Line 1: |
Line 1: |
| + | ==Format Samples • Wiki Text== |
| + | |
| + | ===MathBB, MathBF, MathCal=== |
| + | |
| + | A set of logical features, <math>\mathcal{A} = \{ a_1, \ldots, a_n \},</math> affords a basis for generating an <math>n</math>-dimensional universe of discourse, written <math>A^\bullet = [ \mathcal{A} ] = [ a_1, \ldots, a_n ].</math> It is useful to consider a universe of discourse as a categorical object that incorporates both the set of points <math>A = \langle a_1, \ldots, a_n \rangle</math> and the set of propositions <math>A^\uparrow = \{ f : A \to \mathbb{B} \}</math> that are implicit with the ordinary picture of a venn diagram on <math>n</math> features. Accordingly, the universe of discourse <math>A^\bullet</math> may be regarded as an ordered pair <math>(A, A^\uparrow)</math> having the type <math>(\mathbb{B}^n, (\mathbb{B}^n \to \mathbb{B})),</math> and this last type designation may be abbreviated as <math>\mathbb{B}^n\ +\!\to \mathbb{B},</math> or even more succinctly as <math>[ \mathbb{B}^n ].</math> For convenience, the data type of a finite set on <math>n</math> elements may be indicated by either one of the equivalent notations, <math>[n]</math> or <math>\mathbf{n}.</math> |
| + | |
| + | ===MathFrak=== |
| + | |
| + | <p><math>\begin{array}{lccccccccccc} |
| + | \mathfrak{M} |
| + | & = & \{ & \mathfrak{m}_1 & , & \mathfrak{m}_2 & , & \mathfrak{m}_3 & , & \mathfrak{m}_4 & \} |
| + | \\ |
| + | & = & \{ & \text{“ ”} & , & \text{“(”} & , & \text{“,”} & , & \text{“)”} & \} |
| + | \\ |
| + | & = & \{ & \mathrm{blank} & , & \mathrm{links} & , & \mathrm{comma} & , & \mathrm{right} & \} |
| + | \end{array}</math></p> |
| + | |
| + | ===TextTT=== |
| + | |
| + | For the initial case <math>k = 0,</math> the bound connective is an empty closure, an expression taking one of the forms <math>\texttt{()}, \texttt{( )}, \texttt{( )}, \ldots</math> with any number of spaces between the parentheses, all of which have the same denotation among propositions. |
| + | |
| + | For the generic case <math>k > 0,</math> the bound connective takes the form <math>\texttt{(} s_1 \texttt{,} \ldots \texttt{,} s_k \texttt{)}.</math> |
| + | |
| + | ==Format Samples • Screenshots== |
| + | |
| + | ===MathJax Fail=== |
| + | |
| + | [[File:Format Samples • MathJax Fail.png|640px]] |
| + | |
| + | ===MathML View=== |
| + | |
| + | [[File:Format Samples • MathML View.png|640px]] |
| + | |
| ==Logic of Relatives== | | ==Logic of Relatives== |
| | | |
Line 22: |
Line 55: |
| | | |
| {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" |
− | |+ '''Table 3. Relational Composition''' | + | |+ <math>\text{Table 3. Relational Composition}\!</math> |
| |- | | |- |
| | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | | | | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | |
Line 65: |
Line 98: |
| <br> | | <br> |
| | | |
− | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:70%" | + | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:75%" |
− | |+ '''Table 9. Composite of Triadic and Dyadic Relations''' | + | |+ <math>\text{Table 9. Composite of Triadic and Dyadic Relations}\!</math> |
| |- | | |- |
| | style="border-right:1px solid black; border-bottom:1px solid black; width:20%" | | | | style="border-right:1px solid black; border-bottom:1px solid black; width:20%" | |
Line 114: |
Line 147: |
| | | |
| {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" |
− | |+ '''Table 13. Another Brand of Composition''' | + | |+ <math>\text{Table 13. Another Brand of Composition}\!</math> |
| |- | | |- |
| | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | | | | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | |
Line 158: |
Line 191: |
| | | |
| {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" |
− | |+ '''Table 15. Conjunction Via Composition''' | + | |+ <math>\text{Table 15. Conjunction Via Composition}\!</math> |
| |- | | |- |
| | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | | | | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | |
Line 178: |
Line 211: |
| | <math>X\!</math> | | | <math>X\!</math> |
| | | | | |
| + | | <math>Y\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" cellspacing="6" width="90%" |
| + | | align="center" | |
| + | <pre> |
| + | Table 18. Relational Composition P o Q |
| + | o---------o---------o---------o---------o |
| + | | # !1! | !1! | !1! | |
| + | o=========o=========o=========o=========o |
| + | | P # X | Y | | |
| + | o---------o---------o---------o---------o |
| + | | Q # | Y | Z | |
| + | o---------o---------o---------o---------o |
| + | | P o Q # X | | Z | |
| + | o---------o---------o---------o---------o |
| + | </pre> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" |
| + | |+ <math>\text{Table 18. Relational Composition}~ P \circ Q</math> |
| + | |- |
| + | | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | |
| + | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> |
| + | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> |
| + | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> |
| + | |- |
| + | | style="border-right:1px solid black" | <math>P\!</math> |
| + | | <math>X\!</math> |
| + | | <math>Y\!</math> |
| + | | |
| + | |- |
| + | | style="border-right:1px solid black" | <math>Q\!</math> |
| + | | |
| + | | <math>Y\!</math> |
| + | | <math>Z\!</math> |
| + | |- |
| + | | style="border-right:1px solid black" | <math>P \circ Q</math> |
| + | | <math>X\!</math> |
| + | | |
| + | | <math>Z\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" cellspacing="6" width="90%" |
| + | | align="center" | |
| + | <pre> |
| + | Table 20. Arrow: J(L(u, v)) = K(Ju, Jv) |
| + | o---------o---------o---------o---------o |
| + | | # J | J | J | |
| + | o=========o=========o=========o=========o |
| + | | K # X | X | X | |
| + | o---------o---------o---------o---------o |
| + | | L # Y | Y | Y | |
| + | o---------o---------o---------o---------o |
| + | </pre> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" |
| + | |+ <math>\text{Table 20. Arrow Equation:}~~ J(L(u, v)) = K(Ju, Jv)</math> |
| + | |- |
| + | | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | |
| + | | style="border-bottom:1px solid black; width:25%" | <math>J\!</math> |
| + | | style="border-bottom:1px solid black; width:25%" | <math>J\!</math> |
| + | | style="border-bottom:1px solid black; width:25%" | <math>J\!</math> |
| + | |- |
| + | | style="border-right:1px solid black" | <math>K\!</math> |
| + | | <math>X\!</math> |
| + | | <math>X\!</math> |
| + | | <math>X\!</math> |
| + | |- |
| + | | style="border-right:1px solid black" | <math>L\!</math> |
| + | | <math>Y\!</math> |
| + | | <math>Y\!</math> |
| | <math>Y\!</math> | | | <math>Y\!</math> |
| |} | | |} |
Line 228: |
Line 342: |
| {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:whitesmoke; width:100%" | | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:whitesmoke; width:100%" |
| | width="20%" | <math>\operatorname{Sentence}</math> | | | width="20%" | <math>\operatorname{Sentence}</math> |
− | | width="20%" | <math>\xrightarrow[\operatorname{~~~~~~~~~~}]{\operatorname{Parse}}</math> | + | | width="20%" | <math>\xrightarrow[\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}]{\operatorname{Parse}}</math> |
| | width="20%" | <math>\operatorname{Graph}</math> | | | width="20%" | <math>\operatorname{Graph}</math> |
− | | width="20%" | <math>\xrightarrow[\operatorname{~~~~~~~~~~}]{\operatorname{Denotation}}</math> | + | | width="20%" | <math>\xrightarrow[\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}]{\operatorname{Denotation}}</math> |
| | width="20%" | <math>\operatorname{Proposition}</math> | | | width="20%" | <math>\operatorname{Proposition}</math> |
| |} | | |} |
Line 237: |
Line 351: |
| {| align="center" border="0" cellpadding="8" cellspacing="0" width="100%" | | {| align="center" border="0" cellpadding="8" cellspacing="0" width="100%" |
| | width="20%" | <math>s_j\!</math> | | | width="20%" | <math>s_j\!</math> |
− | | width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math> | + | | width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math> |
| | width="20%" | <math>C_j\!</math> | | | width="20%" | <math>C_j\!</math> |
− | | width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math> | + | | width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math> |
| | width="20%" | <math>q_j\!</math> | | | width="20%" | <math>q_j\!</math> |
| |} | | |} |
Line 246: |
Line 360: |
| {| align="center" border="0" cellpadding="8" cellspacing="0" width="100%" | | {| align="center" border="0" cellpadding="8" cellspacing="0" width="100%" |
| | width="20%" | <math>\operatorname{Conc}^0</math> | | | width="20%" | <math>\operatorname{Conc}^0</math> |
− | | width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math> | + | | width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math> |
| | width="20%" | <math>\operatorname{Node}^0</math> | | | width="20%" | <math>\operatorname{Node}^0</math> |
− | | width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math> | + | | width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math> |
| | width="20%" | <math>\underline{1}</math> | | | width="20%" | <math>\underline{1}</math> |
| |- | | |- |
| | width="20%" | <math>\operatorname{Conc}^k_j s_j</math> | | | width="20%" | <math>\operatorname{Conc}^k_j s_j</math> |
− | | width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math> | + | | width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math> |
| | width="20%" | <math>\operatorname{Node}^k_j C_j</math> | | | width="20%" | <math>\operatorname{Node}^k_j C_j</math> |
− | | width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math> | + | | width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math> |
| | width="20%" | <math>\operatorname{Conj}^k_j q_j</math> | | | width="20%" | <math>\operatorname{Conj}^k_j q_j</math> |
| |} | | |} |
Line 261: |
Line 375: |
| {| align="center" border="0" cellpadding="8" cellspacing="0" width="100%" | | {| align="center" border="0" cellpadding="8" cellspacing="0" width="100%" |
| | width="20%" | <math>\operatorname{Surc}^0</math> | | | width="20%" | <math>\operatorname{Surc}^0</math> |
− | | width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math> | + | | width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math> |
| | width="20%" | <math>\operatorname{Lobe}^0</math> | | | width="20%" | <math>\operatorname{Lobe}^0</math> |
− | | width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math> | + | | width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math> |
| | width="20%" | <math>\underline{0}</math> | | | width="20%" | <math>\underline{0}</math> |
| |- | | |- |
| | width="20%" | <math>\operatorname{Surc}^k_j s_j</math> | | | width="20%" | <math>\operatorname{Surc}^k_j s_j</math> |
− | | width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math> | + | | width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math> |
| | width="20%" | <math>\operatorname{Lobe}^k_j C_j</math> | | | width="20%" | <math>\operatorname{Lobe}^k_j C_j</math> |
− | | width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math> | + | | width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math> |
| | width="20%" | <math>\operatorname{Surj}^k_j q_j</math> | | | width="20%" | <math>\operatorname{Surj}^k_j q_j</math> |
| |} | | |} |