
| + | | | |
| + | | | |
| + | | | |
| + | F | | $T$F |
| + | | | |
| + | | | |
| + | | | |
| + | v v |
| + | o------------------>o |
| + | X% $T$ $E$X% |
| + | o o |
| + | / \ / \ |
| + | / \ / \ |
| + | / \ / O \ |
| + | / \ o /@\ o |
| + | / \ / \ / \ |
| + | / \ / \ / \ |
| + | / O \ / O \ / O \ |
| + | o /@\ o o /@\ o /@\ o |
| + | / \ / \ / \ \ / \ / / \ |
| + | / \ / \ / \ / \ / \ |
| + | / \ / \ / O \ / O \ / O \ |
| + | / \ / \ o /@ o /@\ o @\ o |
| + | / \ / \ / \ \ / \ / \ / \ / / \ |
| + | / \ / \ / \ / \ / \ / \ |
| + | / O \ / O \ / O \ / O \ / O \ / O \ |
| + | o /@ o @\ o o /@ o /@ o @\ o @\ o |
| + | |\ / \ /| |\ / \ / \ / \ / \ / \ /| |
| + | | \ / \ / | | \ / \ / \ / \ / | |
| + | | \ / \ / | | \ / O \ / O \ / O \ / | |
| + | | \ / \ / | | o /@ o @ o @\ o | |
| + | | \ / \ / | | |\ / / \ / \ / \ \ /| | |
| + | | \ / \ / | | | \ / \ / \ / | | |
| + | | x \ / O \ / y | | x | \ / O \ / O \ / | y | |
| + | o-------o @ o-------o o---+---o @ o @ o---+---o |
| + | \ / | \ / / \ \ / | |
| + | \ / | \ / \ / | |
| + | \ / | dx \ / O \ / dy | |
| + | \ / o-------o @ o-------o |
| + | \ / \ / |
| + | \ / \ / |
| + | \ / \ / |
| + | o o |
| + | |
| + | Figure 70-a. Tangent Functor Diagram for F‹u, v› = <((u)(v)), ((u, v))> |
| + | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 70-a -- Tangent Functor Diagram.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 70-a. Tangent Functor Diagram for F‹u, v› = ‹((u)(v)), ((u, v))›'''</font></center></p> |
| + | |
| + | ===Figure 70-b. Tangent Functor Ferris Wheel for F‹u, v› = ‹((u)(v)), ((u, v))›=== |
| + | |
| + | <pre> |
| + | o-----------------------o o-----------------------o o-----------------------o |
| + | | dU | | dU | | dU | |
| + | | o--o o--o | | o--o o--o | | o--o o--o | |
| + | | /////\ /////\ | | /XXXX\ /XXXX\ | | /\\\\\ /\\\\\ | |
| + | | ///////o//////\ | | /XXXXXXoXXXXXX\ | | /\\\\\\o\\\\\\\ | |
| + | | //////// \//////\ | | /XXXXXX/ \XXXXXX\ | | /\\\\\\/ \\\\\\\\ | |
| + | | o/////// \//////o | | oXXXXXX/ \XXXXXXo | | o\\\\\\/ \\\\\\\o | |
| + | | |/////o o/////| | | |XXXXXo oXXXXX| | | |\\\\\o o\\\\\| | |
| + | | |/du//| |//dv/| | | |XXXXX| |XXXXX| | | |\du\\| |\\dv\| | |
| + | | |/////o o/////| | | |XXXXXo oXXXXX| | | |\\\\\o o\\\\\| | |
| + | | o//////\ ///////o | | oXXXXXX\ /XXXXXXo | | o\\\\\\\ /\\\\\\o | |
| + | | \//////\ //////// | | \XXXXXX\ /XXXXXX/ | | \\\\\\\\ /\\\\\\/ | |
| + | | \//////o/////// | | \XXXXXXoXXXXXX/ | | \\\\\\\o\\\\\\/ | |
| + | | \///// \///// | | \XXXX/ \XXXX/ | | \\\\\/ \\\\\/ | |
| | o--o o--o | | o--o o--o | | o--o o--o | | | | o--o o--o | | o--o o--o | | o--o o--o | |
− | | | | | | | | + | | | | | | | |
− | o-----------------------o o-----------------------o o-----------------------o | + | o-----------------------o o-----------------------o o-----------------------o |
− | = du' @ u v o-----------------------o dv' @ u v = | + | = du' @ (u)(v) o-----------------------o dv' @ (u)(v) = |
− | = | dU' | =
| + | = | dU' | = |
− | = | o--o o--o | =
| + | = | o--o o--o | = |
− | = | /////\ /\\\\\ | = | + | = | /////\ /\\\\\ | = |
− | = | ///////o\\\\\\\ | = | + | = | ///////o\\\\\\\ | = |
− | = | ////////X\\\\\\\\ | = | + | = | ////////X\\\\\\\\ | = |
− | = | o///////XXX\\\\\\\o | = | + | = | o///////XXX\\\\\\\o | = |
− | = | |/////oXXXXXo\\\\\| | = | + | = | |/////oXXXXXo\\\\\| | = |
− | = = = = = = = = = = =|/du'/|XXXXX|\dv'\|= = = = = = = = = = = | + | = = = = = = = = = = =|/du'/|XXXXX|\dv'\|= = = = = = = = = = = |
− | | |/////oXXXXXo\\\\\| | | + | | |/////oXXXXXo\\\\\| | |
− | | o//////\XXX/\\\\\\o | | + | | o//////\XXX/\\\\\\o | |
− | | \//////\X/\\\\\\/ | | + | | \//////\X/\\\\\\/ | |
− | | \//////o\\\\\\/ | | + | | \//////o\\\\\\/ | |
− | | \///// \\\\\/ | | + | | \///// \\\\\/ | |
− | | o--o o--o | | + | | o--o o--o | |
− | | | | + | | | |
− | o-----------------------o | + | o-----------------------o |
− | | + | |
− | o-----------------------o o-----------------------o o-----------------------o | + | o-----------------------o o-----------------------o o-----------------------o |
− | | U | |\U\\\\\\\\\\\\\\\\\\\\\| |\U\\\\\\\\\\\\\\\\\\\\\| | + | | dU | | dU | | dU | |
− | | o--o o--o | |\\\\\\o--o\\\o--o\\\\\\| |\\\\\\o--o\\\o--o\\\\\\| | + | | o--o o--o | | o--o o--o | | o--o o--o | |
− | | /////\ /////\ | |\\\\\/////\\/////\\\\\\| |\\\\\/ \\/ \\\\\\| | + | | / \ /////\ | | /\\\\\ /XXXX\ | | /\\\\\ /\\\\\ | |
− | | ///////o//////\ | |\\\\///////o//////\\\\\| |\\\\/ o \\\\\| | + | | / o//////\ | | /\\\\\\oXXXXXX\ | | /\\\\\\o\\\\\\\ | |
− | | /////////\//////\ | |\\\////////X\//////\\\\| |\\\/ /\\ \\\\| | + | | / //\//////\ | | /\\\\\\//\XXXXXX\ | | /\\\\\\/ \\\\\\\\ | |
− | | o//////////\//////o | |\\o///////XXX\//////o\\| |\\o /\\\\ o\\| | + | | o ////\//////o | | o\\\\\\////\XXXXXXo | | o\\\\\\/ \\\\\\\o | |
− | | |/////o/////o/////| | |\\|/////oXXXXXo/////|\\| |\\| o\\\\\o |\\| | + | | | o/////o/////| | | |\\\\\o/////oXXXXX| | | |\\\\\o o\\\\\| | |
− | | |//u//|/////|//v//| | |\\|//u//|XXXXX|//v//|\\| |\\| u |\\\\\| v |\\| | + | | | du |/////|//dv/| | | |\\\\\|/////|XXXXX| | | |\du\\| |\\dv\| | |
− | | |/////o/////o/////| | |\\|/////oXXXXXo/////|\\| |\\| o\\\\\o |\\| | + | | | o/////o/////| | | |\\\\\o/////oXXXXX| | | |\\\\\o o\\\\\| | |
− | | o//////\//////////o | |\\o//////\XXX///////o\\| |\\o \\\\/ o\\| | + | | o \//////////o | | o\\\\\\\////XXXXXXo | | o\\\\\\\ /\\\\\\o | |
− | | \//////\///////// | |\\\\//////\X////////\\\| |\\\\ \\/ /\\\| | + | | \ \///////// | | \\\\\\\\//XXXXXX/ | | \\\\\\\\ /\\\\\\/ | |
− | | \//////o/////// | |\\\\\//////o///////\\\\| |\\\\\ o /\\\\| | + | | \ o/////// | | \\\\\\\oXXXXXX/ | | \\\\\\\o\\\\\\/ | |
− | | \///// \///// | |\\\\\\/////\\/////\\\\\| |\\\\\\ /\\ /\\\\\| | + | | \ / \///// | | \\\\\/ \XXXX/ | | \\\\\/ \\\\\/ | |
− | | o--o o--o | |\\\\\\o--o\\\o--o\\\\\\| |\\\\\\o--o\\\o--o\\\\\\| | + | | o--o o--o | | o--o o--o | | o--o o--o | |
− | | | |\\\\\\\\\\\\\\\\\\\\\\\| |\\\\\\\\\\\\\\\\\\\\\\\| | + | | | | | | | |
− | o-----------------------o o-----------------------o o-----------------------o | + | o-----------------------o o-----------------------o o-----------------------o |
− | = u' o-----------------------o v' = | + | = du' @ (u) v o-----------------------o dv' @ (u) v = |
− | = | U' | = | + | = | dU' | = |
− | = | o--o o--o | = | + | = | o--o o--o | = |
− | = | /////\ /\\\\\ | = | + | = | /////\ /\\\\\ | = |
− | = | ///////o\\\\\\\ | = | + | = | ///////o\\\\\\\ | = |
− | = | ////////X\\\\\\\\ | = | + | = | ////////X\\\\\\\\ | = |
− | = | o///////XXX\\\\\\\o | = | + | = | o///////XXX\\\\\\\o | = |
− | = | |/////oXXXXXo\\\\\| | = | + | = | |/////oXXXXXo\\\\\| | = |
− | = = = = = = = = = = =|/u'//|XXXXX|\\v'\|= = = = = = = = = = = | + | = = = = = = = = = = =|/du'/|XXXXX|\dv'\|= = = = = = = = = = = |
− | | |/////oXXXXXo\\\\\| | | + | | |/////oXXXXXo\\\\\| | |
− | | o//////\XXX/\\\\\\o | | + | | o//////\XXX/\\\\\\o | |
− | | \//////\X/\\\\\\/ | | + | | \//////\X/\\\\\\/ | |
− | | \//////o\\\\\\/ | | + | | \//////o\\\\\\/ | |
− | | \///// \\\\\/ | | + | | \///// \\\\\/ | |
− | | o--o o--o | | + | | o--o o--o | |
− | | | | + | | | |
− | o-----------------------o | + | o-----------------------o |
| + | |
| + | o-----------------------o o-----------------------o o-----------------------o |
| + | | dU | | dU | | dU | |
| + | | o--o o--o | | o--o o--o | | o--o o--o | |
| + | | /////\ / \ | | /XXXX\ /\\\\\ | | /\\\\\ /\\\\\ | |
| + | | ///////o \ | | /XXXXXXo\\\\\\\ | | /\\\\\\o\\\\\\\ | |
| + | | /////////\ \ | | /XXXXXX//\\\\\\\\ | | /\\\\\\/ \\\\\\\\ | |
| + | | o//////////\ o | | oXXXXXX////\\\\\\\o | | o\\\\\\/ \\\\\\\o | |
| + | | |/////o/////o | | | |XXXXXo/////o\\\\\| | | |\\\\\o o\\\\\| | |
| + | | |/du//|/////| dv | | | |XXXXX|/////|\\\\\| | | |\du\\| |\\dv\| | |
| + | | |/////o/////o | | | |XXXXXo/////o\\\\\| | | |\\\\\o o\\\\\| | |
| + | | o//////\//// o | | oXXXXXX\////\\\\\\o | | o\\\\\\\ /\\\\\\o | |
| + | | \//////\// / | | \XXXXXX\//\\\\\\/ | | \\\\\\\\ /\\\\\\/ | |
| + | | \//////o / | | \XXXXXXo\\\\\\/ | | \\\\\\\o\\\\\\/ | |
| + | | \///// \ / | | \XXXX/ \\\\\/ | | \\\\\/ \\\\\/ | |
| + | | o--o o--o | | o--o o--o | | o--o o--o | |
| + | | | | | | | |
| + | o-----------------------o o-----------------------o o-----------------------o |
| + | = du' @ u (v) o-----------------------o dv' @ u (v) = |
| + | = | dU' | = |
| + | = | o--o o--o | = |
| + | = | /////\ /\\\\\ | = |
| + | = | ///////o\\\\\\\ | = |
| + | = | ////////X\\\\\\\\ | = |
| + | = | o///////XXX\\\\\\\o | = |
| + | = | |/////oXXXXXo\\\\\| | = |
| + | = = = = = = = = = = =|/du'/|XXXXX|\dv'\|= = = = = = = = = = = |
| + | | |/////oXXXXXo\\\\\| | |
| + | | o//////\XXX/\\\\\\o | |
| + | | \//////\X/\\\\\\/ | |
| + | | \//////o\\\\\\/ | |
| + | | \///// \\\\\/ | |
| + | | o--o o--o | |
| + | | | |
| + | o-----------------------o |
| + | |
| + | o-----------------------o o-----------------------o o-----------------------o |
| + | | dU | | dU | | dU | |
| + | | o--o o--o | | o--o o--o | | o--o o--o | |
| + | | / \ / \ | | /\\\\\ /\\\\\ | | /\\\\\ /\\\\\ | |
| + | | / o \ | | /\\\\\\o\\\\\\\ | | /\\\\\\o\\\\\\\ | |
| + | | / / \ \ | | /\\\\\\/ \\\\\\\\ | | /\\\\\\/ \\\\\\\\ | |
| + | | o / \ o | | o\\\\\\/ \\\\\\\o | | o\\\\\\/ \\\\\\\o | |
| + | | | o o | | | |\\\\\o o\\\\\| | | |\\\\\o o\\\\\| | |
| + | | | du | | dv | | | |\\\\\| |\\\\\| | | |\du\\| |\\dv\| | |
| + | | | o o | | | |\\\\\o o\\\\\| | | |\\\\\o o\\\\\| | |
| + | | o \ / o | | o\\\\\\\ /\\\\\\o | | o\\\\\\\ /\\\\\\o | |
| + | | \ \ / / | | \\\\\\\\ /\\\\\\/ | | \\\\\\\\ /\\\\\\/ | |
| + | | \ o / | | \\\\\\\o\\\\\\/ | | \\\\\\\o\\\\\\/ | |
| + | | \ / \ / | | \\\\\/ \\\\\/ | | \\\\\/ \\\\\/ | |
| + | | o--o o--o | | o--o o--o | | o--o o--o | |
| + | | | | | | | |
| + | o-----------------------o o-----------------------o o-----------------------o |
| + | = du' @ u v o-----------------------o dv' @ u v = |
| + | = | dU' | = |
| + | = | o--o o--o | = |
| + | = | /////\ /\\\\\ | = |
| + | = | ///////o\\\\\\\ | = |
| + | = | ////////X\\\\\\\\ | = |
| + | = | o///////XXX\\\\\\\o | = |
| + | = | |/////oXXXXXo\\\\\| | = |
| + | = = = = = = = = = = =|/du'/|XXXXX|\dv'\|= = = = = = = = = = = |
| + | | |/////oXXXXXo\\\\\| | |
| + | | o//////\XXX/\\\\\\o | |
| + | | \//////\X/\\\\\\/ | |
| + | | \//////o\\\\\\/ | |
| + | | \///// \\\\\/ | |
| + | | o--o o--o | |
| + | | | |
| + | o-----------------------o |
| + | |
| + | o-----------------------o o-----------------------o o-----------------------o |
| + | | U | |\U\\\\\\\\\\\\\\\\\\\\\| |\U\\\\\\\\\\\\\\\\\\\\\| |
| + | | o--o o--o | |\\\\\\o--o\\\o--o\\\\\\| |\\\\\\o--o\\\o--o\\\\\\| |
| + | | /////\ /////\ | |\\\\\/////\\/////\\\\\\| |\\\\\/ \\/ \\\\\\| |
| + | | ///////o//////\ | |\\\\///////o//////\\\\\| |\\\\/ o \\\\\| |
| + | | /////////\//////\ | |\\\////////X\//////\\\\| |\\\/ /\\ \\\\| |
| + | | o//////////\//////o | |\\o///////XXX\//////o\\| |\\o /\\\\ o\\| |
| + | | |/////o/////o/////| | |\\|/////oXXXXXo/////|\\| |\\| o\\\\\o |\\| |
| + | | |//u//|/////|//v//| | |\\|//u//|XXXXX|//v//|\\| |\\| u |\\\\\| v |\\| |
| + | | |/////o/////o/////| | |\\|/////oXXXXXo/////|\\| |\\| o\\\\\o |\\| |
| + | | o//////\//////////o | |\\o//////\XXX///////o\\| |\\o \\\\/ o\\| |
| + | | \//////\///////// | |\\\\//////\X////////\\\| |\\\\ \\/ /\\\| |
| + | | \//////o/////// | |\\\\\//////o///////\\\\| |\\\\\ o /\\\\| |
| + | | \///// \///// | |\\\\\\/////\\/////\\\\\| |\\\\\\ /\\ /\\\\\| |
| + | | o--o o--o | |\\\\\\o--o\\\o--o\\\\\\| |\\\\\\o--o\\\o--o\\\\\\| |
| + | | | |\\\\\\\\\\\\\\\\\\\\\\\| |\\\\\\\\\\\\\\\\\\\\\\\| |
| + | o-----------------------o o-----------------------o o-----------------------o |
| + | = u' o-----------------------o v' = |
| + | = | U' | = |
| + | = | o--o o--o | = |
| + | = | /////\ /\\\\\ | = |
| + | = | ///////o\\\\\\\ | = |
| + | = | ////////X\\\\\\\\ | = |
| + | = | o///////XXX\\\\\\\o | = |
| + | = | |/////oXXXXXo\\\\\| | = |
| + | = = = = = = = = = = =|/u'//|XXXXX|\\v'\|= = = = = = = = = = = |
| + | | |/////oXXXXXo\\\\\| | |
| + | | o//////\XXX/\\\\\\o | |
| + | | \//////\X/\\\\\\/ | |
| + | | \//////o\\\\\\/ | |
| + | | \///// \\\\\/ | |
| + | | o--o o--o | |
| + | | | |
| + | o-----------------------o |
| + | |
| + | Figure 70-b. Tangent Functor Ferris Wheel for F<u, v> = <((u)(v)), ((u, v))> |
| + | </pre> |
| | | |
− | Figure 70-b. Tangent Functor Ferris Wheel for F<u, v> = <((u)(v)), ((u, v))> | + | [[Image:Tangent_Functor_Ferris_Wheel.gif|frame|<font size="3">'''Figure 70-b. Tangent Functor Ferris Wheel for F‹u, v› = ‹((u)(v)), ((u, v))›'''</font>]] |
− | </pre> | |