Line 6,931: |
Line 6,931: |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:90%" | + | {| align="center" cellpadding="6" cellspacing="0" style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; text-align:center; width:90%" |
− | |+ '''Table 67. Computation of an Analytic Series in Terms of Coordinates''' | + | |+ style="height:30px" | <math>\text{Table 67.} ~~ \text{Computation of an Analytic Series in Terms of Coordinates}\!</math> |
− | | | + | |- style="height:40px; background:ghostwhite" |
− | {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| + | | style="border-bottom:1px solid black" | <math>u\!</math> |
− | |
| + | | style="border-bottom:1px solid black" | <math>v\!</math> |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
| + | | style="border-bottom:1px solid black; border-left:1px solid black" | <math>\mathrm{d}u\!</math> |
− | | ''u'' | + | | style="border-bottom:1px solid black" | <math>\mathrm{d}v\!</math> |
− | | ''v''
| + | | style="border-bottom:1px solid black; border-left:1px solid black" | <math>u'\!</math> |
− | |}
| + | | style="border-bottom:1px solid black" | <math>v'\!</math> |
− | |
| + | | style="border-bottom:1px solid black; border-left:4px double black" | <math>f\!</math> |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
| + | | style="border-bottom:1px solid black" | <math>g\!</math> |
− | | d''u'' | + | | style="border-bottom:1px solid black; border-left:1px solid black" | <math>{\mathrm{E}f}\!</math> |
− | | d''v'' | + | | style="border-bottom:1px solid black" | <math>{\mathrm{E}g}\!</math> |
− | |}
| + | | style="border-bottom:1px solid black; border-left:1px solid black" | <math>{\mathrm{D}f}\!</math> |
− | |
| + | | style="border-bottom:1px solid black" | <math>{\mathrm{D}g}\!</math> |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
| + | | style="border-bottom:1px solid black; border-left:1px solid black" | <math>{\mathrm{d}f}\!</math> |
− | | ''u''<font face="courier new">’</font> | + | | style="border-bottom:1px solid black" | <math>{\mathrm{d}g}\!</math> |
− | | ''v''<font face="courier new">’</font>
| + | | style="border-bottom:1px solid black; border-left:1px solid black" | <math>{\mathrm{d}^2\!f}\!</math> |
− | |} | + | | style="border-bottom:1px solid black" | <math>{\mathrm{d}^2\!g}\!</math> |
− | |-
| |
− | | valign="top" |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 0 || 0
| |
− | |} | |
− | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 0 || 0
| |
− | |-
| |
− | | 0 || 1
| |
− | |-
| |
− | | 1 || 0
| |
− | |-
| |
− | | 1 || 1
| |
− | |} | |
− | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 0 || 0 | |
− | |- | |
− | | 0 || 1
| |
− | |-
| |
− | | 1 || 0
| |
− | |-
| |
− | | 1 || 1
| |
− | |}
| |
− | |-
| |
− | | valign="top" |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 0 || 1 | |
− | |} | |
− | |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 0 || 0 | |
− | |- | |
− | | 0 || 1
| |
− | |-
| |
− | | 1 || 0
| |
− | |-
| |
− | | 1 || 1
| |
− | |}
| |
− | |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 0 || 1 | |
− | |- | |
− | | 0 || 0
| |
− | |-
| |
− | | 1 || 1
| |
− | |-
| |
− | | 1 || 0
| |
− | |}
| |
− | |-
| |
− | | valign="top" |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 1 || 0
| |
− | |} | |
− | |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 0 || 0
| |
− | |-
| |
− | | 0 || 1
| |
− | |-
| |
− | | 1 || 0
| |
− | |-
| |
− | | 1 || 1
| |
− | |}
| |
− | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 1 || 0
| |
− | |-
| |
− | | 1 || 1
| |
− | |-
| |
− | | 0 || 0
| |
− | |-
| |
− | | 0 || 1
| |
− | |}
| |
− | |-
| |
− | | valign="top" |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 1 || 1 | |
− | |}
| |
− | |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" | |
− | | 1 || 1
| |
− | |-
| |
− | | 1 || 0
| |
− | |-
| |
− | | 0 || 1
| |
− | |-
| |
− | | 0 || 0
| |
− | |}
| |
− | |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" | |
− | | 0 || 0
| |
− | |-
| |
− | | 0 || 1
| |
− | |-
| |
− | | 1 || 0
| |
− | |-
| |
− | | 1 || 1
| |
− | |}
| |
− | |}
| |
− | | | |
− | {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
| |
− | | <math>\epsilon</math>''f'' | |
− | | <math>\epsilon</math>''g''
| |
− | |} | |
− | |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
| |
− | | E''f'' | |
− | | E''g''
| |
− | |}
| |
− | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
| |
− | | D''f'' | |
− | | D''g''
| |
− | |}
| |
− | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
| |
− | | d''f'' | |
− | | d''g''
| |
− | |}
| |
− | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
| |
− | | d<sup>2</sup>''f'' | |
− | | d<sup>2</sup>''g''
| |
− | |} | |
− | |-
| |
− | | valign="top" |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 0 || 1
| |
− | |} | |
− | |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 0 || 1
| |
| |- | | |- |
− | | 1 || 0 | + | | style="vertical-align:top; border-top:1px solid black" | <math>0\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black" | <math>0\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix}0\\0\\1\\1\end{matrix}\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black" | |
| + | <math>\begin{matrix}0\\1\\0\\1\end{matrix}\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix}0\\0\\1\\1\end{matrix}\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black" | |
| + | <math>\begin{matrix}0\\1\\0\\1\end{matrix}\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black; border-left: 4px double black" | <math>0\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black" | <math>1\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix}0\\1\\1\\1\end{matrix}\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black" | |
| + | <math>\begin{matrix}1\\0\\0\\1\end{matrix}\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix}0\\1\\1\\1\end{matrix}\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black" | |
| + | <math>\begin{matrix}0\\1\\1\\0\end{matrix}\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix}0\\1\\1\\0\end{matrix}\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black" | |
| + | <math>\begin{matrix}0\\1\\1\\0\end{matrix}\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix}0\\0\\0\\1\end{matrix}\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black" | |
| + | <math>\begin{matrix}0\\0\\0\\0\end{matrix}\!</math> |
| |- | | |- |
− | | 1 || 0 | + | | style="vertical-align:top; border-top:1px solid black" | <math>0\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black" | <math>1\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix}0\\0\\1\\1\end{matrix}\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black" | |
| + | <math>\begin{matrix}0\\1\\0\\1\end{matrix}\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix}0\\0\\1\\1\end{matrix}\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black" | |
| + | <math>\begin{matrix}1\\0\\1\\0\end{matrix}\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black; border-left: 4px double black" | <math>1\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black" | <math>0\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix}1\\0\\1\\1\end{matrix}\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black" | |
| + | <math>\begin{matrix}0\\1\\1\\0\end{matrix}\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix}0\\1\\0\\0\end{matrix}\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black" | |
| + | <math>\begin{matrix}0\\1\\1\\0\end{matrix}\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix}0\\1\\0\\1\end{matrix}\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black" | |
| + | <math>\begin{matrix}0\\1\\1\\0\end{matrix}\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix}0\\0\\0\\1\end{matrix}\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black" | |
| + | <math>\begin{matrix}0\\0\\0\\0\end{matrix}\!</math> |
| |- | | |- |
− | | 1 || 1 | + | | style="vertical-align:top; border-top:1px solid black" | <math>1\!</math> |
− | |} | + | | style="vertical-align:top; border-top:1px solid black" | <math>0\!</math> |
− | | | + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" | + | <math>\begin{matrix}0\\0\\1\\1\end{matrix}\!</math> |
− | | 0 || 0
| + | | style="vertical-align:top; border-top:1px solid black" | |
| + | <math>\begin{matrix}0\\1\\0\\1\end{matrix}\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix}1\\1\\0\\0\end{matrix}\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black" | |
| + | <math>\begin{matrix}0\\1\\0\\1\end{matrix}\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black; border-left: 4px double black" | <math>1\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black" | <math>0\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix}1\\1\\0\\1\end{matrix}\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black" | |
| + | <math>\begin{matrix}0\\1\\1\\0\end{matrix}\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix}0\\0\\1\\0\end{matrix}\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black" | |
| + | <math>\begin{matrix}0\\1\\1\\0\end{matrix}\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix}0\\0\\1\\1\end{matrix}\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black" | |
| + | <math>\begin{matrix}0\\1\\1\\0\end{matrix}\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix}0\\0\\0\\1\end{matrix}\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black" | |
| + | <math>\begin{matrix}0\\0\\0\\0\end{matrix}\!</math> |
| |- | | |- |
− | | 1 || 1 | + | | style="vertical-align:top; border-top:1px solid black" | <math>1\!</math> |
− | |-
| + | | style="vertical-align:top; border-top:1px solid black" | <math>1\!</math> |
− | | 1 || 1
| + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
− | |-
| + | <math>\begin{matrix}0\\0\\1\\1\end{matrix}\!</math> |
− | | 1 || 0
| + | | style="vertical-align:top; border-top:1px solid black" | |
− | |}
| + | <math>\begin{matrix}0\\1\\0\\1\end{matrix}\!</math> |
− | |
| + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| + | <math>\begin{matrix}1\\1\\0\\0\end{matrix}\!</math> |
− | | 0 || 0
| + | | style="vertical-align:top; border-top:1px solid black" | |
− | |-
| + | <math>\begin{matrix}1\\0\\1\\0\end{matrix}\!</math> |
− | | 1 || 1
| + | | style="vertical-align:top; border-top:1px solid black; border-left: 4px double black" | <math>1\!</math> |
− | |-
| + | | style="vertical-align:top; border-top:1px solid black" | <math>1\!</math> |
− | | 1 || 1
| + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
− | |- | + | <math>\begin{matrix}1\\1\\1\\0\end{matrix}\!</math> |
− | | 0 || 0
| + | | style="vertical-align:top; border-top:1px solid black" | |
− | |}
| + | <math>\begin{matrix}1\\0\\0\\1\end{matrix}\!</math> |
− | |
| + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| + | <math>\begin{matrix}0\\0\\0\\1\end{matrix}\!</math> |
− | | 0 || 0
| + | | style="vertical-align:top; border-top:1px solid black" | |
− | |-
| + | <math>\begin{matrix}0\\1\\1\\0\end{matrix}\!</math> |
− | | 0 || 0
| + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
− | |-
| + | <math>\begin{matrix}0\\0\\0\\0\end{matrix}\!</math> |
− | | 0 || 0
| + | | style="vertical-align:top; border-top:1px solid black" | |
− | |-
| + | <math>\begin{matrix}0\\1\\1\\0\end{matrix}\!</math> |
− | | 1 || 0 | + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
− | |}
| + | <math>\begin{matrix}0\\0\\0\\1\end{matrix}\!</math> |
− | |-
| + | | style="vertical-align:top; border-top:1px solid black" | |
− | | valign="top" |
| + | <math>\begin{matrix}0\\0\\0\\0\end{matrix}\!</math> |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 1 || 0
| |
− | |}
| |
− | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 1 || 0
| |
− | |- | |
− | | 0 || 1
| |
− | |-
| |
− | | 1 || 1
| |
− | |-
| |
− | | 1 || 0
| |
− | |}
| |
− | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 0 || 0
| |
− | |-
| |
− | | 1 || 1
| |
− | |-
| |
− | | 0 || 1
| |
− | |-
| |
− | | 0 || 0
| |
− | |}
| |
− | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 0 || 0
| |
− | |-
| |
− | | 1 || 1
| |
− | |-
| |
− | | 0 || 1
| |
− | |-
| |
− | | 1 || 0
| |
− | |}
| |
− | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 0 || 0
| |
− | |-
| |
− | | 0 || 0
| |
− | |-
| |
− | | 0 || 0
| |
− | |-
| |
− | | 1 || 0 | |
− | |}
| |
− | |-
| |
− | | valign="top" |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 1 || 0 | |
− | |}
| |
− | |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 1 || 0
| |
− | |-
| |
− | | 1 || 1
| |
− | |-
| |
− | | 0 || 1
| |
− | |-
| |
− | | 1 || 0
| |
− | |}
| |
− | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 0 || 0
| |
− | |-
| |
− | | 0 || 1
| |
− | |-
| |
− | | 1 || 1
| |
− | |-
| |
− | | 0 || 0
| |
− | |}
| |
− | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 0 || 0
| |
− | |-
| |
− | | 0 || 1
| |
− | |-
| |
− | | 1 || 1
| |
− | |-
| |
− | | 1 || 0
| |
− | |}
| |
− | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 0 || 0
| |
− | |-
| |
− | | 0 || 0
| |
− | |-
| |
− | | 0 || 0
| |
− | |-
| |
− | | 1 || 0
| |
− | |}
| |
− | |- | |
− | | valign="top" |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 1 || 1
| |
− | |}
| |
− | |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 1 || 1
| |
− | |-
| |
− | | 1 || 0
| |
− | |-
| |
− | | 1 || 0
| |
− | |-
| |
− | | 0 || 1
| |
− | |}
| |
− | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 0 || 0
| |
− | |-
| |
− | | 0 || 1
| |
− | |-
| |
− | | 0 || 1
| |
− | |-
| |
− | | 1 || 0
| |
− | |}
| |
− | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 0 || 0
| |
− | |-
| |
− | | 0 || 1
| |
− | |-
| |
− | | 0 || 1
| |
− | |-
| |
− | | 0 || 0
| |
− | |}
| |
− | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 0 || 0
| |
− | |-
| |
− | | 0 || 0
| |
− | |-
| |
− | | 0 || 0
| |
− | |-
| |
− | | 1 || 0
| |
− | |}
| |
− | |}
| |
| |} | | |} |
| | | |
Line 7,265: |
Line 7,072: |
| {| align="center" cellpadding="6" cellspacing="0" style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; text-align:center; width:90%" | | {| align="center" cellpadding="6" cellspacing="0" style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; text-align:center; width:90%" |
| |+ style="height:30px" | <math>\text{Table 68.} ~~ \text{Computation of an Analytic Series in Symbolic Terms}\!</math> | | |+ style="height:30px" | <math>\text{Table 68.} ~~ \text{Computation of an Analytic Series in Symbolic Terms}\!</math> |
− | |- style="height:35px; background:ghostwhite; width:100%" | + | |- style="height:40px; background:ghostwhite; width:100%" |
| | <math>u\!</math> | | | <math>u\!</math> |
| | <math>v\!</math> | | | <math>v\!</math> |