| Line 568: |
Line 568: |
| | $latex | | $latex |
| | \begin{tabular}{|c|c||c|c|c|c|} | | \begin{tabular}{|c|c||c|c|c|c|} |
| − | \multicolumn{6}{c}{Table A6. \(\mathrm{D}f\) Expanded Over Ordinary Features \(\{x, y\}\)} \\ | + | \multicolumn{6}{c}{Table A5. \(\mathrm{E}f\) Expanded Over Ordinary Features \(\{x, y\}\)} \\ |
| | \hline | | \hline |
| | & | | & |
| | \(~~~~~~~~ f ~~~~~~~~\)& | | \(~~~~~~~~ f ~~~~~~~~\)& |
| − | \(~~\mathrm{D}f|_{ x\;y }~~~\)& | + | \(~~\mathrm{E}f|_{ x\;y }~~~\)& |
| − | \(~~\mathrm{D}f|_{ x~(y)}\,~~\)& | + | \(~~\mathrm{E}f|_{ x~(y)}\,~~\)& |
| − | \(~~\mathrm{D}f|_{(x)~y }\,~~\)& | + | \(~~\mathrm{E}f|_{(x)~y }\,~~\)& |
| − | \(~~\mathrm{D}f|_{(x)(y)}\,~\) | + | \(~~\mathrm{E}f|_{(x)(y)}\;~\) |
| | \\ | | \\ |
| | \hline\hline | | \hline\hline |
| Line 588: |
Line 588: |
| | \(f_{1}\)& | | \(f_{1}\)& |
| | \((x)(y)\)& | | \((x)(y)\)& |
| − | ~~d\(x\)~~d\(y~~\)&
| + | ~d\(x\)~~d\(y~\)& |
| − | \;d\(x\)~(d\(y\))~&
| + | ~d\(x\)~(d\(y\))& |
| − | ~(d\(x\))~d\(y~~\)&
| + | (d\(x\))~d\(y~\)& |
| − | ((d\(x\))(d\(y\)))
| + | (d\(x\))(d\(y\)) |
| | \\ | | \\ |
| | \(f_{2}\)& | | \(f_{2}\)& |
| | \((x)~y~\)& | | \((x)~y~\)& |
| − | \;d\(x\)~(d\(y\))~&
| + | ~d\(x\)~(d\(y\))& |
| − | ~~d\(x\)~~d\(y~~\)&
| + | ~d\(x\)~~d\(y~\)& |
| − | ((d\(x\))(d\(y\)))&
| + | (d\(x\))(d\(y\))& |
| − | ~(d\(x\))~d\(y~~\)
| + | (d\(x\))~d\(y~\) |
| | \\ | | \\ |
| | \(f_{4}\)& | | \(f_{4}\)& |
| | \(~x~(y)\)& | | \(~x~(y)\)& |
| − | ~(d\(x\))~d\(y~~\)&
| + | (d\(x\))~d\(y~\)& |
| − | ((d\(x\))(d\(y\)))&
| + | (d\(x\))(d\(y\))& |
| − | ~~d\(x\)~~d\(y~~\)&
| + | ~d\(x\)~~d\(y~\)& |
| − | ~~d\(x\)~(d\(y\))~
| + | ~d\(x\)~(d\(y\)) |
| | \\ | | \\ |
| | \(f_{8}\)& | | \(f_{8}\)& |
| | \(~x~~y~\)& | | \(~x~~y~\)& |
| − | ((d\(x\))(d\(y\)))&
| + | (d\(x\))(d\(y\))& |
| − | ~(d\(x\))~d\(y~~\)&
| + | (d\(x\))~d\(y~\)& |
| − | \;d\(x\)~(d\(y\))~&
| + | ~d\(x\)~(d\(y\))& |
| − | ~~d\(x\)~~d\(y~~\)
| + | ~d\(x\)~~d\(y~\) |
| | \\ | | \\ |
| | \hline | | \hline |
| | \(f_{3}\)& | | \(f_{3}\)& |
| | \((x)\)& | | \((x)\)& |
| − | d\(x\)& | + | d\(x\) & |
| − | d\(x\)& | + | d\(x\) & |
| − | d\(x\)& | + | (d\(x\))& |
| − | d\(x\) | + | (d\(x\)) |
| | \\ | | \\ |
| | \(f_{12}\)& | | \(f_{12}\)& |
| | \( x \)& | | \( x \)& |
| − | d\(x\)& | + | (d\(x\))& |
| − | d\(x\)& | + | (d\(x\))& |
| − | d\(x\)& | + | d\(x\) & |
| − | d\(x\) | + | d\(x\) |
| | \\ | | \\ |
| | \hline | | \hline |
| | \(f_{6}\)& | | \(f_{6}\)& |
| | \( (x,y) \)& | | \( (x,y) \)& |
| − | (d\(x\), d\(y\))& | + | (d\(x\), d\(y\)) & |
| − | (d\(x\), d\(y\))& | + | ((d\(x\), d\(y\)))& |
| − | (d\(x\), d\(y\))& | + | ((d\(x\), d\(y\)))& |
| − | (d\(x\), d\(y\)) | + | (d\(x\), d\(y\)) |
| | \\ | | \\ |
| | \(f_{9}\)& | | \(f_{9}\)& |
| | \(((x,y))\)& | | \(((x,y))\)& |
| − | (d\(x\), d\(y\))& | + | ((d\(x\), d\(y\)))& |
| − | (d\(x\), d\(y\))& | + | (d\(x\), d\(y\)) & |
| − | (d\(x\), d\(y\))& | + | (d\(x\), d\(y\)) & |
| − | (d\(x\), d\(y\)) | + | ((d\(x\), d\(y\))) |
| | \\ | | \\ |
| | \hline | | \hline |
| | \(f_{5}\)& | | \(f_{5}\)& |
| | \((y)\)& | | \((y)\)& |
| − | d\(y\)& | + | d\(y\) & |
| − | d\(y\)& | + | (d\(y\))& |
| − | d\(y\)& | + | d\(y\) & |
| − | d\(y\) | + | (d\(y\)) |
| | \\ | | \\ |
| | \(f_{10}\)& | | \(f_{10}\)& |
| | \( y \)& | | \( y \)& |
| − | d\(y\)& | + | (d\(y\))& |
| − | d\(y\)& | + | d\(y\) & |
| − | d\(y\)& | + | (d\(y\))& |
| − | d\(y\) | + | d\(y\) |
| | \\ | | \\ |
| | \hline | | \hline |
| Line 663: |
Line 663: |
| | \((~x~~y~)\)& | | \((~x~~y~)\)& |
| | ((d\(x\))(d\(y\)))& | | ((d\(x\))(d\(y\)))& |
| − | ~(d\(x\))~d\(y~~\)&
| + | ((d\(x\))~d\(y\)~)& |
| − | \;d\(x\)~(d\(y\))~&
| + | (~d\(x\)~(d\(y\)))& |
| − | ~~d\(x\)~~d\(y~~\)
| + | (~d\(x\)~~d\(y\)~) |
| | \\ | | \\ |
| | \(f_{11}\)& | | \(f_{11}\)& |
| | \((~x~(y))\)& | | \((~x~(y))\)& |
| − | ~(d\(x\))~d\(y~~\)&
| + | ((d\(x\))~d\(y\)~)& |
| | ((d\(x\))(d\(y\)))& | | ((d\(x\))(d\(y\)))& |
| − | ~~d\(x\)~~d\(y~~\)&
| + | (~d\(x\)~~d\(y\)~)& |
| − | ~~d\(x\)~(d\(y\))~
| + | (~d\(x\)~(d\(y\))) |
| | \\ | | \\ |
| | \(f_{13}\)& | | \(f_{13}\)& |
| | \(((x)~y~)\)& | | \(((x)~y~)\)& |
| − | \;d\(x\)~(d\(y\))~&
| + | (~d\(x\)~(d\(y\)))& |
| − | ~~d\(x\)~~d\(y~~\)&
| + | (~d\(x\)~~d\(y\)~)& |
| | ((d\(x\))(d\(y\)))& | | ((d\(x\))(d\(y\)))& |
| − | ~(d\(x\))~d\(y~~\)
| + | ((d\(x\))~d\(y\)~) |
| | \\ | | \\ |
| | \(f_{14}\)& | | \(f_{14}\)& |
| | \(((x)(y))\)& | | \(((x)(y))\)& |
| − | ~~d\(x\)~~d\(y~~\)&
| + | (~d\(x\)~~d\(y\)~)& |
| − | \;d\(x\)~(d\(y\))~&
| + | (~d\(x\)~(d\(y\)))& |
| − | ~(d\(x\))~d\(y~~\)&
| + | ((d\(x\))~d\(y\)~)& |
| | ((d\(x\))(d\(y\))) | | ((d\(x\))(d\(y\))) |
| | \\ | | \\ |
| Line 691: |
Line 691: |
| | \(f_{15}\)& | | \(f_{15}\)& |
| | 1& | | 1& |
| − | 0&
| + | 1& |
| − | 0&
| + | 1& |
| − | 0&
| + | 1& |
| − | 0
| + | 1 |
| | \\ | | \\ |
| | \hline | | \hline |
| Line 835: |
Line 835: |
| | \\ | | \\ |
| | \hline | | \hline |
| − | \end{tabular}&fg=000000$ | + | \end{tabular} |
| | + | &fg=000000$ |
| | </pre> | | </pre> |
| | | | |
| Line 857: |
Line 858: |
| | | | |
| | For ease of reading formulas, let <math>x = (x_1, x_2) = (u, v).\!</math> | | For ease of reading formulas, let <math>x = (x_1, x_2) = (u, v).\!</math> |
| | + | |
| | + | ====Table 2.1. Values of χ<sub>S</sub>(x)==== |
| | | | |
| | <pre> | | <pre> |
| − | <p align="center">
| |
| | $latex | | $latex |
| | \begin{tabular}{|c||*{4}{c}|} | | \begin{tabular}{|c||*{4}{c}|} |
| − | \multicolumn{5}{c}{Table 2.1. Values of \( \chi_S(x) \) for \( f : \mathbb{B}^2 \to \mathbb{B} \)} \\[4pt] | + | \multicolumn{5}{c}{Table 2.1. Values of \( \boldsymbol{\chi}_\mathcal{S}(x) \) for \( f : \mathbb{B}^2 \to \mathbb{B} \)} \\[4pt] |
| | \hline | | \hline |
| − | \( S \backslash (u, v) \) & | + | \( \mathcal{S} \backslash (u, v) \) & |
| | \( (1, 1) \) & | | \( (1, 1) \) & |
| | \( (1, 0) \) & | | \( (1, 0) \) & |
| Line 878: |
Line 880: |
| | \end{tabular} | | \end{tabular} |
| | &fg=000000$ | | &fg=000000$ |
| − | </p>
| |
| | </pre> | | </pre> |
| | + | |
| | + | ====Table 2.2. Fourier Coefficients of Boolean Functions on Two Variables==== |
| | | | |
| | <pre> | | <pre> |
| − | <p align="center">
| |
| | $latex | | $latex |
| | \begin{tabular}{|*{5}{c|}*{4}{r|}} | | \begin{tabular}{|*{5}{c|}*{4}{r|}} |
| Line 888: |
Line 890: |
| | \hline | | \hline |
| | ~&~&~&~&~&~&~&~&~\\ | | ~&~&~&~&~&~&~&~&~\\ |
| − | \( L_1 \)& | + | \(L_1\)&\(L_2\)&&\(L_3\)&\(L_4\)& |
| − | \( L_2 \)&& | + | \(\hat{f}(\varnothing)\)&\(\hat{f}(\{u\})\)&\(\hat{f}(\{v\})\)&\(\hat{f}(\{u,v\})\) \\ |
| − | \( L_3 \)& | |
| − | \( L_4 \)& | |
| − | \( \hat{f}(\varnothing) \)& | |
| − | \( \hat{f}(\{u\}) \)& | |
| − | \( \hat{f}(\{v\}) \)& | |
| − | \( \hat{f}(\{u,v\}) \) | |
| − | \\ | |
| | ~&~&~&~&~&~&~&~&~\\ | | ~&~&~&~&~&~&~&~&~\\ |
| | \hline | | \hline |
| Line 1,048: |
Line 1,043: |
| | \\ | | \\ |
| | \hline | | \hline |
| − | \end{tabular}&fg=000000$ | + | \end{tabular} |
| − | </p> | + | &fg=000000$ |
| | + | </pre> |
| | + | |
| | + | ====Table 2.3. Fourier Coefficients of Boolean Functions on Two Variables==== |
| | + | |
| | + | <pre> |
| | + | $latex |
| | + | \begin{tabular}{|*{5}{c|}*{4}{r|}} |
| | + | \multicolumn{9}{c}{Table 2.3. Fourier Coefficients of Boolean Functions on Two Variables} \\[4pt] |
| | + | \hline |
| | + | ~&~&~&~&~&~&~&~&~\\ |
| | + | \(L_1\)&\(L_2\)&&\(L_3\)&\(L_4\)& |
| | + | \(\hat{f}(\varnothing)\)&\(\hat{f}(\{u\})\)&\(\hat{f}(\{v\})\)&\(\hat{f}(\{u,v\})\) \\ |
| | + | ~&~&~&~&~&~&~&~&~\\ |
| | + | \hline |
| | + | && \(u =\)& 1 1 0 0&&&&& \\ |
| | + | && \(v =\)& 1 0 1 0&&&&& \\ |
| | + | \hline |
| | + | \(f_{0}\)& |
| | + | \(f_{0000}\)&& |
| | + | 0 0 0 0& |
| | + | \((~)\)& |
| | + | \(0\)& |
| | + | \(0\)& |
| | + | \(0\)& |
| | + | \(0\) |
| | + | \\ |
| | + | \hline |
| | + | \(f_{1}\)& |
| | + | \(f_{0001}\)&& |
| | + | 0 0 0 1& |
| | + | \((u)(v)\)& |
| | + | \(1/4\)& |
| | + | \(1/4\)& |
| | + | \(1/4\)& |
| | + | \(1/4\) |
| | + | \\ |
| | + | \(f_{2}\)& |
| | + | \(f_{0010}\)&& |
| | + | 0 0 1 0& |
| | + | \((u)~v~\)& |
| | + | \( 1/4\)& |
| | + | \( 1/4\)& |
| | + | \(-1/4\)& |
| | + | \(-1/4\) |
| | + | \\ |
| | + | \(f_{4}\)& |
| | + | \(f_{0100}\)&& |
| | + | 0 1 0 0& |
| | + | \(~u~(v)\)& |
| | + | \( 1/4\)& |
| | + | \(-1/4\)& |
| | + | \( 1/4\)& |
| | + | \(-1/4\) |
| | + | \\ |
| | + | \(f_{8}\)& |
| | + | \(f_{1000}\)&& |
| | + | 1 0 0 0& |
| | + | \(~u~~v~\)& |
| | + | \( 1/4\)& |
| | + | \(-1/4\)& |
| | + | \(-1/4\)& |
| | + | \( 1/4\) |
| | + | \\ |
| | + | \hline |
| | + | \(f_{3}\)& |
| | + | \(f_{0011}\)&& |
| | + | 0 0 1 1& |
| | + | \((u)\)& |
| | + | \(1/2\)& |
| | + | \(1/2\)& |
| | + | \( 0 \)& |
| | + | \( 0 \) |
| | + | \\ |
| | + | \(f_{12}\)& |
| | + | \(f_{1100}\)&& |
| | + | 1 1 0 0& |
| | + | \(u\)& |
| | + | \( 1/2\)& |
| | + | \(-1/2\)& |
| | + | \( 0 \)& |
| | + | \( 0 \) |
| | + | \\ |
| | + | \hline |
| | + | \(f_{6}\)& |
| | + | \(f_{0110}\)&& |
| | + | 0 1 1 0& |
| | + | \((u,~v)\)& |
| | + | \( 1/2\)& |
| | + | \( 0 \)& |
| | + | \( 0 \)& |
| | + | \(-1/2\) |
| | + | \\ |
| | + | \(f_{9}\)& |
| | + | \(f_{1001}\)&& |
| | + | 1 0 0 1& |
| | + | \(((u,~v))\)& |
| | + | \(1/2\)& |
| | + | \( 0 \)& |
| | + | \( 0 \)& |
| | + | \(1/2\) |
| | + | \\ |
| | + | \hline |
| | + | \(f_{5}\)& |
| | + | \(f_{0101}\)&& |
| | + | 0 1 0 1& |
| | + | \((v)\)& |
| | + | \(1/2\)& |
| | + | \( 0 \)& |
| | + | \(1/2\)& |
| | + | \( 0 \) |
| | + | \\ |
| | + | \(f_{10}\)& |
| | + | \(f_{1010}\)&& |
| | + | 1 0 1 0& |
| | + | \(v\)& |
| | + | \( 1/2\)& |
| | + | \( 0 \)& |
| | + | \(-1/2\)& |
| | + | \( 0 \) |
| | + | \\ |
| | + | \hline |
| | + | \(f_{7}\)& |
| | + | \(f_{0111}\)&& |
| | + | 0 1 1 1& |
| | + | \((u~~v)\)& |
| | + | \( 3/4\)& |
| | + | \( 1/4\)& |
| | + | \( 1/4\)& |
| | + | \(-1/4\) |
| | + | \\ |
| | + | \hline |
| | + | \(f_{11}\)& |
| | + | \(f_{1011}\)&& |
| | + | 1 0 1 1& |
| | + | \((~u~(v))\)& |
| | + | \( 3/4\)& |
| | + | \( 1/4\)& |
| | + | \(-1/4\)& |
| | + | \( 1/4\) |
| | + | \\ |
| | + | \(f_{13}\)& |
| | + | \(f_{1101}\)&& |
| | + | 1 1 0 1& |
| | + | \(((u)~v~)\)& |
| | + | \( 3/4\)& |
| | + | \(-1/4\)& |
| | + | \( 1/4\)& |
| | + | \( 1/4\) |
| | + | \\ |
| | + | \(f_{14}\)& |
| | + | \(f_{1110}\)&& |
| | + | 1 1 1 0& |
| | + | \(((u)(v))\)& |
| | + | \( 3/4\)& |
| | + | \(-1/4\)& |
| | + | \(-1/4\)& |
| | + | \(-1/4\) |
| | + | \\ |
| | + | \hline |
| | + | \(f_{15}\)& |
| | + | \(f_{1111}\)&& |
| | + | 1 1 1 1& |
| | + | \(((~))\)& |
| | + | \(1\)& |
| | + | \(0\)& |
| | + | \(0\)& |
| | + | \(0\) |
| | + | \\ |
| | + | \hline |
| | + | \end{tabular} |
| | + | &fg=000000$ |
| | </pre> | | </pre> |
| | | | |