Difference between revisions of "Directory talk:Jon Awbrey/Papers/Inquiry Driven Systems : Part 6"

MyWikiBiz, Author Your Legacy — Thursday November 28, 2024
Jump to navigationJump to search
Line 2,540: Line 2,540:
 
<i>W <b>W <db di>dW
 
<i>W <b>W <db di>dW
 
<i>W <i>W <>dW
 
<i>W <i>W <>dW
 +
</pre>
 +
 +
<br>
 +
 +
<pre>
 +
Table 57.1  Mnemonic Lateral Codes for Interpreters A & B
 +
Element Vector Conjunct Term Code
 +
A 10X A (B) <A>X
 +
B 01X (A) B <B>X
 +
"A" 1000Y a (b)(i)(u) <a>Y
 +
"B" 0100Y (a) b (i)(u) <b>Y
 +
"i" 0010Y (a)(b) i (u) <i>Y
 +
"u" 0001Y (a)(b)(i) u <u>Y
 +
</pre>
 +
 +
<br>
 +
 +
<pre>
 +
Table 57.2  Pragmatic Lateral Codes for Interpreters A & B
 +
Element Vector Conjunct Term Code
 +
A 10X o1 (o2) <o1>X
 +
B 01X (o1) o2 <o2>X
 +
"A" 1000Y s1 (s2)(s3)(s4) <s1>Y
 +
"B" 0100Y (s1) s2 (s3)(s4) <s2>Y
 +
"i" 0010Y (s1)(s2) s3 (s4) <s3>Y
 +
"u" 0001Y (s1)(s2)(s3) s4 <s4>Y
 +
</pre>
 +
 +
<br>
 +
 +
<pre>
 +
Table 57.3  Abstract Lateral Codes for Interpreters A & B
 +
Element Vector Conjunct Term Code
 +
A 10X x1 (x2) <x1>X
 +
B 01X (x1) x2 <x2>X
 +
"A" 1000Y y1 (y2)(y3)(y4) <y1>Y
 +
"B" 0100Y (y1) y2 (y3)(y4) <y2>Y
 +
"i" 0010Y (y1)(y2) y3 (y4) <y3>Y
 +
"u" 0001Y (y1)(y2)(y3) y4 <y4>Y
 +
</pre>
 +
 +
<br>
 +
 +
<pre>
 +
Table 58.1  LIR2 (A):  Lateral Representation of A
 +
Object Sign Interpretant
 +
A (B) a (b)(i)(u) a (b)(i)(u)
 +
A (B) a (b)(i)(u) (a)(b) i (u)
 +
A (B) (a)(b) i (u) a (b)(i)(u)
 +
A (B) (a)(b) i (u) (a)(b) i (u)
 +
(A) B (a) b (i)(u) (a) b (i)(u)
 +
(A) B (a) b (i)(u) (a)(b)(i) u
 +
(A) B (a)(b)(i) u (a) b (i)(u)
 +
(A) B (a)(b)(i) u (a)(b)(i) u
 +
</pre>
 +
 +
<br>
 +
 +
<pre>
 +
Table 58.2  LIR2 (Den A):  Denotative Component of A
 +
Object Sign Transition
 +
A (B) a (b)(i)(u) <<a>Y, <A>X>
 +
A (B) (a)(b) i (u) <<i>Y, <A>X>
 +
(A) B (a) b (i)(u) <<b>Y, <B>X>
 +
(A) B (a)(b)(i) u <<u>Y, <B>X>
 +
</pre>
 +
 +
<br>
 +
 +
<pre>
 +
Table 58.3  LIR2 (Con A):  Connotative Component of A
 +
Sign Interpretant Transition
 +
a (b)(i)(u) a (b)(i)(u) (da)(db)(di)(du)
 +
a (b)(i)(u) (a)(b) i (u) da (db) di (du)
 +
(a)(b) i (u) a (b)(i)(u) da (db) di (du)
 +
(a)(b) i (u) (a)(b) i (u) (da)(db)(di)(du)
 +
(a) b (i)(u) (a) b (i)(u) (da)(db)(di)(du)
 +
(a) b (i)(u) (a)(b)(i) u (da) db (di) du
 +
(a)(b)(i) u (a) b (i)(u) (da) db (di) du
 +
(a)(b)(i) u (a)(b)(i) u (da)(db)(di)(du)
 +
</pre>
 +
 +
<br>
 +
 +
<pre>
 +
Table 59.1  LIR2 (B):  Lateral Representation of B
 +
Object Sign Interpretant
 +
A (B) a (b)(i)(u) a (b)(i)(u)
 +
A (B) a (b)(i)(u) (a)(b)(i) u
 +
A (B) (a)(b)(i) u a (b)(i)(u)
 +
A (B) (a)(b)(i) u (a)(b)(i) u
 +
(A) B (a) b (i)(u) (a) b (i)(u)
 +
(A) B (a) b (i)(u) (a)(b) i (u)
 +
(A) B (a)(b) i (u) (a) b (i)(u)
 +
(A) B (a)(b) i (u) (a)(b) i (u)
 +
</pre>
 +
 +
<br>
 +
 +
<pre>
 +
Table 59.2  LIR2 (Den B):  Denotative Component of B
 +
Object Sign Transition
 +
A (B) a (b)(i)(u) <<a>Y, <A>X>
 +
A (B) (a)(b)(i) u <<u>Y, <A>X>
 +
(A) B (a) b (i)(u) <<b>Y, <B>X>
 +
(A) B (a)(b) i (u) <<i>Y, <B>X>
 +
</pre>
 +
 +
<br>
 +
 +
<pre>
 +
Table 59.3  LIR2 (Con B):  Connotative Component of B
 +
Sign Interpretant Transition
 +
a (b)(i)(u) a (b)(i)(u) (da)(db)(di)(du)
 +
a (b)(i)(u) (a)(b)(i) u da (db)(di) du
 +
(a)(b)(i) u a (b)(i)(u) da (db)(di) du
 +
(a)(b)(i) u (a)(b)(i) u (da)(db)(di)(du)
 +
(a) b (i)(u) (a) b (i)(u) (da)(db)(di)(du)
 +
(a) b (i)(u) (a)(b) i (u) (da) db  di (du)
 +
(a)(b) i (u) (a) b (i)(u) (da) db  di (du)
 +
(a)(b) i (u) (a)(b) i (u) (da)(db)(di)(du)
 +
</pre>
 +
 +
<br>
 +
 +
<pre>
 +
Table 60.1  LIR3 (A):  Lateral Representation of A
 +
Object Sign Interpretant
 +
<A>X <a>Y <a>Y
 +
<A>X <a>Y <i>Y
 +
<A>X <i>Y <a>Y
 +
<A>X <i>Y <i>Y
 +
<B>X <b>Y <b>Y
 +
<B>X <b>Y <u>Y
 +
<B>X <u>Y <b>Y
 +
<B>X <u>Y <u>Y
 +
</pre>
 +
 +
<br>
 +
 +
<pre>
 +
Table 60.2  LIR3 (Den A):  Denotative Component of A
 +
Object Sign Transition
 +
<A>X <a>Y <<a>Y, <A>X>
 +
<A>X <i>Y <<i>Y, <A>X>
 +
<B>X <b>Y <<b>Y, <B>X>
 +
<B>X <u>Y <<u>Y, <B>X>
 +
</pre>
 +
 +
<br>
 +
 +
<pre>
 +
Table 60.3  LIR3 (Con A):  Connotative Component of A
 +
Sign Interpretant Transition
 +
<a>Y <a>Y <>dY
 +
<a>Y <i>Y <da di>dY
 +
<i>Y <a>Y <da di>dY
 +
<i>Y <i>Y <>dY
 +
<b>Y <b>Y <>dY
 +
<b>Y <u>Y <db du>dY
 +
<u>Y <b>Y <db du>dY
 +
<u>Y <u>Y <>dY
 +
</pre>
 +
 +
<br>
 +
 +
<pre>
 +
Table 61.1  LIR3 (B):  Lateral Representation of B
 +
Object Sign Interpretant
 +
<A>X <a>Y <a>Y
 +
<A>X <a>Y <u>Y
 +
<A>X <u>Y <a>Y
 +
<A>X <u>Y <u>Y
 +
<B>X <b>Y <b>Y
 +
<B>X <b>Y <i>Y
 +
<B>X <i>Y <b>Y
 +
<B>X <i>Y <i>Y
 +
</pre>
 +
 +
<br>
 +
 +
<pre>
 +
Table 61.2  LIR3 (Den B):  Denotative Component of B
 +
Object Sign Transition
 +
<A>X <a>Y <<a>Y, <A>X>
 +
<A>X <u>Y <<u>Y, <A>X>
 +
<B>X <b>Y <<b>Y, <B>X>
 +
<B>X <i>Y <<i>Y, <B>X>
 +
</pre>
 +
 +
<br>
 +
 +
<pre>
 +
Table 61.3  LIR3 (Con B):  Connotative Component of B
 +
Sign Interpretant Transition
 +
<a>Y <a>Y <>dY
 +
<a>Y <u>Y <da du>dY
 +
<u>Y <a>Y <da du>dY
 +
<u>Y <u>Y <>dY
 +
<b>Y <b>Y <>dY
 +
<b>Y <i>Y <db di>dY
 +
<i>Y <b>Y <db di>dY
 +
<i>Y <i>Y <>dY
 
</pre>
 
</pre>
  
 
<br>
 
<br>

Revision as of 18:20, 23 September 2012

Discussion

Scrap Area

Edit Buffer

When it comes to the subject of systems theory, a particular POV is so widely propagated that it might as well be regarded as the established, received, or traditional POV. The POV in question says that there are dynamic systems and symbolic systems, and never the twain shall meet. I naturally intend to challenge this assumption, preferring to suggest that dynamic …

Table Scraps

Table 37.1  Sign Relational Schema C
	Object	Sign	Interpretant
	x	"x"	"x"
	"x"	"x"	"x"
Table 37.2  Sign Relational Schema D
	Object	Sign	Interpretant
	x	"x"	"x"
Table 37.3  Sign Relational Schema E
	Object	Sign	Interpretant
	"x"	"x"	"x"
Table 37.4  Sign Relational Schema D'
	Object	Sign	Interpretant
	x	"x"	"x"
	x	"x"	<x>
	x	<x>	"x"
	x	<x>	<x>

Work Area

Alternate Text

A semigroup consists of a nonempty set with an associative LOC on it. On formal occasions, a semigroup is introduced by means a formula like \(X = (X, *),\!\) interpreted to mean that a semigroup \(X\!\) is specified by giving two pieces of data, a nonempty set that conventionally, if somewhat ambiguously, goes under the same name \({}^{\backprime\backprime} X {}^{\prime\prime},\!\) plus an associative binary operation denoted by \({}^{\backprime\backprime} * {}^{\prime\prime}.\!\) In contexts where there is only one semigroup being discussed, or where the additional structure is otherwise understood, it is common practice to call the semigroup by the name of the underlying set. In contexts where more than one semigroup is formed on the same set, one may use notations like \(X_i = (X, *_i)\!\) to distinguish them.

Additive Presentation

Version 1

The \(n^\text{th}\!\) multiple of an element \(x\!\) in a semigroup \(\underline{X} = (X, +, 0),\!\) for integer \(n > 0,\!\) is notated as \(nx\!\) and defined as follows. Proceeding recursively, for \(n = 1,\!\) let \(1x = x,\!\) and for \(n > 1,\!\) let \(nx = (n-1)x + x.\!\)
The \(n^\text{th}\!\) multiple of \(x\!\) in a monoid \(\underline{X} = (X, +, 0),\!\) for integer \(n \ge 0,\!\) is defined the same way for \(n > 0,\!\) letting \(0x = 0\!\) when \(n = 0.\!\)
The \(n^\text{th}\!\) multiple of \(x\!\) in a group \(\underline{X} = (X, +, 0),\!\) for any integer \(n,\!\) is defined the same way for \(n \ge 0,\!\) letting \(nx = (-n)(-x)\!\) for \(n < 0.\!\)

Version 2

In a semigroup written additively, the \(n^\text{th}\!\) multiple of an element \(x\!\) is notated as \(nx\!\) and defined for every positive integer \(n\!\) in the following manner. Proceeding recursively, let \(1x = x\!\) and let \(nx = (n-1)x + x\!\) for all \(n > 1.\!\)
In a monoid written additively, the multiple \(nx\!\) is defined for every non-negative integer \(n\!\) by letting \(0x = 0\!\) and proceeding the same way for \(n > 0.\!\)
In a group written additively, the multiple \(nx\!\) is defined for every integer \(n\!\) by letting \(nx = (-n)(-x)\!\) for \(n < 0\!\) and proceeding the same way for \(n \ge 0.\!\)

Set Displays


\(\begin{smallmatrix} \text{A} & = & \{ & (\text{A}, {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{A} {}^{\prime\prime}), & \ldots, & (\text{A}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}) & , & (\text{B}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}), & \ldots, & (\text{B}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime}) & \} \\[10pt] \text{B} & = & \{ & (\text{A}, {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{A} {}^{\prime\prime}), & \ldots, & (\text{A}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime}) & , & (\text{B}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}), & \ldots, & (\text{B}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}) & \} \end{smallmatrix}\)


\(\begin{array}{lllllll} \text{A} & = & \{ & (\text{A}, {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{A} {}^{\prime\prime}), & \ldots, & (\text{A}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}), & \\ & & & (\text{B}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}), & \ldots, & (\text{B}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime}) & \} \\[10pt] \text{B} & = & \{ & (\text{A}, {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{A} {}^{\prime\prime}), & \ldots, & (\text{A}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime}), & \\ & & & (\text{B}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}), & \ldots, & (\text{B}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}) & \} \end{array}\)


\(\begin{array}{*{15}{c}} W & = & \{ & \text{A} & , & \text{B} & , & {}^{\backprime\backprime} \text{A} {}^{\prime\prime} & , & {}^{\backprime\backprime} \text{B} {}^{\prime\prime} & , & {}^{\backprime\backprime} \text{i} {}^{\prime\prime} & , & {}^{\backprime\backprime} \text{u} {}^{\prime\prime} & \} \\ & = & \{ & w_1 & , & w_2 & , & w_3 & , & w_4 & , & w_5 & , & w_6 & \} \end{array}\)


Table Work

Group Operations


\(\text{Table 32.1}~~\text{Scheme of a Group Operation Table}\)
\(*\!\) \(x_0\!\) \(\cdots\!\) \(x_j\!\) \(\cdots\!\)
\(x_0\!\) \(x_0 * x_0\!\) \(\cdots\!\) \(x_0 * x_j\!\) \(\cdots\!\)
\(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\)
\(x_i\!\) \(x_i * x_0\!\) \(\cdots\!\) \(x_i * x_j\!\) \(\cdots\!\)
\(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\)


\(\text{Table 32.2}~~\text{Scheme of the Regular Ante-Representation}\)
\(\text{Element}\!\) \(\text{Function as Set of Ordered Pairs of Elements}\!\)
\(x_0\!\) \(\{\!\) \((x_0 ~,~ x_0 * x_0),\!\) \(\cdots\!\) \((x_j ~,~ x_0 * x_j),\!\) \(\cdots\!\) \(\}\!\)
\(\cdots\!\) \(\{\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\}\!\)
\(x_i\!\) \(\{\!\) \((x_0 ~,~ x_i * x_0),\!\) \(\cdots\!\) \((x_j ~,~ x_i * x_j),\!\) \(\cdots\!\) \(\}\!\)
\(\cdots\!\) \(\{\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\}\!\)


\(\text{Table 32.3}~~\text{Scheme of the Regular Post-Representation}\)
\(\text{Element}\!\) \(\text{Function as Set of Ordered Pairs of Elements}\!\)
\(x_0\!\) \(\{\!\) \((x_0 ~,~ x_0 * x_0),\!\) \(\cdots\!\) \((x_j ~,~ x_j * x_0),\!\) \(\cdots\!\) \(\}\!\)
\(\cdots\!\) \(\{\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\}\!\)
\(x_i\!\) \(\{\!\) \((x_0 ~,~ x_0 * x_i),\!\) \(\cdots\!\) \((x_j ~,~ x_j * x_i),\!\) \(\cdots\!\) \(\}\!\)
\(\cdots\!\) \(\{\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\}\!\)


\(\text{Table 33.1}~~\text{Multiplication Operation of the Group}~V_4\)
\(\cdot\!\) \(\operatorname{e}\) \(\operatorname{f}\) \(\operatorname{g}\) \(\operatorname{h}\)
\(\operatorname{e}\) \(\operatorname{e}\) \(\operatorname{f}\) \(\operatorname{g}\) \(\operatorname{h}\)
\(\operatorname{f}\) \(\operatorname{f}\) \(\operatorname{e}\) \(\operatorname{h}\) \(\operatorname{g}\)
\(\operatorname{g}\) \(\operatorname{g}\) \(\operatorname{h}\) \(\operatorname{e}\) \(\operatorname{f}\)
\(\operatorname{h}\) \(\operatorname{h}\) \(\operatorname{g}\) \(\operatorname{f}\) \(\operatorname{e}\)


\(\text{Table 33.2}~~\text{Regular Representation of the Group}~V_4\)
\(\text{Element}\!\) \(\text{Function as Set of Ordered Pairs of Elements}\!\)
\(\operatorname{e}\) \(\{\!\) \((\operatorname{e}, \operatorname{e}),\) \((\operatorname{f}, \operatorname{f}),\) \((\operatorname{g}, \operatorname{g}),\) \((\operatorname{h}, \operatorname{h})\) \(\}\!\)
\(\operatorname{f}\) \(\{\!\) \((\operatorname{e}, \operatorname{f}),\) \((\operatorname{f}, \operatorname{e}),\) \((\operatorname{g}, \operatorname{h}),\) \((\operatorname{h}, \operatorname{g})\) \(\}\!\)
\(\operatorname{g}\) \(\{\!\) \((\operatorname{e}, \operatorname{g}),\) \((\operatorname{f}, \operatorname{h}),\) \((\operatorname{g}, \operatorname{e}),\) \((\operatorname{h}, \operatorname{f})\) \(\}\!\)
\(\operatorname{h}\) \(\{\!\) \((\operatorname{e}, \operatorname{h}),\) \((\operatorname{f}, \operatorname{g}),\) \((\operatorname{g}, \operatorname{f}),\) \((\operatorname{h}, \operatorname{e})\) \(\}\!\)


\(\text{Table 33.3}~~\text{Regular Representation of the Group}~V_4\)
\(\text{Element}\!\) \(\text{Function as Set of Ordered Pairs of Symbols}\!\)
\(\operatorname{e}\) \(\{\!\) \(({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime})\) \(\}\!\)
\(\operatorname{f}\) \(\{\!\) \(({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime})\) \(\}\!\)
\(\operatorname{g}\) \(\{\!\) \(({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime})\) \(\}\!\)
\(\operatorname{h}\) \(\{\!\) \(({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime})\) \(\}\!\)


\(\text{Table 34.1}~~\text{Multiplicative Presentation of the Group}~Z_4(\cdot)\)
\(\cdot\!\) \(\operatorname{1}\) \(\operatorname{a}\) \(\operatorname{b}\) \(\operatorname{c}\)
\(\operatorname{1}\) \(\operatorname{1}\) \(\operatorname{a}\) \(\operatorname{b}\) \(\operatorname{c}\)
\(\operatorname{a}\) \(\operatorname{a}\) \(\operatorname{b}\) \(\operatorname{c}\) \(\operatorname{1}\)
\(\operatorname{b}\) \(\operatorname{b}\) \(\operatorname{c}\) \(\operatorname{1}\) \(\operatorname{a}\)
\(\operatorname{c}\) \(\operatorname{c}\) \(\operatorname{1}\) \(\operatorname{a}\) \(\operatorname{b}\)


\(\text{Table 34.2}~~\text{Regular Representation of the Group}~Z_4(\cdot)\)
\(\text{Element}\!\) \(\text{Function as Set of Ordered Pairs of Elements}\!\)
\(\operatorname{1}\) \(\{\!\) \((\operatorname{1}, \operatorname{1}),\) \((\operatorname{a}, \operatorname{a}),\) \((\operatorname{b}, \operatorname{b}),\) \((\operatorname{c}, \operatorname{c})\) \(\}\!\)
\(\operatorname{a}\) \(\{\!\) \((\operatorname{1}, \operatorname{a}),\) \((\operatorname{a}, \operatorname{b}),\) \((\operatorname{b}, \operatorname{c}),\) \((\operatorname{c}, \operatorname{1})\) \(\}\!\)
\(\operatorname{b}\) \(\{\!\) \((\operatorname{1}, \operatorname{b}),\) \((\operatorname{a}, \operatorname{c}),\) \((\operatorname{b}, \operatorname{1}),\) \((\operatorname{c}, \operatorname{a})\) \(\}\!\)
\(\operatorname{c}\) \(\{\!\) \((\operatorname{1}, \operatorname{c}),\) \((\operatorname{a}, \operatorname{1}),\) \((\operatorname{b}, \operatorname{a}),\) \((\operatorname{c}, \operatorname{b})\) \(\}\!\)


\(\text{Table 35.1}~~\text{Additive Presentation of the Group}~Z_4(+)\)
\(+\!\) \(\operatorname{0}\) \(\operatorname{1}\) \(\operatorname{2}\) \(\operatorname{3}\)
\(\operatorname{0}\) \(\operatorname{0}\) \(\operatorname{1}\) \(\operatorname{2}\) \(\operatorname{3}\)
\(\operatorname{1}\) \(\operatorname{1}\) \(\operatorname{2}\) \(\operatorname{3}\) \(\operatorname{0}\)
\(\operatorname{2}\) \(\operatorname{2}\) \(\operatorname{3}\) \(\operatorname{0}\) \(\operatorname{1}\)
\(\operatorname{3}\) \(\operatorname{3}\) \(\operatorname{0}\) \(\operatorname{1}\) \(\operatorname{2}\)


\(\text{Table 35.2}~~\text{Regular Representation of the Group}~Z_4(+)\)
\(\text{Element}\!\) \(\text{Function as Set of Ordered Pairs of Elements}\!\)
\(\operatorname{0}\) \(\{\!\) \((\operatorname{0}, \operatorname{0}),\) \((\operatorname{1}, \operatorname{1}),\) \((\operatorname{2}, \operatorname{2}),\) \((\operatorname{3}, \operatorname{3})\) \(\}\!\)
\(\operatorname{1}\) \(\{\!\) \((\operatorname{0}, \operatorname{1}),\) \((\operatorname{1}, \operatorname{2}),\) \((\operatorname{2}, \operatorname{3}),\) \((\operatorname{3}, \operatorname{0})\) \(\}\!\)
\(\operatorname{2}\) \(\{\!\) \((\operatorname{0}, \operatorname{2}),\) \((\operatorname{1}, \operatorname{3}),\) \((\operatorname{2}, \operatorname{0}),\) \((\operatorname{3}, \operatorname{1})\) \(\}\!\)
\(\operatorname{3}\) \(\{\!\) \((\operatorname{0}, \operatorname{3}),\) \((\operatorname{1}, \operatorname{0}),\) \((\operatorname{2}, \operatorname{1}),\) \((\operatorname{3}, \operatorname{2})\) \(\}\!\)


Sign Relations


\(\text{Table 1.} ~~ \text{Sign Relation of Interpreter A}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)


\(\text{Table 2.} ~~ \text{Sign Relation of Interpreter B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)


\(\text{Table 36.} ~~ \text{Semantics for Higher Order Signs}\!\)
\(\text{Object Denoted}\!\) \(\text{Equivalent Signs}\!\)

\(\begin{matrix} \text{A} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} & = & {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\langle} \text{B} {}^{\rangle} & = & {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\langle\langle} \text{A} {}^{\rangle\rangle} & = & {}^{\langle\backprime\backprime} \text{A} {}^{\prime\prime\rangle} & = & {}^{\backprime\backprime\langle} \text{A} {}^{\rangle\prime\prime} \\ {}^{\langle\langle} \text{B} {}^{\rangle\rangle} & = & {}^{\langle\backprime\backprime} \text{B} {}^{\prime\prime\rangle} & = & {}^{\backprime\backprime\langle} \text{B} {}^{\rangle\prime\prime} \\ {}^{\langle\langle} \text{i} {}^{\rangle\rangle} & = & {}^{\langle\backprime\backprime} \text{i} {}^{\prime\prime\rangle} & = & {}^{\backprime\backprime\langle} \text{i} {}^{\rangle\prime\prime} \\ {}^{\langle\langle} \text{u} {}^{\rangle\rangle} & = & {}^{\langle\backprime\backprime} \text{u} {}^{\prime\prime\rangle} & = & {}^{\backprime\backprime\langle} \text{u} {}^{\rangle\prime\prime} \end{matrix}\)


\(\text{Table 37.} ~~ \text{Sign Relation Containing a Higher Order Sign}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \ldots \\[2pt] \ldots \\[2pt] \text{s} \end{matrix}\)

\(\begin{matrix} \text{s} \\[2pt] \ldots \\[2pt] \text{t} \end{matrix}\)

\(\begin{matrix} \ldots \\[2pt] \ldots \\[2pt] \ldots \end{matrix}\)


\(\text{Table 38.} ~~ \text{Sign Relation for a Succession of Higher Order Signs (1)}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} x \\[2pt] {}^{\langle} x {}^{\rangle} \\[2pt] {}^{\langle\langle} x {}^{\rangle\rangle} \\[2pt] \ldots \end{matrix}\)

\(\begin{matrix} {}^{\langle} x {}^{\rangle} \\[2pt] {}^{\langle\langle} x {}^{\rangle\rangle} \\[2pt] {}^{\langle\langle\langle} x {}^{\rangle\rangle\rangle} \\[2pt] \ldots \end{matrix}\)

\(\begin{matrix} \ldots \\[2pt] \ldots \\[2pt] \ldots \\[2pt] \ldots \end{matrix}\)


\(\text{Table 39.} ~~ \text{Sign Relation for a Succession of Higher Order Signs (2)}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} x \\[2pt] s_1 \\[2pt] s_2 \\[2pt] \ldots \end{matrix}\)

\(\begin{matrix} s_1 \\[2pt] s_2 \\[2pt] s_3 \\[2pt] \ldots \end{matrix}\)

\(\begin{matrix} \ldots \\[2pt] \ldots \\[2pt] \ldots \\[2pt] \ldots \end{matrix}\)


\(\text{Table 40.} ~~ \text{Reflective Origin} ~ \operatorname{Ref}^0 L(\text{A})\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)


\(\text{Table 41.} ~~ \text{Reflective Origin} ~ \operatorname{Ref}^0 L(\text{B})\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)


\(\text{Table 42.} ~~ \text{Higher Ascent Sign Relation} ~ \operatorname{Ref}^1 L(\text{A})\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle\langle} \text{A} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{B} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{i} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{u} {}^{\rangle\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle\langle} \text{A} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{B} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{i} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{u} {}^{\rangle\rangle} \end{matrix}\)


\(\text{Table 43.} ~~ \text{Higher Ascent Sign Relation} ~ \operatorname{Ref}^1 L(\text{B})\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle\langle} \text{A} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{B} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{i} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{u} {}^{\rangle\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle\langle} \text{A} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{B} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{i} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{u} {}^{\rangle\rangle} \end{matrix}\)


\(\text{Table 44.} ~~ \text{Higher Import Sign Relation} ~ \operatorname{HI}^1 L(\text{A})\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)


\(\text{Table 45.} ~~ \text{Higher Import Sign Relation} ~ \operatorname{HI}^1 L(\text{B})\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)


\(\text{Table 46.} ~~ \text{Higher Order Sign Relation for} ~ Q(\text{A}, \text{B})\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} L {}^{\rangle} \\ {}^{\langle} L {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} L {}^{\rangle} \\ {}^{\langle} L {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} q {}^{\rangle} \\ {}^{\langle} q {}^{\rangle} \\ {}^{\langle} q {}^{\rangle} \\ {}^{\langle} q {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} q {}^{\rangle} \\ {}^{\langle} q {}^{\rangle} \\ {}^{\langle} q {}^{\rangle} \\ {}^{\langle} q {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} (( & {}^{\langle} \text{A} {}^{\rangle} & , & \text{A} & ), & \text{A} & ) \\ (( & {}^{\langle} \text{A} {}^{\rangle} & , & \text{B} & ), & \text{A} & ) \\ (( & {}^{\langle} \text{B} {}^{\rangle} & , & \text{A} & ), & \text{B} & ) \\ (( & {}^{\langle} \text{B} {}^{\rangle} & , & \text{B} & ), & \text{B} & ) \\ (( & {}^{\langle} \text{i} {}^{\rangle} & , & \text{A} & ), & \text{A} & ) \\ (( & {}^{\langle} \text{i} {}^{\rangle} & , & \text{B} & ), & \text{B} & ) \\ (( & {}^{\langle} \text{u} {}^{\rangle} & , & \text{A} & ), & \text{B} & ) \\ (( & {}^{\langle} \text{u} {}^{\rangle} & , & \text{B} & ), & \text{A} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \end{matrix}\)


\(\text{Table 48.1} ~~ \operatorname{ER}(L_\text{A}) : \text{Extensional Representation of} ~ L_\text{A}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)


\(\text{Table 48.2} ~~ \operatorname{ER}(\operatorname{Den}(L_\text{A})) : \text{Denotative Component of} ~ L_\text{A}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Transition}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ({}^{\langle} \text{A} {}^{\rangle}, \text{A}) \\ ({}^{\langle} \text{i} {}^{\rangle}, \text{A}) \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ({}^{\langle} \text{B} {}^{\rangle}, \text{B}) \\ ({}^{\langle} \text{u} {}^{\rangle}, \text{B}) \end{matrix}\)


\(\text{Table 48.3} ~~ \operatorname{ER}(\operatorname{Con}(L_\text{A})) : \text{Connotative Component of} ~ L_\text{A}\!\)
\(\text{Sign}\!\) \(\text{Interpretant}\!\) \(\text{Transition}\!\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ({}^{\langle} \text{A} {}^{\rangle}, {}^{\langle} \text{A} {}^{\rangle}) \\ ({}^{\langle} \text{A} {}^{\rangle}, {}^{\langle} \text{i} {}^{\rangle}) \\ ({}^{\langle} \text{i} {}^{\rangle}, {}^{\langle} \text{A} {}^{\rangle}) \\ ({}^{\langle} \text{i} {}^{\rangle}, {}^{\langle} \text{i} {}^{\rangle}) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ({}^{\langle} \text{B} {}^{\rangle}, {}^{\langle} \text{B} {}^{\rangle}) \\ ({}^{\langle} \text{B} {}^{\rangle}, {}^{\langle} \text{u} {}^{\rangle}) \\ ({}^{\langle} \text{u} {}^{\rangle}, {}^{\langle} \text{B} {}^{\rangle}) \\ ({}^{\langle} \text{u} {}^{\rangle}, {}^{\langle} \text{u} {}^{\rangle}) \end{matrix}\)


\(\text{Table 49.1} ~~ \operatorname{ER}(L_\text{B}) : \text{Extensional Representation of} ~ L_\text{B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)


\(\text{Table 49.2} ~~ \operatorname{ER}(\operatorname{Den}(L_\text{B})) : \text{Denotative Component of} ~ L_\text{B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Transition}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ({}^{\langle} \text{A} {}^{\rangle}, \text{A}) \\ ({}^{\langle} \text{u} {}^{\rangle}, \text{A}) \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ({}^{\langle} \text{B} {}^{\rangle}, \text{B}) \\ ({}^{\langle} \text{i} {}^{\rangle}, \text{B}) \end{matrix}\)


\(\text{Table 49.3} ~~ \operatorname{ER}(\operatorname{Con}(L_\text{B})) : \text{Connotative Component of} ~ L_\text{B}\!\)
\(\text{Sign}\!\) \(\text{Interpretant}\!\) \(\text{Transition}\!\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ({}^{\langle} \text{A} {}^{\rangle}, {}^{\langle} \text{A} {}^{\rangle}) \\ ({}^{\langle} \text{A} {}^{\rangle}, {}^{\langle} \text{u} {}^{\rangle}) \\ ({}^{\langle} \text{u} {}^{\rangle}, {}^{\langle} \text{A} {}^{\rangle}) \\ ({}^{\langle} \text{u} {}^{\rangle}, {}^{\langle} \text{u} {}^{\rangle}) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ({}^{\langle} \text{B} {}^{\rangle}, {}^{\langle} \text{B} {}^{\rangle}) \\ ({}^{\langle} \text{B} {}^{\rangle}, {}^{\langle} \text{i} {}^{\rangle}) \\ ({}^{\langle} \text{i} {}^{\rangle}, {}^{\langle} \text{B} {}^{\rangle}) \\ ({}^{\langle} \text{i} {}^{\rangle}, {}^{\langle} \text{i} {}^{\rangle}) \end{matrix}\)


Type Tables


\(\text{Table 47.1} ~~ \text{Basic Types for ERs and IRs of Sign Relations}\!\)
\(\text{Type}\!\) \(\text{Symbol}\!\)

\(\begin{array}{l} \text{Property} \\ \text{Sign} \\ \text{Set} \\ \text{Triple}\\ \text{Underlying Element} \end{array}\)

\(\begin{matrix} P \\ \underline{S} \\ S \\ T \\ U \end{matrix}\)


\(\text{Table 47.2} ~~ \text{Derived Types for ERs of Sign Relations}\!\)
\(\text{Type}\!\) \(\text{Symbol}\!\) \(\text{Construction}\!\)
\(\text{Relation}\!\) \(R\!\) \(S(T(U))\!\)


\(\text{Table 47.3} ~~ \text{Derived Types for IRs of Sign Relations}\!\)
\(\text{Type}\!\) \(\text{Symbol}\!\) \(\text{Construction}\!\)
\(\text{Relation}\!\) \(P(R)\!\) \(P(S(T(U)))\!\)


Current Work


Table 50.  Notation for Objects & Their Signs
	Object	Sign of Object
	A	A	w1	<A>	<A>	<w1>
	B	B	w2	<B>	<B>	<w2>
	"A"	<A>	w3	<"A">	<<A>>	<w3>
	"B"	<B>	w4	<"B">	<<B>>	<w4>
	"i"	<i>	w5	<"i">	<<i>>	<w5>
	"u"	<u>	w6	<"u">	<<u>>	<w6>


Table 51.1  Notation for Properties & Their Signs (1)
	Property	Sign of Property
	{A}	{A}	{w1}	<{A}>	<{A}>	<{w1}>
	{B}	{B}	{w2}	<{B}>	<{B}>	<{w2}>
	{"A"}	{<A>}	{w3}	<{"A"}>	<{<A>}>	<{w3}>
	{"B"}	{<B>}	{w4}	<{"B"}>	<{<B>}>	<{w4}>
	{"i"}	{<i>}	{w5}	<{"i"}>	<{<i>}>	<{w5}>
	{"u"}	{<u>}	{w6}	<{"u"}>	<{<u>}>	<{w6}>


Table 51.2  Notation for Properties & Their Signs (2)
	Property	Sign of Property
	A	A	w1	<A>	<A>	<w1>
	B	B	w2	<B>	<B>	<w2>
	"A"	<A>	w3	<"A">	<<A>>	<w3>
	"B"	<B>	w4	<"B">	<<B>>	<w4>
	"i"	<i>	w5	<"i">	<<i>>	<w5>
	"u"	<u>	w6	<"u">	<<u>>	<w6>


Table 51.3  Notation for Properties & Their Signs (3)
	Property	Sign of Property
	A	o1	w1	<A>	<o1>	<w1>
	B	o2	w2	<B>	<o2>	<w2>
	a	s1	w3	<a>	<s1>	<w3>
	b	s2	w4	<b>	<s2>	<w4>
	i	s3	w5	<i>	<s3>	<w5>
	u	s4	w6	<u>	<s4>	<w6>


Table 52.1  Notation for Instances & Their Signs (1)
	Instance	Sign of Instance
	[A]	[A]	[w1]	<[A]>	<[A]>	<[w1]>
	[B]	[B]	[w2]	<[B]>	<[B]>	<[w2]>
	["A"]	[<A>]	[w3]	<["A"]>	<[<A>]>	<[w3]>
	["B"]	[<B>]	[w4]	<["B"]>	<[<B>]>	<[w4]>
	["i"]	[<i>]	[w5]	<["i"]>	<[<i>]>	<[w5]>
	["u"]	[<u>]	[w6]	<["u"]>	<[<u>]>	<[w6]>


Table 52.2  Notation for Instances & Their Signs (2)
	Instance	Sign of Instance
	A	A	w1	<A>	<A>	<w1>
	B	B	w2	<B>	<B>	<w2>
	"A"	<A>	w3	<"A">	<<A>>	<w3>
	"B"	<B>	w4	<"B">	<<B>>	<w4>
	"i"	<i>	w5	<"i">	<<i>>	<w5>
	"u"	<u>	w6	<"u">	<<u>>	<w6>


Table 52.3  Notation for Instances & Their Signs (3)
	Instance	Sign of Instance
	A	o1	w1	<A>	<o1>	<w1>
	B	o2	w2	<B>	<o2>	<w2>
	a	s1	w3	<a>	<s1>	<w3>
	b	s2	w4	<b>	<s2>	<w4>
	i	s3	w5	<i>	<s3>	<w5>
	u	s4	w6	<u>	<s4>	<w6>


Table 53.1  Elements of ER (W)
	Mnemonic Element	Pragmatic Element	Abstract Element
	w C W	w C W	wi C W
	A	o1	w1
	B	o2	w2
	"A"	s1	w3
	"B"	s2	w4
	"i"	s3	w5
	"u"	s4	w6


Table 53.2  Features of LIR (W)
	Mnemonic Feature	Pragmatic Feature	Abstract Feature
	w C W	w C W	wi C W
	A	o1	w1
	B	o2	w2
	a	s1	w3
	b	s2	w4
	i	s3	w5
	u	s3	w6


Table 54.1  Mnemonic Literal Codes for Interpreters A & B
	Element	Vector	Conjunct Term	Code
	A	100000	 A (B)(a)(b)(i)(u)	<A>W
	B	010000	(A) B (a)(b)(i)(u)	<B>W
	"A"	001000	(A)(B) a (b)(i)(u)	<a>W
	"B"	000100	(A)(B)(a) b (i)(u)	<b>W
	"i"	000010	(A)(B)(a)(b) i (u)	<i>W
	"u"	000001	(A)(B)(a)(b)(i) u 	<u>W


Table 54.2  Pragmatic Literal Codes for Interpreters A & B
	Element	Vector	Conjunct Term	Code
	A	100000	 o1 (o2)(s1)(s2)(s3)(s4)	<o1>W
	B	010000	(o1) o2 (s1)(s2)(s3)(s4)	<o2>W
	"A"	001000	(o1)(o2) s1 (s2)(s3)(s4)	<s1>W
	"B"	000100	(o1)(o2)(s1) s2 (s3)(s4)	<s2>W
	"i"	000010	(o1)(o2)(s1)(s2) s3 (s4)	<s3>W
	"u"	000001	(o1)(o2)(s1)(s2)(s3) s4 	<s4>W


Table 54.3  Abstract Literal Codes for Interpreters A & B
	Element	Vector	Conjunct Term	Code
	A	100000	 w1 (w2)(w3)(w4)(w5)(w6)	<w1>W
	B	010000	(w1) w2 (w3)(w4)(w5)(w6)	<w2>W
	"A"	001000	(w1)(w2) w3 (w4)(w5)(w6)	<w3>W
	"B"	000100	(w1)(w2)(w3) w4 (w5)(w6)	<w4>W
	"i"	000010	(w1)(w2)(w3)(w4) w5 (w6)	<w5>W
	"u"	000001	(w1)(w2)(w3)(w4)(w5) w6 	<w6>W


Table 55.1  LIR1 (A):  Literal Representation of A
	Object	Sign	Interpretant
	<A>W	<a>W	<a>W
	<A>W	<a>W	<i>W
	<A>W	<i>W	<a>W
	<A>W	<i>W	<i>W
	<B>W	<b>W	<b>W
	<B>W	<b>W	<u>W
	<B>W	<u>W	<b>W
	<B>W	<u>W	<u>W


Table 55.2  LIR1 (Den A):  Denotative Component of A
	Object	Sign	Transition
	<A>W	<a>W	<<a>W, <A>W>
	<A>W	<i>W	<<i>W, <A>W>
	<B>W	<b>W	<<b>W, <B>W>
	<B>W	<u>W	<<u>W, <B>W>


Table 55.3  LIR1 (Con A):  Connotative Component of A
	Sign	Interpretant	Transition
	<a>W	<a>W	<>dW
	<a>W	<i>W	<da di>dW
	<i>W	<a>W	<da di>dW
	<i>W	<i>W	<>dW
	<b>W	<b>W	<>dW
	<b>W	<u>W	<db du>dW
	<u>W	<b>W	<db du>dW
	<u>W	<u>W	<>dW


Table 56.1  LIR1 (B):  Literal Representation of B
	Object	Sign	Interpretant
	<A>W	<a>W	<a>W
	<A>W	<a>W	<u>W
	<A>W	<u>W	<a>W
	<A>W	<u>W	<u>W
	<B>W	<b>W	<b>W
	<B>W	<b>W	<i>W
	<B>W	<i>W	<b>W
	<B>W	<i>W	<i>W


Table 56.2  LIR1 (Den B):  Denotative Component of B
	Object	Sign	Transition
	<A>W	<a>W	<<a>W, <A>W>
	<A>W	<u>W	<<u>W, <A>W>
	<B>W	<b>W	<<b>W, <B>W>
	<B>W	<i>W	<<i>W, <B>W>


Table 56.3  LIR1 (Con B):  Connotative Component of B
	Sign	Interpretant	Transition
	<a>W	<a>W	<>dW
	<a>W	<u>W	<da du>dW
	<u>W	<a>W	<da du>dW
	<u>W	<u>W	<>dW
	<b>W	<b>W	<>dW
	<b>W	<i>W	<db di>dW
	<i>W	<b>W	<db di>dW
	<i>W	<i>W	<>dW


Table 57.1  Mnemonic Lateral Codes for Interpreters A & B
	Element	Vector	Conjunct Term	Code
	A	10X	 A (B)	<A>X
	B	01X	(A) B 	<B>X
	"A"	1000Y	 a (b)(i)(u)	<a>Y
	"B"	0100Y	(a) b (i)(u)	<b>Y
	"i"	0010Y	(a)(b) i (u)	<i>Y
	"u"	0001Y	(a)(b)(i) u 	<u>Y


Table 57.2  Pragmatic Lateral Codes for Interpreters A & B
	Element	Vector	Conjunct Term	Code
	A	10X	 o1 (o2)	<o1>X
	B	01X	(o1) o2 	<o2>X
	"A"	1000Y	 s1 (s2)(s3)(s4)	<s1>Y
	"B"	0100Y	(s1) s2 (s3)(s4)	<s2>Y
	"i"	0010Y	(s1)(s2) s3 (s4)	<s3>Y
	"u"	0001Y	(s1)(s2)(s3) s4 	<s4>Y


Table 57.3  Abstract Lateral Codes for Interpreters A & B
	Element	Vector	Conjunct Term	Code
	A	10X	 x1 (x2)	<x1>X
	B	01X	(x1) x2 	<x2>X
	"A"	1000Y	 y1 (y2)(y3)(y4)	<y1>Y
	"B"	0100Y	(y1) y2 (y3)(y4)	<y2>Y
	"i"	0010Y	(y1)(y2) y3 (y4)	<y3>Y
	"u"	0001Y	(y1)(y2)(y3) y4 	<y4>Y


Table 58.1  LIR2 (A):  Lateral Representation of A
	Object	Sign	Interpretant
	 A (B)	 a (b)(i)(u)	 a (b)(i)(u)
	 A (B)	 a (b)(i)(u)	(a)(b) i (u)
	 A (B)	(a)(b) i (u)	 a (b)(i)(u)
	 A (B)	(a)(b) i (u)	(a)(b) i (u)
	(A) B 	(a) b (i)(u)	(a) b (i)(u)
	(A) B 	(a) b (i)(u)	(a)(b)(i) u 
	(A) B 	(a)(b)(i) u 	(a) b (i)(u)
	(A) B 	(a)(b)(i) u 	(a)(b)(i) u 


Table 58.2  LIR2 (Den A):  Denotative Component of A
	Object	Sign	Transition
	 A (B)	 a (b)(i)(u)	<<a>Y, <A>X>
	 A (B)	(a)(b) i (u)	<<i>Y, <A>X>
	(A) B 	(a) b (i)(u)	<<b>Y, <B>X>
	(A) B 	(a)(b)(i) u 	<<u>Y, <B>X>


Table 58.3  LIR2 (Con A):  Connotative Component of A
	Sign	Interpretant	Transition
	 a (b)(i)(u)	 a (b)(i)(u)	(da)(db)(di)(du)
	 a (b)(i)(u)	(a)(b) i (u)	 da (db) di (du)
	(a)(b) i (u)	 a (b)(i)(u)	 da (db) di (du)
	(a)(b) i (u)	(a)(b) i (u)	(da)(db)(di)(du)
	(a) b (i)(u)	(a) b (i)(u)	(da)(db)(di)(du)
	(a) b (i)(u)	(a)(b)(i) u 	(da) db (di) du 
	(a)(b)(i) u 	(a) b (i)(u)	(da) db (di) du 
	(a)(b)(i) u 	(a)(b)(i) u 	(da)(db)(di)(du)


Table 59.1  LIR2 (B):  Lateral Representation of B
	Object	Sign	Interpretant
	 A (B)	 a (b)(i)(u)	 a (b)(i)(u)
	 A (B)	 a (b)(i)(u)	(a)(b)(i) u 
	 A (B)	(a)(b)(i) u 	 a (b)(i)(u)
	 A (B)	(a)(b)(i) u 	(a)(b)(i) u 
	(A) B 	(a) b (i)(u)	(a) b (i)(u)
	(A) B 	(a) b (i)(u)	(a)(b) i (u)
	(A) B 	(a)(b) i (u)	(a) b (i)(u)
	(A) B 	(a)(b) i (u)	(a)(b) i (u)


Table 59.2  LIR2 (Den B):  Denotative Component of B
	Object	Sign	Transition
	 A (B)	 a (b)(i)(u)	<<a>Y, <A>X>
	 A (B)	(a)(b)(i) u 	<<u>Y, <A>X>
	(A) B 	(a) b (i)(u)	<<b>Y, <B>X>
	(A) B 	(a)(b) i (u)	<<i>Y, <B>X>


Table 59.3  LIR2 (Con B):  Connotative Component of B
	Sign	Interpretant	Transition
	 a (b)(i)(u)	 a (b)(i)(u)	(da)(db)(di)(du)
	 a (b)(i)(u)	(a)(b)(i) u 	 da (db)(di) du 
	(a)(b)(i) u 	 a (b)(i)(u)	 da (db)(di) du 
	(a)(b)(i) u 	(a)(b)(i) u 	(da)(db)(di)(du)
	(a) b (i)(u)	(a) b (i)(u)	(da)(db)(di)(du)
	(a) b (i)(u)	(a)(b) i (u)	(da) db  di (du)
	(a)(b) i (u)	(a) b (i)(u)	(da) db  di (du)
	(a)(b) i (u)	(a)(b) i (u)	(da)(db)(di)(du)


Table 60.1  LIR3 (A):  Lateral Representation of A
	Object	Sign	Interpretant
	<A>X	<a>Y	<a>Y
	<A>X	<a>Y	<i>Y
	<A>X	<i>Y	<a>Y
	<A>X	<i>Y	<i>Y
	<B>X	<b>Y	<b>Y
	<B>X	<b>Y	<u>Y
	<B>X	<u>Y	<b>Y
	<B>X	<u>Y	<u>Y


Table 60.2  LIR3 (Den A):  Denotative Component of A
	Object	Sign	Transition
	<A>X	<a>Y	<<a>Y, <A>X>
	<A>X	<i>Y	<<i>Y, <A>X>
	<B>X	<b>Y	<<b>Y, <B>X>
	<B>X	<u>Y	<<u>Y, <B>X>


Table 60.3  LIR3 (Con A):  Connotative Component of A
	Sign	Interpretant	Transition
	<a>Y	<a>Y	<>dY
	<a>Y	<i>Y	<da di>dY
	<i>Y	<a>Y	<da di>dY
	<i>Y	<i>Y	<>dY
	<b>Y	<b>Y	<>dY
	<b>Y	<u>Y	<db du>dY
	<u>Y	<b>Y	<db du>dY
	<u>Y	<u>Y	<>dY


Table 61.1  LIR3 (B):  Lateral Representation of B
	Object	Sign	Interpretant
	<A>X	<a>Y	<a>Y
	<A>X	<a>Y	<u>Y
	<A>X	<u>Y	<a>Y
	<A>X	<u>Y	<u>Y
	<B>X	<b>Y	<b>Y
	<B>X	<b>Y	<i>Y
	<B>X	<i>Y	<b>Y
	<B>X	<i>Y	<i>Y


Table 61.2  LIR3 (Den B):  Denotative Component of B
	Object	Sign	Transition
	<A>X	<a>Y	<<a>Y, <A>X>
	<A>X	<u>Y	<<u>Y, <A>X>
	<B>X	<b>Y	<<b>Y, <B>X>
	<B>X	<i>Y	<<i>Y, <B>X>


Table 61.3  LIR3 (Con B):  Connotative Component of B
	Sign	Interpretant	Transition
	<a>Y	<a>Y	<>dY
	<a>Y	<u>Y	<da du>dY
	<u>Y	<a>Y	<da du>dY
	<u>Y	<u>Y	<>dY
	<b>Y	<b>Y	<>dY
	<b>Y	<i>Y	<db di>dY
	<i>Y	<b>Y	<db di>dY
	<i>Y	<i>Y	<>dY