Line 1: |
Line 1: |
| <font size="3">☞</font> This page belongs to resource collections on [[Logic Live|Logic]] and [[Inquiry Live|Inquiry]]. | | <font size="3">☞</font> This page belongs to resource collections on [[Logic Live|Logic]] and [[Inquiry Live|Inquiry]]. |
| | | |
− | A '''minimal negation operator''' <math>(\nu)~\!</math> is a logical connective that says “just one false” of its logical arguments. The first four cases are as follows: | + | A '''minimal negation operator''' <math>(\nu)~\!</math> is a logical connective that says “just one false” of its logical arguments. The first four cases are described below. |
| | | |
| <ol start="0"> | | <ol start="0"> |
| | | |
| <li style="padding:8px"> | | <li style="padding:8px"> |
− | If the list of arguments is empty, as expressed in the form <math>\nu(),~\!</math> then it cannot be true that exactly one of the arguments is false, so <math>\nu() = \mathrm{false}.~\!</math></li> | + | If the list of arguments is empty, as expressed in the form <math>\nu(),~\!</math> then it cannot be true that exactly one of the arguments is false, so <math>\nu() = \mathrm{false}.~\!</math> |
| + | </li> |
| | | |
| <li style="padding:8px"> | | <li style="padding:8px"> |
− | If <math>p~\!</math> is the only argument, then <math>\nu(p)~\!</math> says that <math>p~\!</math> is false, so <math>\nu(p)~\!</math> expresses the logical negation of the proposition <math>p.~\!</math> Written in several different notations, <math>\nu(p) = \mathrm{not}(p) = \lnot p = \tilde{p} = p^\prime.~\!</math></li> | + | If <math>p~\!</math> is the only argument then <math>\nu(p)~\!</math> says that <math>p~\!</math> is false, so <math>\nu(p)~\!</math> expresses the logical negation of the proposition <math>p.~\!</math> Written in several different notations, we have the following equivalent expressions. |
| + | |
| + | <p style="padding:8px; text-align:center"><math>\nu(p) ~=~ \mathrm{not}(p) ~=~ \lnot p ~=~ \tilde{p} ~=~ p^{\prime}~\!</math></p> |
| + | </li> |
| | | |
| <li style="padding:8px"> | | <li style="padding:8px"> |
− | If <math>p~\!</math> and <math>q~\!</math> are the only two arguments, then <math>\nu(p, q)~\!</math> says that exactly one of <math>p, q~\!</math> is false, so <math>\nu(p, q)~\!</math> says the same thing as <math>p \neq q.~\!</math> Expressing <math>\nu(p, q)~\!</math> in terms of ands <math>(\cdot),~\!</math> ors <math>(\lor),~\!</math> and nots <math>(\tilde{~})~\!</math> gives the following form. | + | If <math>p~\!</math> and <math>q~\!</math> are the only two arguments then <math>\nu(p, q)~\!</math> says that exactly one of <math>p, q~\!</math> is false, so <math>\nu(p, q)~\!</math> says the same thing as <math>p \neq q.~\!</math> Expressing <math>\nu(p, q)~\!</math> in terms of ands <math>(\cdot),~\!</math> ors <math>(\lor),~\!</math> and nots <math>(\tilde{~})~\!</math> gives the following form. |
| | | |
− | <p style="padding:8px; text-align:center"> | + | <p style="padding:8px; text-align:center"><math>\nu(p, q) ~=~ \tilde{p} \cdot q ~\lor~ p \cdot \tilde{q}~\!</math></p> |
− | <math>\nu(p, q) = \tilde{p} \cdot q ~\lor~ p \cdot \tilde{q}.~\!</math></p> | |
| | | |
− | As usual, one drops the dot <math>(\cdot)~\!</math> in contexts where it's understood, giving the following form.
| + | It is permissible to omit the dot <math>(\cdot)~\!</math> in contexts where it is understood, giving the following form. |
| | | |
− | <p style="padding:8px; text-align:center"> | + | <p style="padding:8px; text-align:center"><math>\nu(p, q) ~=~ \tilde{p}q \lor p\tilde{q}~\!</math></p> |
− | <math>\nu(p, q) = \tilde{p}q \lor p\tilde{q}.~\!</math></p> | |
| | | |
| The venn diagram for <math>\nu(p, q)~\!</math> is shown in Figure 1. | | The venn diagram for <math>\nu(p, q)~\!</math> is shown in Figure 1. |
Line 40: |
Line 42: |
| |} | | |} |
| | | |
− | The center cell is the region where all three arguments <math>p, q, r~\!</math> hold true, so <math>\nu(p, q, r)~\!</math> holds true in just the three neighboring cells. In other words: | + | The center cell is the region where all three arguments <math>p, q, r~\!</math> hold true, so <math>\nu(p, q, r)~\!</math> holds true in just the three neighboring cells. In other words: |
| | | |
− | <p style="padding:8px; text-align:center"> | + | <p style="padding:8px; text-align:center"><math>\nu(p, q, r) ~=~ \tilde{p}qr \lor p\tilde{q}r \lor pq\tilde{r}~\!</math></p> |
− | <math>\nu(p, q, r) = \tilde{p}qr \lor p\tilde{q}r \lor pq\tilde{r}.~\!</math></p> | |
| | | |
| </li></ol> | | </li></ol> |