Changes

format
Line 1: Line 1:  
{{DISPLAYTITLE:Propositional Equation Reasoning Systems}}
 
{{DISPLAYTITLE:Propositional Equation Reasoning Systems}}
* '''Note.''' The MathJax parser is not rendering this page properly.<br>Until it can be fixed please see the [http://intersci.ss.uci.edu/wiki/index.php/Propositional_Equation_Reasoning_Systems InterSciWiki version].
  −
   
'''Author: [[User:Jon Awbrey|Jon Awbrey]]'''
 
'''Author: [[User:Jon Awbrey|Jon Awbrey]]'''
   Line 1,415: Line 1,413:     
{| align="center" cellpadding="8" width="90%"
 
{| align="center" cellpadding="8" width="90%"
| <math>e_0 = {}^{\backprime\backprime} \texttt{(~)} {}^{\prime\prime}\!</math> expresses the logical constant <math>\mathrm{false}.\!</math>
+
| <math>e_0 = {}^{\backprime\backprime} \texttt{( )} {}^{\prime\prime}\!</math> expresses the logical constant <math>\mathrm{false}.\!</math>
 
|-
 
|-
| <math>e_1 = {}^{\backprime\backprime} \texttt{~} {}^{\prime\prime}\!</math> expresses the logical constant <math>\mathrm{true}.\!</math>
+
| <math>e_1 = {}^{\backprime\backprime} \texttt{ } {}^{\prime\prime}\!</math> expresses the logical constant <math>\mathrm{true}.\!</math>
 
|-
 
|-
| <math>e_2 = {}^{\backprime\backprime} \texttt{(} p \texttt{~(} q \texttt{))~(} p \texttt{~(} r \texttt{))} {}^{\prime\prime}\!</math> says <math>{}^{\backprime\backprime} \mathrm{not}~ p ~\mathrm{without}~ q,\!</math> <math>\mathrm{and~not}~ p ~\mathrm{without}~ r {}^{\prime\prime}.\!</math>
+
| <math>e_2 = {}^{\backprime\backprime} \texttt{(} p \texttt{ (} q \texttt{)) (} p \texttt{ (} r \texttt{))} {}^{\prime\prime}\!</math> says <math>{}^{\backprime\backprime} \mathrm{not}~ p ~\mathrm{without}~ q,\!</math> <math>\mathrm{and~not}~ p ~\mathrm{without}~ r {}^{\prime\prime}.\!</math>
 
|-
 
|-
| <math>e_3 = {}^{\backprime\backprime} \texttt{(} p \texttt{~(} q~r \texttt{))} {}^{\prime\prime}\!</math> says <math>{}^{\backprime\backprime} \mathrm{not}~ p ~\mathrm{without}~ q ~\mathrm{and}~ r {}^{\prime\prime}.\!</math>
+
| <math>e_3 = {}^{\backprime\backprime} \texttt{(} p \texttt{ (} q~r \texttt{))} {}^{\prime\prime}\!</math> says <math>{}^{\backprime\backprime} \mathrm{not}~ p ~\mathrm{without}~ q ~\mathrm{and}~ r {}^{\prime\prime}.\!</math>
 
|-
 
|-
| <math>e_4 = {}^{\backprime\backprime} \texttt{(} p~q~r \texttt{~,~(} p \texttt{))} {}^{\prime\prime}\!</math> says <math>{}^{\backprime\backprime} p ~\mathrm{and}~ q ~\mathrm{and}~ r,\!</math> <math>~\mathrm{or~else~not}~ p{}^{\prime\prime}.\!</math>
+
| <math>e_4 = {}^{\backprime\backprime} \texttt{(} p~q~r \texttt{ , (} p \texttt{))} {}^{\prime\prime}\!</math> says <math>{}^{\backprime\backprime} p ~\mathrm{and}~ q ~\mathrm{and}~ r,\!</math> <math>~\mathrm{or~else~not}~ p{}^{\prime\prime}.\!</math>
 
|-
 
|-
| <math>e_5 = {}^{\backprime\backprime} \texttt{((~(} p \texttt{~(} q \texttt{))~(} p \texttt{~(} r \texttt{))~,~(} p \texttt{~(} q~r \texttt{))~))} {}^{\prime\prime}\!</math> says that <math>e_2\!</math> and <math>e_3\!</math> say the same thing.
+
| <math>e_5 = {}^{\backprime\backprime} \texttt{(( (} p \texttt{ (} q \texttt{)) (} p \texttt{ (} r \texttt{)) , (} p \texttt{ (} q~r \texttt{)) ))} {}^{\prime\prime}\!</math> says that <math>e_2\!</math> and <math>e_3\!</math> say the same thing.
 
|}
 
|}
   Line 1,431: Line 1,429:     
{| align="center" cellpadding="8" width="90%"
 
{| align="center" cellpadding="8" width="90%"
| <math>\texttt{(} p \texttt{~(} q \texttt{))(} p \texttt{~(} r \texttt{))} = \texttt{(} p \texttt{~(} q~r \texttt{))}.\!</math>
+
| <math>\texttt{(} p \texttt{ (} q \texttt{))(} p \texttt{ (} r \texttt{))} = \texttt{(} p \texttt{ (} q~r \texttt{))}.\!</math>
 
|}
 
|}
   Line 1,442: Line 1,440:  
'''Proof&nbsp;1''' proceeded by the ''straightforward approach'', starting with <math>e_2\!</math> as <math>s_1\!</math> and ending with <math>e_3\!</math> as <math>s_n\!.</math>
 
'''Proof&nbsp;1''' proceeded by the ''straightforward approach'', starting with <math>e_2\!</math> as <math>s_1\!</math> and ending with <math>e_3\!</math> as <math>s_n\!.</math>
   −
: That is, Proof&nbsp;1 commenced from the sign <math>{}^{\backprime\backprime} \texttt{(} p \texttt{~(} q \texttt{))~(} p \texttt{~(} r \texttt{))} {}^{\prime\prime}\!</math> and ended up at the sign <math>{}^{\backprime\backprime} \texttt{(} p \texttt{~(} q~r \texttt{))} {}^{\prime\prime}\!</math> by legal moves.
+
: That is, Proof&nbsp;1 commenced from the sign <math>{}^{\backprime\backprime} \texttt{(} p \texttt{ (} q \texttt{)) (} p \texttt{ (} r \texttt{))} {}^{\prime\prime}\!</math> and ended up at the sign <math>{}^{\backprime\backprime} \texttt{(} p \texttt{ (} q~r \texttt{))} {}^{\prime\prime}\!</math> by legal moves.
    
'''Proof&nbsp;2''' lit on by ''burning the candle at both ends'', changing <math>e_2\!</math> into a normal form that reduced to <math>e_4,\!</math> and changing <math>e_3\!</math> into a normal form that also reduced to <math>e_4,\!</math> in this way tethering <math>e_2\!</math> and <math>e_3\!</math> to a common stake.
 
'''Proof&nbsp;2''' lit on by ''burning the candle at both ends'', changing <math>e_2\!</math> into a normal form that reduced to <math>e_4,\!</math> and changing <math>e_3\!</math> into a normal form that also reduced to <math>e_4,\!</math> in this way tethering <math>e_2\!</math> and <math>e_3\!</math> to a common stake.
   −
: Filling in the details, one route went from <math>{}^{\backprime\backprime} \texttt{(} p \texttt{~(} q \texttt{))~(} p \texttt{~(} r \texttt{))} {}^{\prime\prime}\!</math> to <math>{}^{\backprime\backprime} \texttt{(} p~q~r \texttt{~,~(} p \texttt{))} {}^{\prime\prime},\!</math> and another went from <math>{}^{\backprime\backprime} \texttt{(} p \texttt{~(} q~r \texttt{))} {}^{\prime\prime}\!</math> to <math>{}^{\backprime\backprime} \texttt{(} p~q~r \texttt{~,~(} p \texttt{))} {}^{\prime\prime},\!</math> thus equating the two points of departure.
+
: Filling in the details, one route went from <math>{}^{\backprime\backprime} \texttt{(} p \texttt{ (} q \texttt{)) (} p \texttt{ (} r \texttt{))} {}^{\prime\prime}\!</math> to <math>{}^{\backprime\backprime} \texttt{(} p~q~r \texttt{ , (} p \texttt{))} {}^{\prime\prime},\!</math> and another went from <math>{}^{\backprime\backprime} \texttt{(} p \texttt{ (} q~r \texttt{))} {}^{\prime\prime}\!</math> to <math>{}^{\backprime\backprime} \texttt{(} p~q~r \texttt{ , (} p \texttt{))} {}^{\prime\prime},\!</math> thus equating the two points of departure.
    
'''Proof&nbsp;3''' took the path of reflection, expressing the meta-equation between <math>e_2\!</math> and <math>e_3\!</math> in the form of the naturalized equation <math>e_5,\!</math> then taking <math>e_5\!</math> as <math>s_1\!</math> and exchanging it by dint of value preserving steps for <math>e_1\!</math> as <math>s_n.\!</math>
 
'''Proof&nbsp;3''' took the path of reflection, expressing the meta-equation between <math>e_2\!</math> and <math>e_3\!</math> in the form of the naturalized equation <math>e_5,\!</math> then taking <math>e_5\!</math> as <math>s_1\!</math> and exchanging it by dint of value preserving steps for <math>e_1\!</math> as <math>s_n.\!</math>
   −
: This way of proceeding went from <math>e_5 = {}^{\backprime\backprime} \texttt{((~(} p \texttt{~(} q \texttt{))~(} p \texttt{~(} r \texttt{))~,~(} p \texttt{~(} q~r \texttt{))~))} {}^{\prime\prime}\!</math> to the blank expression that <math>\mathrm{Ex}\!</math> recognizes as the value <math>{\mathrm{true}}.\!</math>
+
: This way of proceeding went from <math>e_5 = {}^{\backprime\backprime} \texttt{(( (} p \texttt{ (} q \texttt{)) (} p \texttt{ (} r \texttt{)) , (} p \texttt{ (} q~r \texttt{)) ))} {}^{\prime\prime}\!</math> to the blank expression that <math>\mathrm{Ex}\!</math> recognizes as the value <math>{\mathrm{true}}.\!</math>
    
==Computation and inference as semiosis==
 
==Computation and inference as semiosis==
Line 1,475: Line 1,473:  
~ p
 
~ p
 
\\
 
\\
\overline{15:22, 6 November 2016 (UTC)15:22, 6 November 2016 (UTC)15:22, 6 November 2016 (UTC)}
+
\overline{~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~}
 
\\
 
\\
 
~ q
 
~ q
Line 1,493: Line 1,491:  
~ p
 
~ p
 
\\
 
\\
=\!=\!=\!=\!=\!=\!=\!=
+
\overline{\underline{~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~}}
 
\\
 
\\
 
~ p ~ q
 
~ p ~ q
Line 1,504: Line 1,502:  
|
 
|
 
<math>\begin{array}{l}
 
<math>\begin{array}{l}
~ \textit{Expression~1}
+
~ \textit{Expression 1}
 
\\
 
\\
~ \textit{Expression~2}
+
~ \textit{Expression 2}
 
\\
 
\\
\overline{15:22, 6 November 2016 (UTC)15:22, 6 November 2016 (UTC)15:22, 6 November 2016 (UTC)15:22, 6 November 2016 (UTC)}
+
\overline{~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~}
 
\\
 
\\
~ \textit{Expression~3}
+
~ \textit{Expression 3}
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 1,518: Line 1,516:  
{| align="center" cellpadding="8" width="90%"
 
{| align="center" cellpadding="8" width="90%"
 
|
 
|
<math>\textit{Premiss~1}, \textit{Premiss~2} ~\vdash~ \textit{Conclusion}.\!</math>
+
<math>\textit{Premiss 1}, \textit{Premiss 2} ~\vdash~ \textit{Conclusion}.\!</math>
 
|}
 
|}
   Line 1,525: Line 1,523:  
{| align="center" cellpadding="8" width="90%"
 
{| align="center" cellpadding="8" width="90%"
 
|
 
|
From &nbsp; <math>{\textit{Expression~1}}\!</math> &nbsp; and &nbsp; <math>{\textit{Expression~2}}\!</math> &nbsp; infer &nbsp; <math>{\textit{Expression~3}}.\!</math>
+
From &nbsp; <math>{\textit{Expression 1}}\!</math> &nbsp; and &nbsp; <math>{\textit{Expression 2}}\!</math> &nbsp; infer &nbsp; <math>{\textit{Expression 3}}.\!</math>
 
|}
 
|}
   Line 1,557: Line 1,555:  
~ q \le r
 
~ q \le r
 
\\
 
\\
\overline{15:22, 6 November 2016 (UTC)15:22, 6 November 2016 (UTC)15:22, 6 November 2016 (UTC)}
+
\overline{~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~}
 
\\
 
\\
 
~ p \le r
 
~ p \le r
Line 1,575: Line 1,573:  
~ q \le r
 
~ q \le r
 
\\
 
\\
=\!=\!=\!=\!=\!=\!=\!=
+
\overline{\underline{~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~}}
 
\\
 
\\
 
~ p \le q \le r
 
~ p \le q \le r
Line 1,656: Line 1,654:  
|
 
|
 
<math>\begin{matrix}
 
<math>\begin{matrix}
\texttt{(} p \texttt{~(} q \texttt{))}
+
\texttt{(} p \texttt{ (} q \texttt{))}
 
\\[4pt]
 
\\[4pt]
\texttt{(} q \texttt{~(} r \texttt{))}
+
\texttt{(} q \texttt{ (} r \texttt{))}
 
\\[4pt]
 
\\[4pt]
\texttt{(} p \texttt{~(} r \texttt{))}
+
\texttt{(} p \texttt{ (} r \texttt{))}
 
\\[4pt]
 
\\[4pt]
\texttt{(} p \texttt{~(} q \texttt{))~(} q \texttt{~(} r \texttt{))}
+
\texttt{(} p \texttt{ (} q \texttt{)) (} q \texttt{ (} r \texttt{))}
 
\end{matrix}</math>
 
\end{matrix}</math>
 
|
 
|
Line 1,683: Line 1,681:  
| [[Image:Venn Diagram (P (Q)).jpg|500px]] || (52)
 
| [[Image:Venn Diagram (P (Q)).jpg|500px]] || (52)
 
|-
 
|-
| <math>f_{207}(p, q, r) ~=~ \texttt{(} p \texttt{~(} q \texttt{))}\!</math>
+
| <math>f_{207}(p, q, r) ~=~ \texttt{(} p \texttt{ (} q \texttt{))}\!</math>
 
|-
 
|-
 
| &nbsp;
 
| &nbsp;
Line 1,689: Line 1,687:  
| [[Image:Venn Diagram (Q (R)).jpg|500px]] || (53)
 
| [[Image:Venn Diagram (Q (R)).jpg|500px]] || (53)
 
|-
 
|-
| <math>f_{187}(p, q, r) ~=~ \texttt{(} q \texttt{~(} r \texttt{))}\!</math>
+
| <math>f_{187}(p, q, r) ~=~ \texttt{(} q \texttt{ (} r \texttt{))}\!</math>
 
|-
 
|-
 
| &nbsp;
 
| &nbsp;
Line 1,695: Line 1,693:  
| [[Image:Venn Diagram (P (R)).jpg|500px]] || (54)
 
| [[Image:Venn Diagram (P (R)).jpg|500px]] || (54)
 
|-
 
|-
| <math>f_{175}(p, q, r) ~=~ \texttt{(} p \texttt{~(} r \texttt{))}\!</math>
+
| <math>f_{175}(p, q, r) ~=~ \texttt{(} p \texttt{ (} r \texttt{))}\!</math>
 
|-
 
|-
 
| &nbsp;
 
| &nbsp;
Line 1,701: Line 1,699:  
| [[Image:Venn Diagram (P (Q)) (Q (R)).jpg|500px]] || (55)
 
| [[Image:Venn Diagram (P (Q)) (Q (R)).jpg|500px]] || (55)
 
|-
 
|-
| <math>f_{139}(p, q, r) ~=~ \texttt{(} p \texttt{~(} q \texttt{))~(} q \texttt{~(} r \texttt{))}\!</math>
+
| <math>f_{139}(p, q, r) ~=~ \texttt{(} p \texttt{ (} q \texttt{)) (} q \texttt{ (} r \texttt{))}\!</math>
 
|}
 
|}
   Line 1,824: Line 1,822:  
~ q \le r
 
~ q \le r
 
\\
 
\\
\overline{15:22, 6 November 2016 (UTC)15:22, 6 November 2016 (UTC)15:22, 6 November 2016 (UTC)}
+
\overline{~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~}
 
\\
 
\\
 
~ p \le r
 
~ p \le r
Line 1,853: Line 1,851:  
~ q \le r
 
~ q \le r
 
\\
 
\\
=\!=\!=\!=\!=\!=\!=\!=
+
\overline{\underline{~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~}}
 
\\
 
\\
 
~ p \le q \le r
 
~ p \le q \le r
Line 1,921: Line 1,919:  
|- style="height:40px; background:#f0f0ff"
 
|- style="height:40px; background:#f0f0ff"
 
| <math>p \le q \le r\!</math>
 
| <math>p \le q \le r\!</math>
| <math>\texttt{(} p \texttt{~(} q \texttt{))}\!</math>
+
| <math>\texttt{(} p \texttt{ (} q \texttt{))}\!</math>
| <math>\texttt{(} p \texttt{~(} r \texttt{))}\!</math>
+
| <math>\texttt{(} p \texttt{ (} r \texttt{))}\!</math>
| <math>\texttt{(} q \texttt{~(} r \texttt{))}\!</math>
+
| <math>\texttt{(} q \texttt{ (} r \texttt{))}\!</math>
 
|}
 
|}
   Line 2,431: Line 2,429:  
In accord with my experimental way, I will stick with the case of transitive inference until I have pinned it down thoroughly, but of course the real interest is much more general than that.
 
In accord with my experimental way, I will stick with the case of transitive inference until I have pinned it down thoroughly, but of course the real interest is much more general than that.
   −
At first sight, the relationships seem easy enough to write out.  Figure&nbsp;75 shows how the various logical expressions are related to each other:  The expressions <math>{}^{\backprime\backprime} \texttt{(} p \texttt{~(} q \texttt{))} {}^{\prime\prime}\!</math> and <math>{}^{\backprime\backprime} \texttt{(} q \texttt{~(} r \texttt{))} {}^{\prime\prime}\!</math> are conjoined in a purely syntactic fashion &mdash; much in the way that one might compile a theory from axioms without knowing what either the theory or the axioms were about &mdash; and the best way to sum up the state of information implicit in taking them together is just the expression <math>{}^{\backprime\backprime} \texttt{(} p \texttt{~(} q \texttt{))~(} q \texttt{~(} r \texttt{))}{}^{\prime\prime}\!</math> that would the canonical result of an equational or reversible rule of inference.  From that equational inference, one might arrive at the implicational inference <math>{}^{\backprime\backprime} \texttt{(} p \texttt{~(} r \texttt{))} {}^{\prime\prime}\!</math> by the most conventional implication.
+
At first sight, the relationships seem easy enough to write out.  Figure&nbsp;75 shows how the various logical expressions are related to each other:  The expressions <math>{}^{\backprime\backprime} \texttt{(} p \texttt{ (} q \texttt{))} {}^{\prime\prime}\!</math> and <math>{}^{\backprime\backprime} \texttt{(} q \texttt{ (} r \texttt{))} {}^{\prime\prime}\!</math> are conjoined in a purely syntactic fashion &mdash; much in the way that one might compile a theory from axioms without knowing what either the theory or the axioms were about &mdash; and the best way to sum up the state of information implicit in taking them together is just the expression <math>{}^{\backprime\backprime} \texttt{(} p \texttt{ (} q \texttt{)) (} q \texttt{ (} r \texttt{))}{}^{\prime\prime}\!</math> that would the canonical result of an equational or reversible rule of inference.  From that equational inference, one might arrive at the implicational inference <math>{}^{\backprime\backprime} \texttt{(} p \texttt{ (} r \texttt{))} {}^{\prime\prime}\!</math> by the most conventional implication.
    
{| align="center" border="0" cellpadding="10"
 
{| align="center" border="0" cellpadding="10"
Line 2,682: Line 2,680:  
==References==
 
==References==
   −
* [[Gottfried Leibniz|Leibniz, G.W.]] (1679–1686 ?), "Addenda to the Specimen of the Universal Calculus", pp. 40–46 in Parkinson, G.H.R. (ed.), ''Leibniz : Logical Papers'', Oxford University Press, London, UK, 1966.  (Cf. Gerhardt, 7, p. 223).
+
* Leibniz, G.W. (1679&ndash;1686 ?), &ldquo;Addenda to the Specimen of the Universal Calculus&rdquo;, pp. 40&ndash;46 in Parkinson, G.H.R. (ed.), ''Leibniz : Logical Papers'', Oxford University Press, London, UK, 1966.  (Cf. Gerhardt, 7, p. 223).
   −
* [[Charles Peirce (Bibliography)|Peirce, C.S., Bibliography]].
+
* [[Charles Sanders Peirce (Bibliography)|Peirce, C.S., Bibliography]].
   −
* [[Charles Peirce|Peirce, C.S.]] (1931–1935, 1958), ''Collected Papers of Charles Sanders Peirce'', vols. 1–6, [[Charles Hartshorne]] and [[Paul Weiss (philosopher)|Paul Weiss]] (eds.), vols. 7–8, [[Arthur W. Burks]] (ed.), Harvard University Press, Cambridge, MA.  Cited as CP volume.paragraph.
+
* [[Charles Sanders Peirce|Peirce, C.S.]] (1931&ndash;1935, 1958), ''Collected Papers of Charles Sanders Peirce'', vols. 1&ndash;6, Charles Hartshorne and Paul Weiss (eds.), vols. 7&ndash;8, Arthur W. Burks (ed.), Harvard University Press, Cambridge, MA.  Cited as CP&nbsp;volume.paragraph.
   −
* Peirce, C.S. (1981–), ''Writings of Charles S. Peirce: A Chronological Edition'', [[Peirce Edition Project]] (eds.), Indiana University Press, Bloomington and Indianoplis, IN.  Cited as CE volume, page.
+
* Peirce, C.S. (1981&ndash;), ''Writings of Charles S. Peirce : A Chronological Edition'', Peirce Edition Project (eds.), Indiana University Press, Bloomington and Indianoplis, IN.  Cited as CE&nbsp;volume, page.
   −
* Peirce, C.S. (1885), "On the Algebra of Logic: A Contribution to the Philosophy of Notation", ''American Journal of Mathematics'' 7 (1885), 180–202.  Reprinted as CP 3.359–403 and CE 5, 162–190.
+
* Peirce, C.S. (1885), &ldquo;On the Algebra of Logic : A Contribution to the Philosophy of Notation&rdquo;, ''American Journal of Mathematics'' 7 (1885), 180&ndash;202.  Reprinted as CP&nbsp;3.359&ndash;403 and CE&nbsp;5, 162&ndash;190.
   −
* Peirce, C.S. (c. 1886), "Qualitative Logic", MS 736.  Published as pp. 101–115 in Carolyn Eisele (ed., 1976), ''The New Elements of Mathematics by Charles S. Peirce, Volume 4, Mathematical Philosophy'', Mouton, The Hague.
+
* Peirce, C.S. (c. 1886), &ldquo;Qualitative Logic&rdquo;, MS&nbsp;736.  Published as pp. 101&ndash;115 in Carolyn Eisele (ed., 1976), ''The New Elements of Mathematics by Charles S. Peirce, Volume&nbsp;4, Mathematical Philosophy'', Mouton, The Hague.
   −
* Peirce, C.S. (1886 a), "Qualitative Logic", MS 582.  Published as pp. 323–371 in ''Writings of Charles S. Peirce: A Chronological Edition, Volume 5, 1884–1886'', Peirce Edition Project (eds.), Indiana University Press, Bloomington, IN, 1993.
+
* Peirce, C.S. (1886 a), &ldquo;Qualitative Logic&rdquo;, MS&nbsp;582.  Published as pp. 323&ndash;371 in ''Writings of Charles S. Peirce : A Chronological Edition, Volume&nbsp;5, 1884&ndash;1886'', Peirce Edition Project (eds.), Indiana University Press, Bloomington, IN, 1993.
   −
* Peirce, C.S. (1886 b), "The Logic of Relatives: Qualitative and Quantitative", MS 584.  Published as pp. 372–378 in ''Writings of Charles S. Peirce: A Chronological Edition, Volume 5, 1884–1886'', Peirce Edition Project (eds.), Indiana University Press, Bloomington, IN, 1993.
+
* Peirce, C.S. (1886 b), &ldquo;The Logic of Relatives : Qualitative and Quantitative&rdquo;, MS&nbsp;584.  Published as pp. 372&ndash;378 in ''Writings of Charles S. Peirce : A Chronological Edition, Volume&nbsp;5, 1884&ndash;1886'', Peirce Edition Project (eds.), Indiana University Press, Bloomington, IN, 1993.
   −
* [[George Spencer Brown|Spencer Brown, George]] (1969), ''[[Laws of Form]]'', George Allen and Unwin, London, UK.
+
* Spencer Brown, George (1969), ''[[Laws of Form]]'', George Allen and Unwin, London, UK.
    
==See also==
 
==See also==
 +
 
===Related essays and projects===
 
===Related essays and projects===
  
12,080

edits