MyWikiBiz, Author Your Legacy — Monday November 25, 2024
Jump to navigationJump to search
No change in size
, 00:38, 27 April 2017
Line 104: |
Line 104: |
| <p>The third class embraces terms whose logical form involves the conception of bringing things into relation, and which require the addition of more than one term to complete the denotation. They discriminate not only with consciousness of discrimination, but with consciousness of its origin. They regard an object as medium or third between two others, that is as conjugative; as giver of —— to ——, or buyer of —— for —— from ——. These may be termed ''conjugative terms''.</p> | | <p>The third class embraces terms whose logical form involves the conception of bringing things into relation, and which require the addition of more than one term to complete the denotation. They discriminate not only with consciousness of discrimination, but with consciousness of its origin. They regard an object as medium or third between two others, that is as conjugative; as giver of —— to ——, or buyer of —— for —— from ——. These may be termed ''conjugative terms''.</p> |
| | | |
− | <p>The conjugative term involves the conception of ''third'', the relative that of second or ''other'', the absolute term simply considers ''an'' object. No fourth class of terms exists involving the conception of ''fourth'', because when that of ''third'' is introduced, since it involves the conception of bringing objects into relation, all higher numbers are given at once, inasmuch as the conception of bringing objects into relation is independent of the number of members of the relationship. Whether this ''reason'' for the fact that there is no fourth class of terms fundamentally different from the third is satisfactory of not, the fact itself is made perfectly evident by the study of the logic of relatives.</p> | + | <p>The conjugative term involves the conception of ''third'', the relative that of second or ''other'', the absolute term simply considers ''an'' object. No fourth class of terms exists involving the conception of ''fourth'', because when that of ''third'' is introduced, since it involves the conception of bringing objects into relation, all higher numbers are given at once, inasmuch as the conception of bringing objects into relation is independent of the number of members of the relationship. Whether this ''reason'' for the fact that there is no fourth class of terms fundamentally different from the third is satisfactory or not, the fact itself is made perfectly evident by the study of the logic of relatives.</p> |
| | | |
| <p>(Peirce, CP 3.63).</p> | | <p>(Peirce, CP 3.63).</p> |