| Line 8,197: |
Line 8,197: |
| | | | | | |
| | |- | | |- |
| − | | ['''B'''<sup>2</sup>] → ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] , | + | | ['''B'''<sup>''n''</sup>] → ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] , |
| | |- | | |- |
| − | | ['''B'''<sup>1</sup>] → ['''B'''<sup>1</sup> × '''D'''<sup>1</sup>] , | + | | ['''B'''<sup>''k''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>] , |
| | |- | | |- |
| − | | (['''B'''<sup>2</sup>] → ['''B'''<sup>1</sup>]) | + | | (['''B'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup>]) |
| | |- | | |- |
| | | → | | | → |
| | |- | | |- |
| − | | (['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''B'''<sup>1</sup> × '''D'''<sup>1</sup>]) | + | | (['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>]) |
| | |- | | |- |
| | | | | | |
| Line 8,234: |
Line 8,234: |
| | |} | | |} |
| | |}<br> | | |}<br> |
| − |
| |
| − | <pre>
| |
| − | -------------o
| |
| − | | W | W : | Operator | |
| |
| − | | | U% -> EU%, | | [B^n] -> [B^n x D^n], |
| |
| − | | | X% -> EX%, | | [B^k] -> [B^k x D^k], |
| |
| − | | | (U%->X%)->(EU%->EX%), | | ([B^n] -> [B^k]) |
| |
| − | | | for each W among: | | -> |
| |
| − | | | !e!, !h!, E, D, d | | ([B^n x D^n]->[B^k x D^k]) |
| |
| − | -------------o
| |
| − | | !e! | | Tacit Extension Operator !e!
| |
| − | | !h! | | Trope Extension Operator !h!
| |
| − | | E | | Enlargement Operator E
| |
| − | | D | | Difference Operator D
| |
| − | | d | | Differential Operator d
| |
| − | -------------o
| |
| − | | $W$ | $W$ : | Operator | |
| |
| − | | | U% -> $T$U% = EU%, | | [B^n] -> [B^n x D^n], |
| |
| − | | | X% -> $T$X% = EX%, | | [B^k] -> [B^k x D^k], |
| |
| − | | | (U%->X%)->($T$U%->$T$X%)| | ([B^n] -> [B^k]) |
| |
| − | | | for each $W$ among: | | -> |
| |
| − | | | $e$, $E$, $D$, $T$ | | ([B^n x D^n]->[B^k x D^k]) |
| |
| − | -------------o
| |
| − | | $e$ | | Radius Operator $e$ = <!e!, !h!> |
| |
| − | | $E$ | | Secant Operator $E$ = <!e!, E > |
| |
| − | | $D$ | | Chord Operator $D$ = <!e!, D > |
| |
| − | | $T$ | | Tangent Functor $T$ = <!e!, d > |
| |
| − | -------------o
| |
| − | </pre>
| |
| | | | |
| | ===Table 59. Synopsis of Terminology: Restrictive and Alternative Subtypes=== | | ===Table 59. Synopsis of Terminology: Restrictive and Alternative Subtypes=== |