Difference between revisions of "Directory:Jon Awbrey/Papers/Inquiry Driven Systems : Part 6"

MyWikiBiz, Author Your Legacy — Wednesday November 27, 2024
Jump to navigationJump to search
Line 1,598: Line 1,598:
  
 
===6.15. Propositional Calculus===
 
===6.15. Propositional Calculus===
 +
 +
<pre>
 +
The order of reasoning called "propositional logic", as it is pursued from various perspectives, concerns itself with three domains of objects, with all three domains having analogous structures in the relationships of their objects to each other.  There is a domain of logical objects called "properties" or "propositions", a domain of functional objects called "binary", "boolean", or "truth valued" functions, and a domain of geometric objects called "regions" or "subsets" of the relevant universe of discourse.  Each domain of objects needs a domain of signs to refer to its elements, but if one's interest lies mainly in referring to the common aspects of structure exhibited by these domains, then it serves to maintain a single notation, variously interpreted for all three domains.
 +
 +
The first order of business is to comment on the logical significance of the rhetorical distinctions that appear to prevail among these objects.  My reason for introducing these distinctions is not to multiply the number of entities beyond necessity but merely to summarize the variety of entities that have been used historically, to figure out a series of conversions between them, and to integrate suitable analogues of them within a unified system.
 +
 +
For many purposes the distinction between a property and a proposition does not affect the structural aspects of the domains being considered.  Both properties and propositions are tantamount to fictional objects, made up to supply general signs with singular denotations, and serving as indirect ways to explain the "plural indefinite references" (PIR's) of general signs to the multitudes of their ultimately denoted objects.  A property is signfied by a sign called a "term" that achieves by a form of indirection a PIR to all the elements in a class of "things".  A proposition is signified by a sign called a "sentence" that achieves by a form of indirection a PIR to all the elements in a class of "situations".  But "things" are any objects of discussion and thought, in other words, a perfectly general category, and "situations" are just special cases of these "things".
 +
 +
There is still something left to the logical distinction between properties and propositions, but it is largely immaterial to the order of reasoning that is found reflected in propositional logic.  When it is useful to emphasize their commonalities, properties and propositions can both be referred to as "Props".  As a handle on the aspects of structure that are shared between these two domains and as a mechanism for ignoring irrelevant distinctions, it also helps to have a single term for a "domain of properties" (DOP) and a "domain of propositions" (DOP).
 +
 +
Because a Prop is introduced as an intermediate object of reference for a general sign, it factors a PIR of a general sign across two stages, the first appearing as a reference of a general sign to a singular Prop, and the second appearing as an application of a Prop to its proper objects.  This affords a point of articulation that serves to unify and explain the manifold of references involved in a PIR, but it requires a distinction to be fashioned between the intermediate objects, whether real or invented, and the original, further, or ultimate objects of a general sign.
 +
 +
Next, it is necessary to consider the stylistic differences among the logical, functional, and geometric conceptions of propositional logic.  Logically, a domain of properties or propositions is known by the axioms it is subject to.  Concretely, one thinks of a particular property or proposition as applying to the things or situations it is true of.  With the synthesis just indicated, this can be expressed in a unified form:  In abstract logical terms, a DOP is known by the axioms it is subject to.  In concrete functional or geometric terms, a particular element of a DOP is known by the things it is true of.
 +
 +
With the appropriate correspondences between these three domains in mind, the general term "proposition" can be interpreted in a flexible manner to cover logical, functional, and geometric types of objects.  Thus, a locution like "the proposition F" can be interpreted in three ways, literally, to denote a logical proposition, functionally, to denote a mapping from a space X of propertied or proposed objects to the domain B = {0, 1} of truth values, and geometrically, to denote the so called "fiber of truth" F 1(1) as a region or a subset of X.  For all of these reasons, it is desirable to set up a suitably flexible interpretive framework for propositional logic, where an object introduced as a logical proposition F can be recast as a boolean function F : X >B, and understood to indicate the region of the space X that is ruled by F.
 +
 +
Generally speaking, it does not seem possible to disentangle these three domains from each other or to determine which one is more fundamental.  In practice, due to its concern with the computational implementations of every concept it uses, the present work is biased toward the functional interpretation of propositions.  From this point of view, the abstract intention of a logical proposition F is regarded as being realized only when a program is found that computes the function F : X >B.
 +
 +
The functional interpretation of propositional calculus goes hand in hand with an approach to logical reasoning that incorporates "semantic" or "model theoretic" methods, as distinguished from the purely "syntactic" or "proof theoretic" option.  Indeed, the functional conception of a proposition is model theoretic in a double sense, not only because its notations denote functions as their semantic objects, but also because the domains of these functions are spaces of logical interpretations for the propositions, with the points of the domain that lie in the inverse image of truth under the function being the "models" of the proposition.
 +
 +
One of the reasons for pursuing a pragmatic hybrid of semantic and syntactic approaches, rather than keeping to the purely syntactic ways of manipulating meaningless tokens according to abstract rules of proof, is that the model theoretic strategy preserves the form of connection that exists between an agent's concrete particular experiences and the abstract propositions and general properties that it uses to describe its experience.  This makes it more likely that a hybrid approach will serve in the realistic pursuits of inquiry, since these efforts involve the integration of deductive, inductive, and abductive sources of knowledge.
 +
 +
In this approach to propositional logic, with a view toward computational realization, one begins with a space X, called a "universe of discourse", whose points can be reasonably well described by means of a finite set of logical features.  Since the points of the space X are effectively known only in terms of their computable features, one can assume that there is a finite set of computable coordinate projections xi : X >B, for i = 1 to n, for some n, that can serve to describe the points of X.  This means that there is a computable coordinate representation for X, in other words, a computable map T : X >Bn that describes the points of X insofar as they are known.  Thus, each proposition F : X >B can be factored through the coordinate representation T : X >Bn to yield a related proposition f : Bn >B, one that speaks directly about coordinate n tuples but indirectly about points of X.  Composing maps on the right, the mapping f is defined by the equation F = T o f.  For all practical purposes served by the representation T, the proposition f can be taken as a proxy for the proposition F, saying things about the points of X by means of X's encoding to Bn.
 +
 +
Working under the functional perspective, the formal system known as "propositional calculus" is introduced as a general system of notations for referring to boolean functions.  Typically, one takes a space X and a coordinate representation T : X >Bn as parameters of a particular system and speaks of the propositional calculus on a finite set of variables {xi}.  In objective terms, this constitutes the "domain of propositions" on the basis {xi}, notated as "DOP{xi}".  Ideally, one does not want to become too fixed on a particular set of logical features or to let the momentary dimensions of the space be cast in stone.  In practice, this means that the formalism and its computational implementation should allow for the automatic enmbedding of DOP(X) into DOP(Y) whenever X c Y.
 +
 +
The rest of this section presents the elements of a particular calculus for propositional logic.  First, I establish the basic notations and summarize the axiomatic presentation of the calculus, and then I give special attention to its functional and geometric interpretations.
 +
 +
This section reviews the elements of a calculus for propositional logic that I initially presented in two earlier papers (Awbrey, 1989 & 1994).  This calculus belongs to a family of formal systems that hark back to C.S. Peirce's "existential graphs" (PEG) and it draws on ideas from Spencer Brown's "Laws of Form" (LOF).  A feature that distinguishes the use of these formalisms can be summed up by saying that they treat logical expressions primarily as elements of a "language" and only secondarily as elements of an "algebra".  In other words, the most important thing about a logical expression is the logical object it denotes.  To the extent that the object can be represented in syntax, this attitude puts the focus on the "logical equivalence class" (LEC) to which the expression belongs, relegating to the background the whole variety of ways that the expression can be generated from algebraically conceived operations.
 +
 +
One of the benefits of this notation is that it facilitates the development of a "differential extension" (DEX) for propositional logic that can be used to reason about changing universes of discourse.
 +
 +
A "propositional language" (PL) is a syntactic system that mediates the reasonings of a "propositional logic" (PL).  The objects of a PL, the logical entities denoted by the language and invoked by the operations of the logic, can be conceived to rest at various levels of abstraction, residing in spaces of functions that are basically of the types Bn >B and remaining subject only to suitable choices of the parameter n.
 +
 +
Persistently reflective engagement in logical reasoning about any domain of objects leads to the identification of generic patterns of inference that appear to be universally valid, never disappointing the trust that is placed in them.  After a time, a formal system naturally arises that commemorates one's continuing commitment to these patterns of logical conduct, and acknowledges one's conviction that further inquiry into their utility can be safely put beyond the reach of everyday concerns.  At this juncture each descriptive pattern becomes a normative template, regulating all future ventures in reasoning until such time as a clearly overwhelming mass of doubtful outcomes cause one to question it anew.
 +
 +
Propositions about a coherent domain of objects tend to gather together and express themselves collectively in organized bodies of statements known as "theories".  As theories grow in size and complexity, one is faced with massive collections of propositional constraints and complex chains of logical inferences, and it becomes useful to support reasoning with the implementation of a "propositional calculator".
 +
 +
At this point, variations in common and technical usage of the term "proposition" require a few comments on terminology.  The heart of the issue is how to maintain a proper distinction between the logical form and the rhetorical style of a proposition, that is, how best to mark the difference between its invariant contents and its variant expressions.  There are many ways to draw the required form of distinction between the objective situation and the significant expression in this relation.  Here, I outline a compromise strategy that incorporates the advantages of several options and makes them available to intelligent choice as best fits the occasion.
 +
 +
1. According to a prevailing technical usage, a "proposition" is a categorical object of abstract thought, something that is tantamount to an objective situation, a statistical event, or a state of affairs of a specified type.  In distinction to the abstract proposition, a statement that a situation of the proposed type is actually in force is expressed in the form of a syntactic formula called a "sentence".
 +
 +
2. Another option enjoys a set of incidental advantages that makes it worth mentioning here and also worth exploring in a future discussion.  Under this alternative, one refers to the signifying expressions as "propositions", deliberately conflating propositions and sentences, but then introduces the needed distinction at another point of articulation, referring to the signified objects as "positions".
 +
 +
3. Attempting to strike a compromise with common usage, I often allow the word "proposition" to exploit the full range of its senses, denoting either object or sign according to context, and resorting to the phrase "propositional expression" whenever it is necessary to emphasize the involvement of the sign.
 +
 +
The operative distinction in every case, propositional or otherwise, is the difference in roles between objects and signs, not the names they are called by.  To reconcile a logical account with the pragmatic theory of signs, one entity is construed as the "propositional object" (PO) and the other entity is recognized as the "propositional sign" (PS) at each moment of interpretation in a propositional sign relation.  Once these roles are assigned, all the technology of sign relations applies to the logic of propositions as a special case.  In the context of propositional sign relations, a "semantic equivalence class" (SEC) is referred to as a "logical equivalence class" (LEC).  Each propositional object can then be associated, or even identified for all informative and practical puposes, with the LEC of its propositional signs.  Accordingly, the proposition is reconstituted from its sentences in the appropriate way, as an abstract object existing in a semantic relation to its signs.
 +
 +
Taking this topic, "the representation of sign relations", and seeking a computational formulation of its theory, leads to certain considerations about the best approach to the subject.  Computational formulations are those with no recourse but to finitary resources.  In setting up a computational formulation of any theory, one has to specify the finite set of axioms that are constantly available to subsequent reasoning.  This makes it advisable to approach the topic of representations at a level of generality that will give the resulting theory as much power as possible, the kind of power to which inductive hypotheses can have easy and constant recourse.  In order to furnish these resources with an ample supply of theoretical power ...
 +
 +
In doing this, it is expeditious, if not absolutely necessary, to broaden the focus on sign relations in two ways:  (1) to expand its extension from a special class of triadic relations to the wider sphere of n place relations, and (2) to diffuse its intension from fully specified and concretely presented relations to incompletly specified and abstractly described relations.
 +
</pre>
  
 
===6.16. Recursive Aspects===
 
===6.16. Recursive Aspects===

Revision as of 18:36, 15 August 2011


ContentsPart 1Part 2Part 3Part 4Part 5Part 6AppendicesReferencesDocument History


6. Reflective Interpretive Frameworks

??? The rest of this Section ???, continuing the discussion of formalization in terms of concrete examples and extending over the next 50 ??? Subsections ???, details the construction of a "reflective interpretive framework" (RIF).  This is a special type of sign theoretic setting, illustrated in the present case as based on the sign relations A and B, but intended more generally to constitute a fully developed environment of objective and interpretive resources, in the likes of which an "inquiry into inquiry" can reasonably be expected to find its home.

This Subdivision of the text begins by presenting an outline of the developments ahead, working through the motivation, the construction, and the application of a RIF that is broad enough to moderate the dialogue of A and B.

The first fifteen Sections (§§ 1 15) deal with a selection of preliminary topics and techniques that are involved in approaching the construction of a RIF.  The topics of these sections are described in greater detail as follows:

The first section (S 1) takes up the phenomenology of reflection.  The next three sections (§§ 2 4) are allotted to surveying the site of the planned construction, presenting it from three different points of view.  An introductory discussion (S 2) presents the main ideas that lead up to the genesis of a RIF.  These ideas are treated at first acquaintance in an informal manner, located within a broader cultural context, and put in relation to the ways that intelligent agents can come to develop characterictic belief systems and communal perspectives on the world.  The next section (S 3) points out a specialized mechanism that serves to make inobvious types of observation of a reflective character.  The last section (S 4) takes steps to formalize the concepts of a "point of view" (POV) and a "point of development" (POD).  These ideas characterize the outlooks, perspectives, world views, and other systems of belief, knowledge, or opinion that are employed by agents of inquiry, with especial regard to the ways that these outlooks develop over time.

A further discussion (S 5), in preparation for the task of reflection, identifies three styles of linguistic usage that deploy increasing grades of formalization in their approaches to any given subject matter.

In the next three sections (§§ 6 8), the features that distinguish each style of usage are taken up individually and elaborated in detail.  This is done by presenting the basic ideas of three theoretical subjects that develop under the corresponding points of view and that exemplify their respective ideals.  The next three sections (§§ 9 11) take up the classes of higher order sign relations that play an important role in reflexive inquiries and then apply the battery of concepts arising with higher order sign relations to an example that anticipates many features of a realistic interpreter.  In the light of the experience gained with the foregoing styles and subjects, the next three sections (§§ 12 14) are able to take up important issues regarding the status of theoretical entities that are needed in this work.

Finally (S 15), the relevance of these styles, subjects, and issues is made concrete by bringing their various considerations to bear on a single example of a formal system that serves to integrate their concerns, namely, "propositional calculus".

A point by point outline follows:

§ 1.	An approach to the phenomenology of reflective experience, as it bears on the conduct of reflective activity, is given its first explicit discussion.

§ 2.	The main ideas leading up to the development of a RIF are presented, starting from the bare necessity of applying inquiry to itself.  I introduce the idea of a "point of view" (POV) in an informal way, as it arises from natural considerations about the relationship of an immanent "system of interpretation" (SOI) to a generated "text of inquiry" (TOI).  In this connection, I pursue the idea of a "point of development" (POD), that captures a POV at a particular moment of its own proper time.

§ 3.	A Projective POV

§ 4.	The idea of a POV, as manifested from moment to moment in a series of POD's, is taken up in greater detail.  

A formalization for talking about a diversity of POV's and their development through time is introduced and its consequences explored.  Finally, this formalization is applied to an issue of pressing concern for the present project, namely, the status of the distinction between dynamic and symbolic aspects of intelligent systems.

§ 5.	The symbolic forms employed in the construction of a RIF are found at the nexus of several different interpretive influences.  This section picks out three distinctive styles of usage that this work needs to draw on throughout its progress, usually without explicit notice, and discusses their relationships to each other in general terms.  These three styles of usage, distinguished according to whether they encourage an "ordinary language" (OL), a "formal language" (FL), or a "computational language" (CL) approach, have their relevant properties illustrated in the next three sections (§§ 26 28), each style being exemplified by a theoretical subject that thrives under its guidance.

§ 6.	For ease of reference, the basic ideas of group theory used in this project are separated out and presented in this section.  Throughout this work as a whole, the subject of group theory serves in both illustrative and instrumental roles, providing, besides a rough stock of exemplary materials to work on, a ready array of precision tools to work with.

Group theory, as a methodological subject, is used to illustrate the "mathematical language" (ML) approach, which ordinarily takes it for granted that signs denote something, if not always the objects intended.  It is therefore recognizable as a special case of the OL style of usage.

To the basic assumption of the OL approach the ML style adds only the faith that every object one desires to name has a unique proper name to do it with, and thus that all the various expressions for an object can be traded duty free and without much ado for a suitably compact name to denote it.  This means that the otherwise considerable work of practical computation, that is needed to associate arbitrarily obscure expressions with their clearest possible representatives, is not taken seriously as a feature that deserves theoretical attention, and is thus ignored as a factor of theoretical concern.  This is appropriate to the mathematical level, which abstracts away from pragmatic factors and is intended precisely to do so.

More instrumentally to the aims of this investigation, and not entirely accidentally, group theory is one of the most adaptable of mathematical tools that can be used to understand the relation between general forms and particular instantiations, in other words, the relationship between abstract commonalities and their concrete diversities.

§ 7.	The basic notions of formal language theory are presented.  Not surprisingly, formal language theory is used to illustrate the FL style of usage.  Instrumentally, it is one of the most powerful tools available to clear away both the understandable confusions and the unjustifiable presuppositions of informal discourse.

§ 8.	The notion of computation that makes sense in this setting is one of a process that replaces an arbitrary sign with a better sign of the same object.  In other words, computation is an interpretive process that improves the indications of intentions.  To deal with computational processes it is necessary to extend the pragmatic theory of signs in a couple of new but coordinated directions.  To the basic conception of a sign relation is added a notion of progress, which implies a notion of process together with a notion of quality.

§ 9.	This section introduces "higher order" sign relations, which are used to formalize the process of reflection on interpretation.  The discussion is approaching a point where multiple levels of signs are becoming necessary, mainly for referring to previous levels of signs as the objects of an extended sign relation, and thereby enabling a process of reflection on interpretive conduct.  To begin dealing with this issue, I take advantage of a second look at A and B to introduce the use of "raised angle brackets" (< >), also called "supercilia" or "arches", as quotation marks.  Ordinary quotation marks (" ") have the disadvantage, for formal purposes, of being used informally for many different tasks.  To get around this obstacle, I use the "arch" operator to formalize one specific function of quotation marks in a computational context, namely, to create distinctive names for syntactic expressions, or what amounts to the same thing, to signify the generation of their godel numbers.

§ 10.	Returning to the sign relations A and B, various kinds of HO signs are exemplified by considering a selection of HO sign relations that are based on these two examples.

§ 11.	In this section the tools that come with the theory of higher order sign relations are applied to an illustrative exercise, roughing out the shape of a complex form of interpreter.

The next three sections (§§ 32 34) discuss how the identified styles of usage bear on three important issues in the usage of a technical language, namely, the respective theoretical statuses of "signs", "sets", and "variables".

§ 12.	The Status of Signs

§ 13.	The Status of Sets

§ 14.	At this point the discussion touches on an topic, concerning the being of a so called "variable", that issues in many unanswered questions.  Although this worry over the nature and use of a variable may seem like a trivial matter, it is not.  It needs to be remembered that the first adequate accounts of formal computation, Schonfinkel's combinator calculus and Church's lambda calculus, both developed out of programmes intended to clarify the concept of a variable, indeed, even to the point of eliminating it altogether as a primitive notion from the basis of mathematical logic (van Heijenoort, 355 366).

The pragmatic theory of sign relations has a part of its purpose in addressing these same questions about the natural utility of variables, and even though its application to computation has not enjoyed the same level of development as these other models, it promises in good time to have a broader scope.  Later, I will illustrate its potential by examining a form of the combinator calculus from a sign relational point of view.

§ 15.	There is an order of logical reasoning that is typically described as "propositional" or "sentential" and represented in a type of formal system that is commonly known as a "propositional calculus" or a "sentential logic" (SL).  Any one of these calculi forms an interesting example of a formal language, one that can be used to illustrate all of the preceding issues of style and technique, but one that can also serve this inquiry in a more instrumental fashion.  This section presents the elements of a calculus for propositional logic that I described in earlier work (Awbrey, 1989 & 1994).  The imminent use of this calculus is to construct and analyze logical representations of sign relations, and the treatment here focuses on the concepts and notation that are most relevant to this task.

The next four sections (§§ 16 19) treat the theme of self reference that is invoked in the overture to a RIF.  To inspire confidence in the feasibility and the utility of well chosen reflective constructions and to allay a suspicion of self reference in general, it is useful to survey the varieties of self reference that arise in this work and to distinguish the forms of circular referrals that are likely to vitiate consistent reasoning from those that are relatively innocuous and even beneficial.

§ 16.	Recursive Aspects

§ 17.	Patterns of Self Reference

§ 18.	Practical Intuitions

§ 19.	Examples of Self Reference

The intertwined themes of logic and time will occupy center stage for the next eight sections (§§ 20 27).

§ 20.	First, I discuss three distinct ways that the word "system" is used in this work, reflecting the variety of approaches, aspects, or perspectives that present themselves in dealing with what are often the same underlying objects in reality.

§ 21.	There is a general set of situations where the task arises to "build a bridge" between significantly different types of representation.  In these situations, the problem is to translate between the signs and expressions of two formal systems that have radically different levels of interpretation, and to do it in a way that makes appropriate connections between diverse descriptions of the same objects.  More to the point of the present project, formal systems for mediating inquiry, if they are intended to remain viable in both empirical and theoretical uses, need the capacity to negotiate between an "extensional representation" (ER) and an "intensional representation" (IR) of the same domain of objects.  It turns out that a cardinal or pivotal issue in this connection is how to convert between ER's and IR's of the same objective domain, working all the while within the practical constraints of a computational medium and preserving the equivalence of information.  To illustrate the kinds of technical issues that are involved in these considerations, I bring them to bear on the topic of representing sign relations and their dyadic projections in various forms.

The next four sections (§§ 22-25) give examples of ER's and IR's, indicate the importance of forming a computational bridge between them, and discuss the conceptual and technical obstacles that will have to be faced in doing so.

§ 22.	For ease of reference, this section collects previous materials that are relevant to discussing the ER's of the sign relations A and B, and explicitly details their dyadic projections.

§ 23.	This section discusses a number of general issues that are associated with the IR's of sign relations.  Because of the great degree of freedom there is in selecting among the potentially relevant properties of any real object, especially when the context of relevance to the selection is not known in advance, there are many different ways, perhaps an indefinite multitude of ways, to represent the sign relations A and B in terms of salient properties of their elementary constituents.  In this connection, the next two sections explore a representative sample of these possibilities, and illustrate several different styles of approach that can be used in their presentation.

§ 24.	A transitional case between ER's and IR's of sign relations is found in the concept of a "literal intensional representation" (LIR).

§ 25.	A fully fledged IR is one that accomplishes some measure of analytic work, bringing to the point of salient notice a selected array of implicit and otherwise hidden features of its object.  This section presents a variety of these "analytic intensional representations" (AIR's) for the sign relations A and B.

Note for future reference.  The problem so naturally encountered here, due to the "embarassment of riches" that presents itself in choosing a suitable IR, and tracing its origin to the wealth of properties that any real object typically has, is a precursor to one of the deepest issues in the pragmatic theory of inquiry:  "the problem of abductive reasoning".  This topic will be discussed at several later stages of this investigation, where it typically involves the problem of choosing, among the manifold aspects of an objective phenomenon or a problematic objective, only the features that are:  (1) relevant to explaining a present fact, or (2) pertinent to achieving a current purpose.

§ 26.	Differential Logic & Directed Graphs

§ 27.	Differential Logic & Group Operations

§ 28.	The Bridge : From Obstruction to Opportunity

§ 29.	Projects of Representation

§ 30.	Connected, Integrated, Reflective Symbols

The next seven sections (§§ 31 37) are designed to incrementally motivate the idea that a language as simple as propositional calculus, remarkably enough, can be used to articulate significant properties of n place relations.  The course of the discussion will proceed as follows:

§ 31.	First, I introduce concepts and notation designed to expand and generalize the orders of relations that are available to be discussed in an adequate fashion.

§ 32.	Second, I elaborate a particular mode of abstraction, that is, a systematic strategy for generalizing the collections of formal objects that are initially given to discussion.  This dimension of abstraction or direction of generalization will be described under the thematic heading of "partiality".

§ 33.	Third, I present an alternative approach to the issue of "degenerate", "defective", or "fragmentary" n place relations, proceeding by way of generalized objects known as "n place relational complexes".  Illustrating these ideas with respect to their bearing on sign relations the discussion arrives at a notion of "sign relational complexes", or "sign complexes".

In the next three sections (§§ 34 36) I consider a collection of "identification tasks" for n place relations.  Of particular interest is the extent to which the determination of an n place relation is constrained by a particular type of data, namely, by the specification of lower arity relations that occur as its projections.  This topic is often treated as a question about a relation's "reducibility" or "irreduciblity" with respect to its projections.  For instance, if the identity of an n place relation is completely determined by the data of its k place projections, then R is said to be "identifiable by", "reducible to", or "reconstructible from" its k place components, otherwise R is said to be "irreducible" with respect to its k place projections.

§ 34.	First, I consider a number of set theoretic operations that can be utilized in discussing these "identification", "reducibility", or "reconstruction" questions.  Once a level of general discussion has been surveyed enough to make a start, these tools can be specialized and applied to concrete examples in the realm of sign relations and also applied in the neighborhood of closely associated triadic relations.

§ 35.	This section considers the positive case of reducibility, presenting examples of triadic relations that can be reconstructed from their dyadic projections.  In fact, it happens that the sign relations A and B fall into this category of dyadically reducible triadic relations.

§ 36.	This section considers the negative case of reduciblity, presenting examples of "irreducibly triadic relations", or triadic relations that cannot be reconstructed from their lower dimensional projections or "faces".

§ 37.	Finally, the discussion culminates in an exposition of the so called "propositions as types" (PAT) analogy, outlining a formal system of "type expressions" or "type formulas" that bears a strong resemblance to propositional calculus.  Properly interpreted, the resulting "calculus of propositional types" (COPT) can be used as a language for talking about well formed types of n place relations.

§ 38.	Considering the Source

§ 39.	Prospective Indices : Pointers to Future Work

§ 40.	Interlaced with the structural and reflective developments that go into the OF and the IF is a conceptual arrangement called the "dynamic evaluative framework" (DEF).  This utility works to isolate the aspects of process and purpose that are observable on either side of the objective interpretive divide and helps to organize the graded notions of directed change that can be actualized in the RIF.

§ 41.	Elective and Motive Forces

§ 42.	Sign Processes : A Start

§ 43.	Reflective Extensions

§ 44.	Reflections on Closure

§ 45.	Intelligence => Critical Reflection

§ 46.	Looking Ahead : The Meta Issue

§ 47.	Mutually Intelligible Codes

§ 48.	Discourse Analysis : Ways and Means

§ 49.	Combinations of Sign Relations

§ 50.	Revisiting the Source

6.1. The Phenomenology of Reflection

This part of the discussion is fair to cast as the phenomenology of reflection.  It aims to amass the kinds of observations that extremely simple reflective agents, as a matter of principal and with a minimal of preparation, can make on the ebb and flow of their own reflective acts.  But this is not the kind of phenomenology that pretends it can bracket every assumption of a sophisticated or a theoretical nature off to one side of the observational picture, or thinks it can frame the description of reflection without the use of formal concepts, such as depend on the bracing and support of a technical language.

On the contrary, the brand of phenomenology being wielded here makes the explicit assumption that there are likely to be an untold number of implicit assumptions that contribute to and conspire in the framing of the picture to be observed, while it is precisely the job of reflective observation to detect the influence of these covertly acting assumptions.  Further, this style of phenomenology is deliberately set free of prior constraints on the choice of descriptive devices, since it can appeal to any formal means or any technical language that serves to articulate the description of its subject.

Certain things need to be understood about the aims, the scope, and the self imposed limits of this phenomenology, especially when it comes to the question of what it hopes to explain.  It is not the task of this phenomenology to explain consciousness but only to describe its course.  This it does by making an inventory of the "contents" that appear in consciousness and by delineating the relationships that appear among these contents.  Along the way, it must take into account, of course, that each moment of taking stock and each moment of charting relations needs to have its resulting list or map, respectively, realized as the content of a particular moment of consciousness.

Already, this lone requirement of the descriptive task raises a host of questions about what it means for something to be counted as a content of consciousness, and it leads, according to my present lights and aims, to a closer examination of a critical relationship, the logical relation "content of", taken abstractly and in general.  Since it does not appear that very extensive lists or very detailed maps can be "wholly realized" as contents within a limited field of consciousness, it is necessary to recognize an extended sense of "realization", where a list or a map can be "partially" or "effectively" realized in a content of consciousness if and when an indication, pointer, or sign of it is present in awareness.

In particular, this tack suggests that some things, that otherwise loom too large to fit within the frame of immediate awareness, can be treated as contents of consciousness, in the extended sense, if only an effective indication of them is present in awareness.  For instance, an effective indication of a larger text is a sign that can be followed to the next, and this to the next, and so on, in a way that incrementally leads to a traversal of the whole.  By extension, a list of contents of consciousness or a map of relations among these contents is "effectively realized" in a single content of consciousness if that content effectively points to it, and if the object to which it points has the structure of an object that pointedly reveals itself in time.  Given the evidence of the sign and the effective analysis of its object, a manifest of contents can be prized for the sake of the items it enumerates or the estates it maps, with each in due proportion to their values.  Both parts of this condition are needed, though, since knowing the name alone of a thing, even if it lends itself to knowing the thing, does not itself amount to knowing the thing itself.

The concepts with which a theory operates are not all objectivized in the field which that theory thematizes.

In short, my philosophical working hypothesis is concrete reflection, i.e., the cogito as mediated by the whole universe of signs.
		Ricoeur, The Conflict of Interpretations, [Ric, 166, 170]

This understanding of the task of phenomenology bears on three features of the approach to consciousness that I am charting here.

1.	It is under the heading of "description", especially as qualified by the adjective "effective", that the rationale of using mathematical models and the strategy of seeking computational implementations of these models can be found to successively fall.

2.	As a rule, I find it helps to avoid hypostatizing consciousness or self awareness as statically constituted entities, but to use the systematic notions of dynamic agency and developing organization.  However, in order to make connections with other approaches to phenomenology I need occasionally to mention concepts and even to make use of language that I would otherwise prefer to avoid.

3.	Finally, it is under the cumulative aims of effective description and systematic dynamics that the utility of sign relations is key.  Sign relations are the minimal forms of models that are capable of compassing all that goes on in thinking along with whatever it is that thinking relates to in all the domains that it orients toward.  The use of sign relations as models, as mathematical descriptions, and as computational simulations of what appears in reflecting on conduct is especially well suited to including in these models a description of what transpires in the conduct of reflection itself.

The type of phenomenology that is being envisioned here depends on no assured power of introspection but only on a modest power to reflect on conduct and thereby to give it a description.  These descriptions, all the better if they are inscribed in external media, can be examined with increasing degrees of detachment and have their consequences projected by deductive means.  In time, the mass of descriptions that accumulates with continuing experience and persistent reflection on conduct begins to constitute a de facto "model of behavior" (MOB).  In common regard this "prescribed code" or "catalog of procedure" (COP) can range from an empirical standard of comparison, through a provisional regulation, to a tentative ideal for future conduct.  However, the status that a COP or a MOB has when it starts out is not as important as its ability to test its prescriptions, along with their deductive and pragmatic implications, against the corpus of continuing observation, reflection, and description.

Reflection and consciousness no longer coincide.  ...

What emerges from this reflection is a wounded cogito, which posits but does not possess itself, which understands its originary truth only in and by the confession of the inadequation, the illusion, and the lie of existing consciousness.
		Ricoeur, The Conflict of Interpretations, [Ric, 172, 173]

It is pertinent at this point to draw a distinction between the power of reflection, that is claimed as a capacity crucial to inquiry, and what is likely to be confused with it, the presumptive power of introspection.  "Introspection", in the sole part of its technical meaning that leads to its being excluded from empirical inquiry, refers to an infallible, and thus incorrigible, power of observation that one is supposed to possess with respect to one's private experiences, matters over which there is imagined to be no higher court of appeal than one's own particular and immediate awareness.  But the horizon of experience that is plotted with regard to this static standpoint fails to reckon with the dynamic nature of an ongoing circumstance, that subsequent experience continually rides a circuit around its antecedents and ever constitutes a higher court for every proceeding and every precedent that falls within its jurisdiction.

The distinction that marks reflection and sets it apart from introspection is its own acknowledged fallibility, which involves its ability to be seen as false in subsequent reflections.  Naturally, this has an import for the status of reflection in empirical inquiry.  Paradoxically, its admission of fallibility is actually a virtue from the standpoint of making reflection useful in science.  If reflection on conduct leads to a description that cannot be falsified by any contingency of conduct, then that description is insufficient to specify any particular conduct at all.  This means one of several things about the description, either (1) it remains a condition of conduct in general, or (2) it resides as a part of a necessary logic at the bounds of all experience, or (3) it rests in a realm of metaphysics that abides, if anywhere, beyond the bounds of purely human experience and thus abscounds altogether from the sphere of empirical inquiry.

In this way the psyche is itself a technique practiced on itself, a technique of disguise and misunderstanding.  The soul of this technique is the pursuit of the lost archaic object which is constantly displaced and replaced by substitute, fantastic, illusory, delirious, and idealized objects.
		Paul Ricoeur, The Conflict of Interpretations, [Ric, 185]

One of the most difficult problems that arises for the phenonenology of reflection, and one that falls under the heading of "fallibility" in a markedly strong way, is the issue of systematic distortion.  Aside from the false idols that are deliberately constructed, there is another host of false images whose generation is so thoroughly systematic that only their lack of consciousness prevents them from being called "deliberate".  All the more naive projects of enlightenment, capitalized or not, are brought down by a failure to recognize this category of human frailty.

If the phenomenology of reflection that is developed and justified from this point on is not to be naive about this brand of fallibility, then it needs to constitute safeguards, a system of checks and balances, if you will, against it.  If no method of remediation can permanently arrest the perpetrator of these schemes from generating distractions in perpetuity, then at least one can hope for ways to arraign the forms of fallibility under various recognizable themes, so that their dangers can be avoided in the future.  In this vein, it is necessary to institute the study of those more opaque obstructions that limit the medium of investigation and to facilitate the analysis of those more refractory resistances to clear reflection, whose names are legion, but whose characters can be diversely noted under the themes of "obstruction", "resistance", the "shadow", the "unconscious", the "dark side of the enlightenment", or even better yet, the "underbrush of the clearing".

In the general scheme of things, the forms of distortion that remain peculiar to particular agents of reflection need garner to themselves nothing outside the incidental degrees of interest.  The best check to counter this species of distortion, to which the isolated individual is likely to fall prey, is the balance of cultural wisdom that is commonly stored up and invested in the living praxis of a reflective community.

It is only when the incidence of singular distortions is not damped out by the collective incitement of countermeasures, when the aggregation of local distortions is overlooked by the powers of a general reflection, when the flaws in the individual lights and mirrors of the scientific organon are not taken into account and duly compensated in the shape of the social "panopticon", or when the grinding accumulation and the precipitous mounting up of infinitesimal but significant deviations from accurate reflection are not met with an adequate power of oversight, one that can maintain solely the interests of community integrity at heart, that a truly false ideal begins to hold sway over the very perceptions of every specialized agent of reflection.

When these aberrations and astigmatisms develop unchecked, and when the strain to see things clearly reaches the point of breaking all the instruments thereof, then the most circumscribed faults, the distorted reflections of individual hypocrisy, the strange lack of insight and the missing sense of mutual reciprocity that manifest themselves in the most parochial forms of self interest, then all of these defects, and ills, and shocks begin to "pass through" to the collective strata, to be inherited and propagated by the highest levels of social oraganization, and then a systematic and widespread falsification of the whole conduct of society begins to pervade its view of itself.

On macroscopic scales of organization, with medium sized bodies and bodies of media that extend over considerable distances, with masses of activity that successfully propagate their own forms through vastening expanses of time, the general condition of thoughtfulness cancels out and compensates for all but the most singular of disturbances, namely, those that are peculiar to the microscopic realm of observation.  If the matter is regarded on this grander scale, then it is not hard to find a sufficient reason for the stubborn persistence of the cosmic order, and thus the desirable necessity of doing just this is never far from mind.  In the case of whole societies, a like reason is often enough to explain their inertia, their resistance, and their overall slowness to change.

If there is felt a need to devise an object explanation, a presumptive sources of troubles that is already compact, concrete, and thus confined enough to accuse, apprehend, and hopefully imprison on account of the mass's retarded potential, then resorting to a hypostasis posed in the form of an "archaic object" is a prototypical way of controlling anxiety, and it frequently, if not infallibly, can serve just as well as any other device on which to pin the common blame.  This highlights the question:  What sort of archaic object would account for the general malaise in a community whose dedication to inquiry has become root bound?

I wish to apply a determinate philosophical method to a determinate problem, that of the constitution of the symbol, which I described as an expression with a double meaning.  I had already applied this method to the symbols of art and the ethics of religion.  But the reason behind it is neither in the domains considered nor in the objects which are proper to them.  It resides in the overdetermination of the symbol, which cannot be understood outside the dialecticity of the reflection which I propose.
		Paul Ricoeur, The Conflict of Interpretations, [Ric, 175]

The archaic object of this global aimlessness, that informs the course of the general drift, that the total condition and the specific culture of inquiry revolve about in their orbits, as if they aim to be constantly accelerated toward it, but never quite manage to resolve their situation toward it, as if they fear to dissolve into it, is very likely nothing more than the whole community of interpretation itself, effectively realized as an object of its own devising.

The community of interpretation, whose currency funds the community of inquiry as a going enterprise within its fold, has sufficient reason to preserve itself in its present form as a valuable object, commodity, or resource.  But the dialectical nature of the process that is currently conducted between them, due in part to the dialectrical charges of the "-ionized" terms that pass for information between them.  A term of this charge splits the action from the end and shares it between the parties to an ambiguity, the active and passive objects that together comprise its full denomination.  This division of denotation forces interpretation to vacillate between the two extremes of meaning in a vain and eternal effort to rejoin their senses of value to the realm of the rendered and misspent coin, in hopes of regaining the meaning what was mint in their original condition.  The stowing away of one portion or the other drives the potential that drives both themselves and all the actions that they are meant to convey toward their designate and their destinate ends, but the unstable equilibrium that is their due, especially when it is permitted to be waged by uncontrolled forms of oppositional attraction, does not permit the dialogue to rest.  It continues to remain in doubt and does not fail to renew its ambivalence regarding the maintenance of any fixed form it happens to take, always wondering whether its present form is literally necessary, precisely sufficient, or whether it is but transiently and contingently convenient.  Accordingly and otherwise the whirl of dialogue, for all its own reasons, is always in imminent danger of wasting away into the echo of its own narcissism.

The problem arises of how to bring these systematic distortions under systematic control.  It helps to stand back a bit from the problem and to cast a somewhat wider net.  Accordingly, let the whole category of phenomena that are gathered around this issue be thematized under the family name of an "obstruction to inquiry" (OTI).  This includes as a subordinate genus the panoply of systematic distortions, generated by disingenuous reflections, that can be hypothesized to have their source in protecting the favored assumptions and defending the implicit claims of a particular status quo, no matter whether the implicated propositions are held to be the prerogatives of a privileged POV or whether they are delivered up to indictment as the prejudices of a more widely sanctioned world view.  The archetype of this behavior is appropriately addressed under the mythological or the psychological category of "narcissism".

It is important to note that the family OTI and the genus "narcissus" differ in the levels of hypothesis that are involved in their concepts, both in their speculative formation and in their provisional attribution.  The presence of an OTI is fairly easy to surmise from its distinguishing traits:  the dissipative conduct and the rambling course that affect the inquiry in question.  To the degree that the suspicion of its effect and the verification of its force can be assembled from superficial traces, this makes its maintenance supportable on circumstantial evidence alone.  In a phrase, one says that the wider hypothesis lies "nearer to nature" than the narrower construction, or that it makes its appearance closer to the purely phenomenal sphere.  In contrast, unraveling the precise nature of the obstruction requires a deeper investigation.  There is an additional hypothesis involved in guessing the source of the resistance, no matter how prevalent a particular genus of distortion is found and no matter how likely an individual species of explanation is in fact.

Within this wider setting it may be possible to focus more clearly on the species of threats to accurate reflection that need to be clarified here.  Already, besides the stigma of stubborn error that hangs over the whole refractory horde, there is a germ of paradox that hides within the very folds of this classification.  Namely, it is that the first obstacle one finds to reflection, and hence to every form of reflective inquiry, is a kind of narcissism or self love.  It begins naturally enough, ensconced in the not unnatural desire of every form of life to preserve itself in its present form.  But the simple desire to remain as is can be diverted into a blinded esteem of the self, one that admires its present condition only as reflected in the array of disingenuous reflections and contrived presentations that make up a fixed, idealized, and very selective image.  Finally and strangely enough, this unreflective form of narcissism even comes to prefer the simplistic and beautiful lies to the realistic forms that a veritable mirror would show.

The danger of narcissism, with respect to the prospects of a reflective inquiry, is not in the dynamic attractions and the realistic affections that a person or a society bears toward its truer self, and that in turn inform their respective bearings toward the selves they are meant to be, but in the static character of its attachment to a fixed, idealized, and partial image of that self.

Once again, the quality that distinguishes reflection from introspection, its fallibility, is a trait that sufficiently reflective agents can find reflected in their own conduct of reflection, and needless to say, their conduct in general.  This quality of fallibility, thus cognized and thus converted, that is, once its application to oneself is acknowledged and its consequences for one's experience are recognized, becomes a type of self recognizant character, an internalized trait that leads reflective agents to become more corrigible, more docile, and thus more educatable.  This makes it possible for reflective agents to build up their images of reality from scratch materials, to proceed through steps that are always revisable and edifiable, and to leave the finishing of their forms to the work of future editions.  In the final analysis, while this mannerism of aesthetic distance and tempered discretion prevents any affection or any impression from becoming too "immediate", in the strictest sense of that word, it is just this mode of detachment that assures the sensible image of its eventual remediation.

The nature and use of reflection in inquiry, as it currently appears, can be described as follows.  Reflection on conduct leads to a description of that conduct, posed in terms of a reflective image.  Over an interval of time or an extended period of investigation, these descriptive images are accumulated into exhaustive theories and compiled into compact models of the conduct in question.  To be useful in science, or empirical inquiry, these theories and models must be capable of being false with respect to their intentions, amenable to being tested in further experience, and subject to being amended on subsequent reflection.

In sum, the very feature of reflection that seems to be its chief defect, the fact that it can generate false images, casting reflections that are false to the actions they intend to represent and even leading to wholly distorted perspectives on the objectified scene of activity, is the very characteristic that saves its appearance in experience and the very trait that permits it to show its face at the court of inquiry, which all along admits that distortions acknowledged to be imperfect images can still be disclosed to subsequent experience and remedied in future reflections.

6.2. A Candid Point of View

This section discusses, in a general and informal way, the objectives inspiring and the requirements surrounding the elaboration of a RIF.  This is approached, in part, by taking up the intuitive notions of a "point of view" (POV) and a "point of development" (POD), as they stake out, respectively, the intellectual repertoire and history of a typical agent of inquiry.  Initially, these ideas serve in a familiar manner to characterize the intellectual skills and growth of agents, in particular, as they redound on the cultivation of the agents' reflective resources.  Increasingly, these concepts are subjected to formalization, partly by analyzing their relations to each other and gradually by relating their inherent structures and referent involvements to the already formalized concepts of objective frameworks, genres, and motifs.

As I reflect on signs and texts, I am led to enumerate more and more phenomena associated with the process of interpretation and with the models of it that I find in sign relations.  Some of the deepest and subtlest of these phenomena, at least, that I am able to observe and recount, take their theme from a certain "intermingling of categories" that is found at the basis of every real phenomenon.  This issue comes to prominence and makes itself evident as topic of inquiry whenever one tries to organize the original chaos of phenomena through the imposition of a suitable scheme of categories.

What is the typical outcome of setting out such a scheme for nature?  No sooner does one institute a provisional scheme of categories for organizing phenomena than one discovers every system with a stamp of reality to it steadfastly ignoring the lines of one's naive imagination.  And yet it soon becomes clear that this seeming "perversity of nature" arises from an error of attribution on the part of the mind that casts the aspersion.  Ultimately, it stems from the fact that every scheme of categories that the mind can forge and foist on nature, for instance, "sign" and "object", "self" and "other", remains, after all, the scene of a mere abstraction, implicating the "pallid" and the "shadowy" sides of the same dissention, but all the while circling about and turning on the complex but unitary reality that underlies the phenomenon in question.

In view of these complexities, that interfere with applying even the simplest of organizational paradigms to the material of signs and texts, it is necessary for me to pause a while and carefully contemplate how I can rehabilitate their use, at least, for the ends of this investigation.  First, I examine the distinction between "sign" and "object".  Then, I consider the duality between "self" and "other", or what amounts to the same thing, the relation between a "first person" and a "second person" POV.  In each case, the task is to discover how a distinction that seems so easy to subvert can ultimately be developed into a useful instrument of analysis and articulation.

There's nought but care on ev'ry han',
	In every hour that passes, O;
What signifies the life o man,
	An 'twere na for the lasses, O.
		Robert Burns, Green Grow the Rashes, O

Any object, anything grasped as a whole, can be a sign.  Indeed, the entire life of a person or a people can serve as sign unto itself or others and take on a significance all its own.  In converse fashion, every sign token is an object in the world.  In this role, a sign is forced to obey the ruling and relevant natural laws and empowered to take on a dynamics all its own.

In the contention between signs and objects, the answer initially given by the pragmatic theory of signs is that anything can potentially serve in any role of a sign relation.  In particular, the distinction between "sign" and "object" is a "pragmatic" distinction, a mark of use, not an "essential" distinction, a mark of substance.  This is the right answer as far as the beginning of the question goes, where it is the possible character of everything that is at issue.  The pragmatic approach makes it possible to begin an investigation that would otherwise be obstructed by a futile search for non existent essentials, as if it were necessary to divine them from prior considerations before any experience has been ventured and before a bit of empirical evidence has been collected.

Reason alone teaches us to know good and evil.  Therefore conscience, which makes us love the one and hate the other, though it is independent of reason, cannot develop without it.
		Rousseau, Emile

But the form of answer that is sufficient to begin a study is not the form of answer that is necessary to end it.  Even though it is useful for a general theory of signs to provide a patently indifferent form of answer at the preliminary phases of its investigation, this style of response is ultimately judged to be facile when it comes to questions about the good of a sign, the end of an inquiry, or the suitability of each thing to the role it is assigned.  In the end, an all purpose brand of conceptual scheme, allowing for the equipotential coverage of every conceivable option, however useful or necessary to the task, is likely to be found insufficient for wrapping up these goods and delivering them into the service of the mind.  Thus, by the round about way of this objection, one brings to mind the other meaning, the underlying nuance and the ultimate sense, of the word "object", which suggests the end, the goal, or the good of something.

Questions about the good of something, and what must be done to get it, and what shows the way to do it, belong to the "normative sciences" of aesthetics, ethics, and logic, respectively.  Aesthetic knowledge is a creature's most basic sense of what is good or bad for it, as signaled by the experiential features of pleasure or pain, respectively.  Ethical knowledge deals with the courses of action and patterns of conduct that lead to these ends.  Logical knowledge begins from the remoter signs of what actions are true and false to their ends, and derives the necessary consequences indicated by combinations of signs.

In pragmatic thought, the normative disciplines can be imagined as three concentric cylinders resting on their bases, increasing in height as they narrow, from aesthetics to ethics to logic, in that order.  Considered with regard to the plane of their experiential bases, logic is subsumed by ethics, which is subsumed by aesthetics.  And yet, in another sense, logic affords a perspective on ethics, while ethics affords a perspective on aesthetics.

That is about all I can say about normative considerations at this point.  Further discussion is put off until this text has developed either the intuitive insight or the theoretical power to say something more definite.

Because a sign, so far as it can tell in the time it passes, addresses an unknown future interpretant, that is, an indefinite futurity of potential responses, there is always an aspect of dialogue about the sign relation, especially insofar as it is subject to extension.  This is true no matter who, whether self or other, is ostensibly addressed by the sign or text at issue, and never mind what the chances are of a literal return in the communication.  In this regard, it is recognizance enough for a sign to be issued or a text to be written in anticipation of its future result.  And though it is never certain, it is always possible that the author of a text partially anticipates the use that others make of what is signed.

It is one of the rules of my system of general harmony, that the present is big with the future, and that he who sees all sees in that which is that which shall be.
		G.W. Leibniz, Theodicy, paragraph 360

	When these prodigies
Do so conjointly meet, let not men say
"These are their reasons", "they are natural",
For I believe they are portentous things
Unto the climate that they point upon.
		Julius Caesar:  Casca—1.3.28–32

Indeed it is a strange disposed time;
But men may construe things after their fashion,
Clean from the purpose of the things themselves.
		Julius Caesar:  Cicero—1.3.33–35

In order to recover the faculties supported by one's favorite categories and to maintain the proper use of their organizational schemes, it is incumbent on the part of the wary, conscientious, and duly circumspect schemer to recognize in every case how each part of the contention is implicated in the action of the other.  In this connection, a triumvirate of closely related aspects of sign relations comes to the fore:

1.	There is an aspect of "futurity", marking the openness of signs to interpretation and the extensibility of sign relations in multitudes of novel but meaningful ways.  This dimension of regard is staked out in anticipation of the possibility that perfectly fitting but previously unsuspected interpretants can be discovered within or added to any given sign relation, whether passed or present.

2.	There is a factor that contemporary theorists call "alterity", noting the quality of radical and reciprocal otherness that is involved in the dialogue of one self with another.  Besides its invocation of the wholly other, this term subsumes all the ways that one being can be alien and unknown to itself, and it even suggests the host of alterations, errors, deviations, distortions, and transmutations that accompany all acts of record keeping and interpretation.

3.	There is a feature that C.S. Peirce called "tuity", acknowledging the aspect of "thouness" or the prospect of a second person POV that is brought into play whenever one self addresses another.  Along with the perspective of a genuine other, this recognizes all the referrals and deferrals that an interpretive agent can make to a past, present, or potential self.

All of these dimensions of concern focus on the circumstance that signs, especially written or recorded signs, moderate a complexly integrated sort of relationship between self and other, or between "first person" and "second person" POV's, in such a way that they render the paired categories of each scheme inextricably involved in one another.

There are well known dangers of paradox, but not so well acknowledged risks of distortion, that arise in the interrogation of any reflection.  Although its outward signs are obvious, the source of the difficulty is remarkably difficult to trace.  Perhaps it can be approached as follows.  Without trying to say what consciousness is, I can still speak sensibly of its contents, and talk of their structures in relation to each other.  These contents, whether percepts or concepts or whatever, are all signs.  And so I can study the effects of reflection in the medium of its texts and develop a model of reflection as a process that evolves these texts.

What generally happens when one tries to model reflective consciousness and to formalize the reflective discourses that signify its public life?  In reaching for the available languages of logic and set theory, one is likely to use them as reductively as possible on the first attempt, and thus to state the relation of anything to awareness directly in terms of membership, in sum, by means of a globally overarching dyadic relation.  What does this picture of reflection pretend about the relation of the world to the mind, or conversely, the relation of awareness to anything?  Although it confuses the relation of "content" to "consciousness" with the relation of "object" to "concept", this degree of play in the imagery is a forgivable, occasionally useful, and a probably inescapable analogy.  In any case, it does not amount to the most serious distortion in the picture as a whole.

What is really wrong with the dyadic picture of reflection is the fact that it treats both of the relations it surveys, of minds to ideas and of ideas to things, on the model of a consummation and a containment, as if to place everything being related in an all embracing hierarchy and in opposition to all forms of reciprocal participation among its entities.  This image renders a consciousness of contents and a concept of objects each in the likeness of a set and its elements, rather than presenting them as they most likely are, a relationship of systems or agents and of texts or signs to the ideals or objects that motivate them, constituting mutually embracing forms of participation in a unified textual activity.  In all, the initial attempt at explaining reflection lays it out according to a conception that grasps it prey, and loses the creature in the process, rather than a conception that releases the potential of what it imprisons.

One of the reasons for bringing the pragmatic theory of signs to bear on this discussion is deal with just these problems, constellated by the need for reflection and made acute by the defects of the dyadic picture.  By means of triadic sign relations, and given a capacity to create and modify the interpretant signs that fill out its original set of semantic equivalence classes, an interpretive agent has the "elbow room" needed to stand aside from the ongoing process of interpretation, to reflect on its present determinants, and to consider its possible developments.

An inquiry that cannot clearly and completely comprehend itself as an object can at least inquire into the succession of signs that record its progress.  The writer of a text can use that text to describe, at least partially, the process of writing and using it so.  The reader of a text can understand that text to describe, at least partially, the process of reading and understanding it so.  Further, a discussion can generate a record that describes, more than just the transient proceedings of that discussion, the principles and parameters that determine its creation.  In each of these ways, a text can address the qualities that determine its intended character, comment on the context in which it takes a part, and act on behalf of its pretended objectives.

The procedural distinction just recognized, between the passing traces of a process and the permanent determinants of its generic character, informs a significant issue, on which is staked nothing less than the empirical feasibility of an inquiry into inquiry.  From this point on, a certain figure of speech can be used to mark this distinction, when it is relevant to the course of discussion, and to signal a deliberate turn in the direction of consideration, when the corresponding exchange of its dialectical roles is intended.  According to the nuances of this paradigm, one can distinguish a process intended in the "substantive generative" sense from a process intended in the "genitive gerundive" sense, and address oneself selectively, at turns, to the "process that achieves" versus the "process of achieving" any contemplated activity or result.

An inquiry at such a point of development that it cannot entirely grasp its ongoing process of inquiry as an object of thought, namely, as the "process that inquires", can at least try to capture a representative sample of the signs that record its "process of inquiring".  Speaking metaphorically and with the proper apology, every thus generated and thus collected "text of inquiry" (TOI) can be addressed as a partial reflection of the generative process of inquiry.  Moreover, it is not irredeemably illegitimate to say that a TOI can partly describe itself, since this merely personifies the circumstance that a process of inquiry can describe itself partly in the form of a TOI.

O jest unseen, inscrutable, invisible
As a nose on a man's face or a weathercock on a
	steeple.
My master sues to her, and she hath taught her suitor,
He being her pupil, to become her tutor.
O excellent device!  Was there ever heard a better?—
That my master, being scribe, to himself should write
	the letter.
		Two Gentlemen of Verona:  Speed—2.1.127–132

When I write out my thinking in the form of a text, a critical thing happens:  It faces me as the thought of another, and I start to think of what it says as though another person had said it.  Almost unwittingly, a critical process comes into play.  In regarding the text as expressing the thought of another, I begin to see it from different POV's than the one that led to its writing.  As I find my own inquiry reflected in one or another TOI, it addresses me afresh as the question of another and I encounter it again as a novel line of investigation.  This time around, though, the topic of concern and the style of expression become subject to directions of criticism that would probably not occur to me otherwise, since the angles of attack permitting them do not open up on their own, neither on first thinking nor ever, most likely, while merely speaking.  This can be the beginning of critical reflection, but it can also stir up destructive forms of interference that inhibit and obstruct the very flow of thought itself.

If I can be granted the license to continue saying that a text says this or that about itself when what I really mean is that a person or process employs its text to say the corresponding thing about itself or its text, then I can begin to introduce a variety of descriptive terms and logical tools into this text that can be used to talk about what this or another TOI "thinks" or "believes" at various points in its development, that is, in order to detail what I or its proper author thinks or believes at the corresponding points of discussion.

Fourteen, a sonneteer thy praises sings;
What magic myst'ries in that number lie!
Your hen hath fourteen eggs beneath her wings
That fourteen chickens to the roost may fly.
Fourteen full pounds the jockey's stone must be;
His age fourteen – a horse's prime is past.
Fourteen long hours too oft the Bard must fast;
Fourteen bright bumpers – bliss he ne'er must see!
Before fourteen, a dozen yields the strife;
Before fourteen – e'en thirteen's strength is vain.
Fourteen good years – a woman gives us life;
Fourteen good men – we lose that life again.
What lucubrations can be more upon it?
Fourteen good measur'd verses make a sonnet.
		Robert Burns, A Sonnet Upon Sonnets

One of the main problems that the present TOI has to address is how a TOI can address the problems of self reference that an inquiry into inquiry involves.  If a sonnet can say something true about sonnets, then a TOI, far less limited in the number and measure of its lines, ought to be able to say something true about TOI's in general, unless the removal of these limitations takes away the only things whereof and whereby it has to speak, the ends and means of its own form of speech.

Using the pragmatic theory of signs, the forms of self reference that have to be addressed in this project can be divided into two kinds, or classified in accord with two dimensions of referential involvement.  Roughly speaking, reference in the broader sense can suggest either a denotative reference to an object or a connotative reference to a sense.  Therefore, a projected self reference can be classified according to the ways that its components of reference propose to recur on themselves:  how much pretends to be a self description along denotative lines and how much purports to be a self address in the connotative direction.

Under suitably liberalized conditions of interpretation, then, what is meant by "a self referent text", whether one that denotatively describes or connotatively addresses itself?  Apparently, it can mean a text that addresses, describes, refers to, or speaks to either one of two issues:  (1) the outwardly passing features of its own succession of signs, or (2) the inwardly relied on properties of its own regenerative sources.

It is one thing for a text to be generated according to the laws laid down in another.  This takes place, for example, in devising or following a proof according to the axioms and rules of inference that are recorded in a proof system.  It is another thing entirely for a text or a corpus of texts to derive or induce the very principles of their own generation and then return to disclose the process of derivation or induction itself according to which the whole text or corpus is divined or drafted.

What the discussion of reflection has so far been leading up to, if I stop to reflect on what might be the implicit project behind its scheme of development, is tantamount to a "monadology", a project of a complete and total provision for a system of perfect but virtual self reflections.  But I suspect that such a project is unsupportable in reality outside the realm of infinite resources and pre established harmonies, while my present aim is to see what can be done with finite and empirical means.  A monadology, if it entertains itself with any form of investigation at all, addresses the task as a sheer masquerade, styling its inquiry after the fashion of a "complete logical analysis" (CLA).

On principle, there is nothing inherently the matter with the form of the CLA itself, but it does not embody all by itself the spirit of suspense that accompanies a genuine human inquiry.  A real inquiry cannot know before it starts what the answer is and how the end will be achieved, and it cannot, if it wishes, merely trick out the foils of an already completed and pre arranged survey, parading them as a passing series of plotted and transient complications in the guise of an honest quest.  Some types of completeness are far more complete than others, however.  Taken with respect to a properly limited and workably modest context, and treated as "relatively complete" rather than "absolutely complete", the ideal substrate of the CLA forms a suitably plastic material for modeling many forms of concretely reasonable inquiry.

Invoked with a spirit of moderation, the idealized model envisioned in the CLA can nevertheless serve as virtual guide for practical inquiries, highlighting the space of conceivable models and projecting a standard against which to measure every approximate, likely, and partial result.  An inquiry of this self controlled kind, that considers in addition the logical alternative to every hypothesis it finds itself making, if it is addressed appropriately to the conditions of its constraining resources, can achieve complete success only within a tightly circumscribed sphere of action.  Thus, the ideal of CLA informs a workable genre of inquiry, but the experimental variations that it enables and permits an agent to contemplate are bound up with the experiences that can be expressed in a language of finite and discrete signs, and exactly to the extent that they are in fact expressible.

In principle and in effect, an inquiry pushing the envelope of CLA is restricted to a "universe of limited marks".  For all practical purposes, it must keep its remarks to a finite universe of discourse, and a small one at that.  Beyond these bounds, every inquiry is forced to take its chances on a pure hypothesis, unmitigated by any consideration of the opposite case.  Communities of inquiry, however, are likely to embody a distribution of individual inquiries that have placed their bets on opposing options.  Diversity of interpretation leads to disjunctions of opinion that can render many heads much smarter than one, but it also engenders forms of disagreement, discord, and duplicity that, for all their practical inevitability, are not essentially necessary.

Engaging in practical inquiry in a community of partially informed and presumptively constrained reasoners, then, is a task that leads to the recognition of several critical needs, not only for ways of synthesizing fragmentary interpretations of the presumptive truth and for reconciling divergent accounts of the objective world, but also for strategies that make these methods of negotiating differences and resolving conflicts more commonly available to all the inquirers in a putative community.  Finally, an agent attempting to be reasonable under these conditions needs to be permitted to exercise a number of "editorial" prerogatives.  For example, there needs to be a way to "retract projections", that is, to recognize the alienated aspects of oneself that appear to crop up in others and to reconsider the rejected options for thought and action that nevertheless are capable of leading to bona fide values.

In a striking analogy with visual perception, it is the reflections in the ambient flow of energy that make it possible for one complication in the medium, a living being, to see another variation in the density of the medium, animate or otherwise, as an object.  Reflection permits one to render an experience as due to a separate entity, to regard its occasion as the appearance of an object, and to respond to its cause as a reality.  The analogy is broken at the junctures where an agent attributes these reflections to the passive "reflectances" of the object itself rather than perceiving them as the active responsibility of every participant in the process as a whole.

In accord with this visual analogy, two factors frustrate the prospects of indefinitely extending and smoothly finishing any project of inquiry that works in a medium of CLA:

1.	The "transparent obstruction" (TO), or "obstacle of transparency", is due to an initial inability to discover and to render visible every assumption, category, or distinction that one automatically and implicitly acts according to.

2.	The "opaque obstruction" (OO), whether it presents itself in the guise of an obvious or an obscure obstacle, arises on account of a final incapacity to consider both sides of every question posed.  This can amount to either one of two shortcomings:  (1) failing to identify a logical alternative to every presumption or thesis that one identifies with, or (2) failing to evaluate a logical alternative to every assumption or hypothesis that one does in fact identify.

In short, a "finite information creature" (FIC) is required to keep the contents of its forms within the range of a definite set of figures and to rest the forms of its contents within the scope of a certain cast of characters.  To be sure, these are precisely the characters that can be modeled and the figures that can be cut within a circumscribed theater of operations that everyone calls a "partial logical analysis" (PLA).

6.3. A Projective Point of View

A necessary connection between signs and reflection gives the TOI its critical function as a transitional object in the development of inquiry.  In the form of a TOI, I address my reflection as if it were the reflection of another.  On the off chance that it renders me a bit more critical, as I eye both its sources of authority and its styles of presentation, I can regard the record of this reflection as a partially alienated object, an artifact of unknown origin, or a work of uncertain provenance.  And so the very existence of a sign, that takes after another in a search for its meaning and ultimately takes its place in tracing the traces of that process of inquiry, is intimately bound up with the act of reflection.

There is, moreover, a connection between the act of reflection and the psychological mechanism called "projection" that is useful to notice here.  As it happens in practice, the effect of reflection is frequently achieved, not directly, by means of a deliberate effort to observe and to evaluate one's own conduct, but more indirectly, through the initial observation and the subsequent criticism of another's behavior, finally followed up by the often delayed afterthought and usually reluctant insight that the properties ascribed to the other's behavior can also apply to one's own.

The relationship between the isolated components of behavior in this sort of "projective" situation amounts to a familiar kind of sign relation.  In regard to the properties possessed in common, the other's pattern of behavior is an icon, at first unrecognized, of one's own form of conduct.  The introspective act of recognizing and assimilating the significance of such a relationship is referred to as "retracting" or "re owning" the projected attributes and descriptions.  To sum things up in these terms, the retraction of a projection can bring about, in its composite fashion, the ultimate effect of a critical reflection, namely, the elicitation and application of a valid description to one's own conduct.

Before the usefulness of this insight can be appreciated, it is necessary to resolve an interdisciplinary conflict over the use of the term "projection" and to sort out the relationship between the psychological and the mathematical concepts of "projection".

O time, thou must untangle this, not I.
It is too hard a knot for me t'untie.
		Twelfth Night:  Viola—2.3.39-40

There are a couple of contingencies surrounding the trials of learning from one's own experience, issuing from and bearing on the complexity of that very experience, that appear to be tangled up with each other.  Echoing the mythology of the Gordian knot, the Herculean Hydra, the Laocoonian serpert, and the Persean Medusa, each of which accounts of perverse polymorphism seems to reflect a variant aspect but to capture a sheer fragment of the underlying archetype, these two factors can be addressed by means of the following allegory:

1.	The Knot.  It is frequently difficult to learn anything at all from the encounter with one's own experience, especially while one is still faced with the full complexity of that experience.

2.	The Knife.  One tends to establish a personal array of mental or conceptual "frames", "planes", or "sections" that one can reliably and reductively "chart", "map", or "project" one's experience on.

The relationship between these two factors is such that the Knot leads to the Knife as its adaptive or expedient remedy, but that the Knife affords only a transitory relief for the problems bound up in the Knot, and further, an excessive reliance on any fixed array of armaments and stratagems under the emblem of the Knife has the contrary tendency to worsen the troubles experienced under the category of the Knot.

Thus, it is fair to say that the difficulty of learning from the full complexity of one's own experience is a problem condition that partly leads to and partly arises from the very configurations of artificial sections and arbitrary coordinates that one contrives to project one's experience on and to judge one's experience by, respectively.  Although one's idealizations, simplifications, and other pet schemes of reductive representation can serve to render one's experience initially manageable, they can ultimately and adversely interfere with seeing the obvious.

In this setting, it is possible to bring about an accommodation between the mathematical and the psychological concepts of "projection" and to reconcile their discordant uses of the term within a concerted paradigm.  For example, in dealing with the joint configuration space of a multiple agent system, one considers this "yoked extension space" (YES) to fall within a "common extension" (CE) of all the single agent state spaces.  Each agent involved in such a system "projects", in a geometric sense, the total action of the system on its own "section" of the whole CE, its "local outlook", "mental plane", personal "frame of reference" (FOR), or "point of view" (POV).

What does the POV of an agent consist in?  Generally speaking, agents are not dumb.  They are not limited to a single view of their situation, nor are they restricted to a single scenario for its ongoing development.  They can entertain many different possibilities as candidates for the so called and partly self describing "objective situation" and they can envision many different ways that these potential situations might be developing, both before and after their passage through the moment in question.  Furthermore, under circumstances favorable to reflection, agents can invoke POV's that help them to contemplate many different possible developments in the constitution of these very same POV's.

Now, it is conceivable that all the POV's entertained by a single agent are predetermined as having the same collection of generic characters, and thus that this invariant constitution is what really limits the range of all possible POV's for the agent in question.  If so, it leads to the idea that this invariant constitution defines a "uniquely general POV", a "highest order meta POV", or a "consummate POV" of the agent involved.  Still, the only points of access and the only paths of approach that an agent can have to its own consummate POV, if indeed such a goal does make sense, are through the agency and the medium of whatever POV's it happens to have at each passing moment in its developmental history.  Consequently, a persistent enough search for a good POV opens up the investigation of each agent's prevailing "point of develoment" (POD).

In the best of all possible worlds, then, being under the influence of one POV does not render an agent incapacitated for considering others.  Of course, there are practical limitations that affect both the capacity and the flexibility of a particular POV, and there can be found in force both logical constraints and resource constraints that leave a POV with a narrowly fixed and impoverished character, one that the agent opting for it can fail to represent reflectively enough within the scope of this POV itself.  In particular, the "finite information constructions" (FIC's) that are accessible from a computational standpoint are especially limited in the kinds of POV's they are able to attain.

This means that POV's and POD's have recursive constitutions and recursive involvements with one another, calling on and referring to other POV's and POD's, both for the exact definitions that are needed and also for the more illuminating elaborations that might be possible, both those belonging to the same agent, reflexively, and those possessed by other agents, vicariously.  A large part of the task of building a RIF is taken up with formalizing POV's and POD's, in part by analyzing their intuitive notions in terms of their implicit recursive structures and their referential involvements with each other, and in part by exploring their potential relationships with the previously formalized concepts of "objective concerns" (OC's).

In settings where recursion is contemplated, it is possible to conceive of a distinction between "well founded" recursions, that lead to determinate definitions of the entities in question, and "buck passing" recursions, that lead one down the "garden path" to an interminable "run around".  The catch, of course, is that it is not always possible to implement an effective procedure that can accomplish what it is possible to conceive.  Thus, there are cases where the imagined distinction does not apply and times when the putative difference is not always detectable in practice.

In this connection, there are two or three fundamental questions that need to be addressed by this project:

1.	What makes a POV or a POD "well founded"?

2.	Can "buck passing" POV's and POD's be tolerated?

3.	How should they be treated and regulated, if tolerated?

A tentative approach to these questions is tendered by the pragmatic theory of sign relations, where the "definitive" and the "elaborative" aspects of recursion correspond to the denotative and the connotative components of reference, respectively.  Although it is always useful to organize the connotative realm in the species of a determinate ordering or a well founded hierarchy, there is found in these parts generally a greater tolerance for the baroque proliferation of circuitous references and a broader acceptance of provincial, dialectic, and private coinages.

If all thought takes place in signs, as a tenet of pragmatism holds, then mental space is a space of signs and their interpretants, in other words, it is a connotative realm.

In this perspective, that is to say, in the POV of the present project and in the current opinion of its author, a POV is associated with an abstractly defined, but concretely embodied and frequently distributed, "section of memory" (SOM), where the signs constituting it are stored.  In this rendition, a SOM is a curve, surface, volume, or more general subspace of the total memory space, in other words, a subset of memory that can be treated, under the appropriate change of coordinates, as being swept out by a set of variables, and ultimately addressed as being generated by a list of binary variables or bits.  Working under the assumption that agents can engage in non trivial developments, it must be granted that they have the ability to change their POV's in significant ways between the successive POD's in their progress, and thus to move or jump from one SOM to another, as dictated by will or as constrained by habit.

In this comparison, what is visualized as the geometric structure of a "cone" is commonly implemented through the data structure of a "tree", that is, a set of memory addresses (along with their associated contents) that are accessible from a single location, namely, the "root" of the tree, or the literal "point" of the POV.

Typically, but not infallibly, an agent can reduce the complexity of what is projected on its personal POV by employing a reductive hypothesis or a simplifying assumption.  Often, but not always, this idealization is arrived at by picking one agent to treat as "nominal", in other words, whose actions and perceptions are regarded as "natural", "normal", or otherwise unproblematic.  Usually, especially if one is a "mature" agent, this nominal agent is just oneself, but a "novice" agent, unsure of what to do in a novel situation, can chose another agent to fill the role of a nominal guide and to serve as a reference point.

It would be nice if one could ignore the sharper edge of knowledge that is brought to light at this point, and fret but lightly over the smooth and middling courses that gloss the conformal plateaus of established knowledge.  However, it is the nature of the inquiry into inquiry that one cannot forever restrict one's attention to the generic, nominal, or unexceptional case, well away from the initial conditions of learning and the boundary conditions of reasoning.  Still, for the purposes of a first discussion of POV's and POD's, I limit my concern to the nominal case, where the reductive strategy indicated is useful to some degree and where the nominal agent of choice is none other than oneself.

Under default conditions of operation, then, each one's POV embodies the reductive assumption that one's own particular actions and perceptions are "nominal", that is, natural, normal, or otherwise "not a problem".  Relative to this ordinary setting, each one's POV is normally configured for tracking the more problematic courses of other agents and the drift of the residual system as a whole.  Therefore, the natural setting of a POV can be pictured in terms of the perceptual "gestalt" it facilitates.

In unexceptional circumstances one always takes one's own agency and one's own experience for granted.  This is tantamount to assuming that a synthetic balance is already in effect between the claims of conduct and the trials of bearing.  Given this much free reign in arranging the play of forces, the artificial state of accord that results can present itself to be a neutral context of interpretation and the superimposed scene of rapport that prevails can pretend itself to be the unquestioned background of instrumental activity that is implicated in every notable objective contemplated or observation performed.  Cast in the role of a stationary stage for the action, there is a whole body of interactions that reside in dynamic equilibrium with each other and that make this proving ground appear to be at rest, but the whole contrivance merely acts to place in relief and to render more obvious whatever else in the way of phenomenal experience is thereby permitted to figure against it as representing an object worthy of inquiry.

Loosely speaking, and operating under the usual anthropomorphism, one can say that an agent projects the joint state trajectory, the course that the whole system takes through a sufficiently well defined CE, onto a trajectory through its own proper space, the residual state space that is encompassed by its chosen POV.  Strictly speaking, in another sense, all that is known of an agent is just what is projected on its space, and thus one can say that an agent is wholly constituted by this projection.

The difference between the two senses of "projection" can now be rationalized as follows.  A psychological projection begins when a mathematical projection is employed to deal with a complex experience, that is, an overwhelmingly complicated trajectory of the total system.  But the default assumption that one's own actions are not significantly implicated in what happens can occasionally turn out to be unjustified.

In a case of "psychological" or "transverse" projection, the significant aspects or motivating features of a problematic situation are attributed to the other actors, while one's own collusion in the relevant character of the total situation is ignored, denied, or otherwise relegated to the peripheral background of the configuration kept in focal awareness, the figure that is currently being attended as a content of consciousness.  This form of strategic reorganization usually occurs reflexively among the automatic processes of perception, in spite one's full knowledge or token recognition of the times when it is just as likely that the salient quality of the situation is due to one's own conduct, and even when it is equally possible that the complexion of the moment cannot be resolved into separate components and rendered accountable to individuals at all.

6.4. A Formal Point of View

In this section the concept of a "point of view" (POV) is taken up in greater detail and subjected to the first few steps of a formalization process.  This makes it possible to explore the wider implications of the idea, to pursue the lines of inquiry it suggests to greater lengths, and to apply the tentative formalism to an issue of pressing concern, namely, the question of what kind of distinction ought to be posed between the dynamic and the symbolic aspects of intelligent systems.

If there were nothing but a single POV to entertain, a diversion of attention to matters of perspective would hardly be worth the candle.  Accordingly, the dimensions of change and diversity are intrinsic to the worth of the whole idea.

One of the reasons for trying to formalize the concept of a POV is so that this TOI, along with others on its model, can reflectively comment on its own POV, as it progresses from moment to moment, and critically examine it as it develops.

When it comes to the subject of systems theory, a particular POV is so widely propagated that it might as well be regarded as the established, received, or traditional POV.  The POV in question says that there are dynamic systems and symbolic systems, and never the twain shall meet.  I naturally intend to challenge this assumption, preferring to suggest that dynamic and symbolic attributes are better regarded as different aspects of a single underlying system, as "two sides of the same coin".  But first I have to express the assumption well enough to question it.

Beyond the dim inkling of an underlying influence, a sufficiently critical level of reflection on a POV requires a language that is articulate and analytic enough to transform each thesis posed in it into the form of a question.  A deliberately reflective technology is needed to bring the prevailing, prejudicial, and hypocritical underpinnings of a POV to light, since biases due to assumptions obscurely held are seldom automatically revealed.  This highlights the need for a critical apparatus that can be applied to the typical TOI, supplying its interpreter with the technical means to take up a critical POV with respect to it.

A logical calculus cannot initiate reflection on a text, but it can help to support and maintain it.  The raw ability to perceive selected features of an ongoing text and the basic language of primitive terms, that allow one to mark the presence and note the passing of these features, have to be supplied from outside the calculus at the outset of its calculations.  In the present text, the means to support critical reflection on its own POV and others are implemented in the form of a propositional calculus.  Given the raw ability of a perceptive interpreter to form glosses on the text and to reflect on the contents of its current POV, a logical calculus can serve to augment the text and assist its critique by catalyzing the consideration of alternative POV's and facilitating reasoning about the wider implications of any particular POV.

The discussion so far has dwelt at length on a particular scene, returning periodically to the fragmentary but concrete situation of a dialogue between A and B, poring over the formal setting and teasing out the casual surroundings of a circumscribed pair of sign relations.  If the larger inquiry into inquiry is ever to lift itself off from these concrete and isolated grounds, then there is need for a way to extract the lessons of this exercise for reuse on other occasions.  If items of knowledge with enduring value are to be found in this arena, then they ought to be capable of application to broader areas of interest and to richer domains of inquiry, and this demands ways to test their tentative findings in analogous and alternative situations of a more significant stripe.  One way to do this is to identify properties and details of the selected examples that can be varied within the bounds of a common theme and treated as parameters whose momentary values convey the appearance of complete individuality to each particular case.

Typically, a movement from reduced examples to realistic exercises takes a definite but gradual progression of steps, moving forward through the paces of abstraction, generalization, transformation, and re application.  The prospects of success in these stages of development are associated with the introduction of certain formal devices.  Principal among these are the explicit recognition of sets of "parameters" and their expression in terms of lists of "variables".

As I understand them, "variables" are a class of beneficially ambiguous or usefully equivocal signs.  In effect, variables are just signs, but signs possessed of a more adaptive constitution or affected by a more flexible interpretation than signs of the usual, more "constant" variety.  These forms of employment turn variables into a class of reusable signs, converting them into sustainable resources for meaning that can be used in a plurality of ways and deployed to articulate different choices at different times from among the available points of thematic variation.

The next major task of this discussion, while continuing to take its bearings from examples as concrete as A and B, is to develop systematic methods for divining the bearing of such isolated examples on issues of real concern.  This involves two stages:

1.	One needs to detect the invariant features of the currently known examples, in other words, the dimensions along which their values are, knowingly or unknowingly, held to be constant.

2.	One needs to try varying the features that are presently held to be constant by imagining new examples that are able to realize alternative features.

The larger issue at stake throughout these stages is how the agent of inquiry can find ways to express the lessons of individual exercises in ways that persist through and rise above their individual attachments to experience, thereby living through detailed experiences while remaining undiverted by their peculiar distractions.

There appears to be a practical necessity in drawing at least a tentative distinction between the role of an object and the role of an interpreter, even if a moment of reflection occasionally requires a single entity to fill both roles, and even though a mass of experience with systems that try to draw hard and fast distinctions between things, once and for all, leads one to see that a need exists for ways to withdraw every pretense of any distinction, redrawing it anew if possible, and drawing on new grounds if necessary.  There is never anything initially or immediately obvious about a sign itself that says it destined to represent an object of a particular type, and this makes it necessary to infer the type that ought to be specified from the pattern of references in which the sign is actually observed to be engaged.

A distinction that one is initially tempted to treat as substantial but is later bound to discover as purely interpretive, like that between objects and signs, subjects and predicates, particles and waves, or dynamic and symbolic aspects of systems, can frequently bedevil sensible inquiry for quite some period of time.  To deal with this problem, there needs to be a standardly available mechanism for introducing these staple but still provisional distinctions, accepting them on a par with axioms at first, but without precluding the opportunities to later revise the substantive imports of their interpretations.

On the way to integrating dynamic and symbolic approaches to systems there are several different sorts of things that can happen.  It can happen that a certain distinction, a natural or artificial feature that separates the outlooks of the dynamic and symbolic perspectives, or the sheer appearance of a distinction, a suggestion of a line that leads an observer to see a difference between the two views in the first place, merely gets erased.  Or it can happen that the ostensible distinction between the two standpoints marks in reality a naturally useful border, one that is well worth preserving, and yet a wealth of connections that constitutes the true relationship between the two realms can be marked and remarked with increasing visibility in the meantime.  In any case, there are lines of pretended distinction and potential difference that must be crossed, and then recrossed, time after time, until their exact form and precise nature have become marked in their clarity or else transparent in their obliteration.

I would like to detach, for a moment, from the particular contrast of interest here, the one posed between dynamic and symbolic orientations, to examine the general question of relating contrasting aspects or views.  In this connection, two distinct but correlated efforts at classification and organization arise in tandem with each other.  One concern seeks to classify the attributes, categories, features, properties, or qualities that are used to describe the object observed, while the other project tries to organize the approaches, instruments, methods, perspectives, or views that are used to observe the object described.

To invoke the traditional terminology, natural classes of predicates are referred to as "categories" or "predicaments", making it natural to call the classification and study of predicates by the name of "categoric", while the classification and study of methods is classically referred to as "heuristic" or "methodeutic" (Peirce, CP 2.105 110 & 2.207).

Now the discovery of ideas as general as these is chiefly the willingness to make a brash or speculative abstraction, in this case supported by the pleasure of purloining words from the philosophers:  "Category" from Aristotle and Kant, "Functor" from Carnap ..., and "natural transformation" from then current informal parlance.
		(Mac Lane 1971, Cat.Work.Math. 29 30).

Categoric.  Although this subject is historically referred to as the "theory of categories", in modern times it is necessary to distinguish it from the mathematical subject of "category theory", whose claim to the title is confessedly derived by stealth.  By way of suffering unto the older discipline the freshness of the younger subject, the original study and more general classification of predicates can be referred to as the "doctrine of categories" (DOC).  This is a fair description, given that optional schemes of basic categories are commonly taken up, maintained, and transmitted in decidedly catechismic and rigidly dogmatic fashions.

Perhaps it is the mind's reluctance to revive the uncertainties and to relive the struggles that these schemes were made to resolve, but once the fundamental categories are settled it is nearly impossible to revise them, however poorly they come to fit the current circumstances of life.  No matter how original the thinking that leads up to a site where a stable foundation can be poured, the foundation itself is typically laid down as if it were cut from inalterable stone.

I even hope that what I have done may prove a first step toward the resolution of one of the main problems of logic, that of producing a method for the discovery of methods in mathematics.	(Peirce, CP 3.364).

Methodeutic.  This subject, that C.S. Peirce gave the alternate titles of "speculative rhetoric" or "formal rhetoric", because it is a science that "would treat of the formal conditions of the force of symbols, or their power of appealing to a mind, that is, of their reference in general to interpretants" (CP 1.444 & 1.559), and that he assigned the task to find "a method of discovering methods" (CP 2.108 & 3.364), is one that clearly has a special relevance to the pursuit of an inquiry into inquiry.

In an effort to gradually begin formalizing these issues, I introduce the concept of a "point of development" (POD).  This notion is intended to capture a particular moment in the history of a system or its agent, as it is reflected in the systems of propositions associated with each POD.  Relative to a particular POD there can be distinguished, though neither exclusively nor exhaustively, two types of propositions that are said to be "associated" with it.  Roughly speaking, these types of propositions reflect the thoughts that are "applied" to a POD and the thoughts that are "attached" to a POD, respectively.

1.	A proposition that "applies" to a POD can be formulated in more detail as a "proposition about or on a POD" (PAO'POD).  This describes the corresponding POD as though observed from an outside perspective, stating features that locate it within a space of dynamic configurations or that place it in relation to some other medium of common description.  This manner of associating propositions with POD's is tantamount to adopting a third person POV on the system or its agent, and it is commonly used to convey an impression of objectivity, no matter whether this standpoint is well taken or not.

2.	A proposition that "attaches" to a POD can be formalized in more detail as a "proposition at or in a POD" (PAI'POD).  This represents what an agent thinks or believes, entertains or maintains, in sum, what an agent is aware of or willing to assert at a particular POD.  By way of filling out the formula, this type of proposition expresses thoughts and is expressed in signs that are likewise regarded as "attached" to the POD in question.  In general, propositions at a POD can be formed to express every conceivable modality.  Collectively, they can state anything that an agent notes or thinks, observes or imagines at a given moment of its developmental history.  They can reflect any aspect of an agent's awareness, belief, conjecture, doubt, expectation, intention, observation, or any other latitude of thought that is actively considered or faithfully preserved throughout the moment in question, and in this sense they are considered to be attached to, bound to, contained in, or localized at a particular POD.

In one sense, propositions about a POD are potentially the general case, since propositions at a POD can be incorporated within their formulation.  That is, a proposition about a POD is allowed to make assertions about the propositions at that POD, plus assertions about their relation to propositions at other POD's.  But propositions whose references are this involved, articulated as "propositions about propositions at a POD", for instance, are classed as "higher order propositions" (HOP's) and need to be inferred through processes of hypothesis and experiment, conjecture and confirmation, instead of being observed outright.  In another sense, propositions at a POD are intrinsically the prototype, since it is from their data that every other type must be constructed.

Propositions about POD's naturally collect into theories about POD's, and at the next level of aggregation these constitute the familiar sorts of dynamic theories that are used to describe the state spaces of systems and the trajectories of agents through them.  Concentrating on these types of propositions leads to the kinds of theories about systems where a "neutral observer", not involved in the system itself, is postulated or  fancied to stand outside the dynamics of the "observable object system":  where this "objective reasoner" is supposedly able to theorize about the observable system without essentially becoming a part of its operations or necessarily being involved as a participant in its actual workings, and where the same "passive agent" never finds itself forced to interact in an irreversible or irrevocable manner with the autonomous course of the object system's action.

The thoughts attached to a POD, the things an agent thinks or believes, entertains or maintains at one POD, in relation to what the agent thinks or believes, is aware of or willing to assert at another POD, is the very form of subject matter that is bound to come to light and bound to fall into play whenever one studies the development of a reflective system, whether the focus of interest is the course of a particular inquiry or the emergence of a generic intelligence.

From a pragmatic point of view, a belief is a proposition that an agent is prepared to act on.  In practice, this means that information about beliefs can be obtained from observations of action, as long as one remembers that this information is almost always partial information, contingent on the sample of actions that are actually observed and limited by the circumstance that not all preparations result in action.

It may be thought that there is an important distinction between belief and knowledge that ought to be recognized in the modes of maintaining propositions at or in a POD.  Given the pragmatic definition of belief, however, there is no local mark that can tell belief and knowledge apart.  That is, there is no practical difference that can be sustained, in the propositions attached to a single POD, between those that reflect items of contingent belief and those that reflect items of certain knowledge.  Even if the propositions at or in a POD are artificially marked in ways that can later be reliably detected, the problem of constantly updating so fleeting a form of distinction makes the accumulating profusion of ephemeral distinctions as immaterial and unenlightening as every other genre of eracist obliterature.

A distinction between belief and knowledge appears to arise only in the interactions and comparisons that can be made between different POD's, either those enjoyed by a single agent in the history of a single system or those passed through by ostensibly different agents and systems.  The sense of the distinction can be sustained only if the order of its relational context continues to be recognized, which means that the mark of the distinction cannot be strained to the point of being an absolute.  In this context, different systems and their agents are said to be "at" comparable POD's precisely to the degree and exactly to the extent that the propositions "at" and "about" them, respectively, can be compared.  In many respects, the comparison of propositions at different POD's is equally complex and problematic whether it is one agent or several that is being considered.

With all this in mind, I can give a formulation of what the practical difference between belief and knowledge consists in.  Roughly speaking, an agent says that an agent "knows" something if and only if the one believes what the other believes.  More precisely, an agent at one POD has reason to say that an agent at another POD (possibly a former self) knows something about something (or knew something about something) if and only if the one believes what the other believes about it, all things being relative to the POD's that the agents are at.

Propositions associated with a POD are often found in organized bodies, forming more or less logical systems of more or less logical statements.  Whatever their type or modality with respect to a POD, "propositions of a feather gather together".  That is, they tend to collect into organized bodies of propositions that share compatible types of association and comparable modes of assertion.  In logic, an arbitrary collection of propositions is called a "theory", no matter how coherent, complete, or consistent it turns out to be when subjected in time to critical review.  Taking up this liberalized notion of a theory in the present setting, a bunch of PAI'POD's forms a "theory at or in a POD" (TAI'POD), while a bunch of PAO'POD's forms a "theory about or on a POD" (TAO'POD).

A reasonably organized system is amenable to having its propositions sorted further, forming collections of propositions that are intended to be interpreted in the same light, and constellating theories that bear on single modes of contemplation or declaration among their propositions.

With respect to the propositions at a POD, the present inquiry into inquiry is mainly concerned with the modalities of expectation, intention, and observation.  This is due to a couple of differential modalities, derived in pairs from among these three, that appear to drive every form of inquiry, at least, to some degree.

1.	There is the moment of doubt or uncertainty that is encountered in a surprising phenomenon, providing an impulse for the component of inquiry that seeks an explanation to relieve the shock.  This factor driving inquiry can be analyzed as deriving from the differences that occur between one's expectations and one's observations.

2.	There is the moment of desire or difficulty that is countenanced in a problematic situation, providing an impulse for the component of inquiry that seeks a plan of action to resolve the trouble.  This factor driving inquiry can be analyzed as deriving from the differences that occur between one's intentions and one's observations.

It should be obvious that these conceptions represent another attempt to formalize the relationship between dynamic and symbolic approaches to intelligent systems.  Once again, the paradigms that are established for dealing with propositions at or about POD's are typically specialized to consider one or the other but seldom both.  This leads to the familiar sorts of dichotomies being imposed on a subject matter where the types are more complementary and generative than exclusive and exhaustive.  Thus, one finds methodologies in the field that can work well either from an "external" (dynamic, model theoretic, empirical) perspective or from an "internal" (symbolic, proof theoretic, rational) perspective, but that are seldom able to incorporate both technologies into an integrated methodology.

The concept of a POD in the history of a system, with its associated division of propositions into those that apply exterior to it and those that attach interior to it, is yet another way of approaching a recurring subject, "the being and the role of the interpreter", that the general concept of an "objective concern" (OC), broached at an earlier point of development in this text, is also intended to capture.  Advancing as if from a pair of complementary and convergent directions, the notion of a POD, in the way it supplies a footing to the propositions about or on it and serves to encapsulate the propositions at or in it, equips a growing SOI with all the pivotal, trophic, and vital functions that the notion of an "objective motif" (OM) realized in an "interpretive moment" (IM) is likewise meant to provide.

The relationship between a POD and an OM at an IM can be understood as follows.  ...

In order to continue formalizing the discussion of POV's and POD's within the text that uses them, I introduce the following notations:

	j :  x | y, 	 x |j y,  	 x | y  : j,
	j :  x / y, 	 x /j y,  	 x / y  : j,
	j : (x , y),	(x ,  y)j,	(x , y) : j.

All of these expressions are intended to indicate a set of circumstances that could otherwise be rendered as follows:

1.	j appears to see a distinction between x and y.

2.	j partitions a dimension of discourse between x and y.

3.	j sees x and y as mutually exclusive and exhaustive possibilities.

In this scheme, "x" and "y" indicate logical dimensions of variation or propositional features of description that govern an agent's possibilities of action and perception.  Used as primitive logical terms they denote the distinctive features that determine an agent's spaces of performance and experience.  In combination with logical operators they generate a descriptive framework that encompasses both:  (1) the methodological "approaches" or "perspectives" toward objects that an agent can adopt, and (2) the categorical "aspects" of objects, the independently coherent systems of properties and qualities that characterize the hypothetically unified object system.

In practice, it does not matter whether one regards x and y as logical features or as boolean variables, so long as the full set of positive and negative features { x, (x), y, (y) } is initially available to classify the relevant space of object perceptions or interpretive actions.  Analogous to its role in the staging relations { < , > }, the label "j" indicates the active interpreter, that is, the system and moment of interpretation or the state of the interpretive system that is held to be responsible for finding, making, testing, or following through the consequences of posing the contemplated distinctions.

Dual to the statements of momentary interpretive distinctions (MID's) are the respective statements of momentary interpretive coincidences (MIC's):

	j :   x  =  y,  	  x  =j  y,   	  x  =  y   : j,
	j :   x <=> y,  	  x <=>j y,   	  x <=> y   : j,
	j : ((x  ,  y)),	((x  ,   y))j,	((x  ,  y)) : j.

Each of these expressions is intended to indicate a set of circumstances that could otherwise be rendered by any one of the following, logically equivalent statements:

1.	j appears to see a coincidence between x and y.

2.	j draws no distinction between the dimensions x and y.

3.	j sees x and y as manifestly equivalent ranges of possibilities.

The introduction of explicit names for systems of interpretation, as well as for their interpretive moments, models of interpretation, objective concerns, points of development, and situations of use, is intended to flesh out the lifeless idiom or insipid brand of "assignment statements" that are currently found in CL settings, which are typically rendered so abstractly as to constitute a entire style of "anonymous", "passive", or "unattributed" excuses for fully executable commands.

In a related usage, one is permitted to reparse the "anonymous" or "passive" form of assignment statement:

	"x := y",	read as	"x is set equal to y",

converting it into the corresponding "attributive" or "active" form of assignment statement:

	"j : x = y",	read as	"j sets x equal to y".

Returning to the present application, the "categorical" project leads one to seek something in the object itself, some factor that divides up its dynamic and symbolic aspects, some plane of cleavage that explains the natural divisions between different types of object system, while the "methodeutic" outlook leads one to wonder whether the specialized mode of being that is beheld in the object is not in fact due to something in the style and direction of approach, some artifact of method that is being cast on the object system from the eye of the beholder.

I would like to articulate a systematic hypothesis that prevails over the scene of this work, tacitly imposing the deliberately hopeful assumption that there is always some sort of hypostatic unity to be found beneath the manifold diversity of phenomena.  It is not just my own presumption or personal preference to say this.  I find it to be a likely and common assumption, constantly being used to address all sorts of interesting phenomena and almost every process of note, whether or not it is ever expressly enunciated.

This hypothesis is probably implicit in the very idea of a "system", that is to say, in the notion of "things standing together", and it is central to the very conception of a systematic universe or a universal system.  Nevertheless, I will have to take responsibility for the particular way that this premiss is expressed and developed in this text.  Because it amounts to the underlying hope that there is always a unified system, some one thing that subsists beneath every form of phenomenal process and that remains available to substantiate and explain whatever manner of diversity in appearances is encountered, something or other that is always ready to be explicated but seldom necessary to declare, I call this assumption the "hypostatically unified system hypothesis" (HUSH).

In accord with this tacit assumption, that rules the entire realm of systems theory, it can be presumed that there is an integral system, prior in its real status to the manifold of observable appearances, that is somehow able to manifest itself in the severally projected roles of a dynamic process and a symbolic purpose.  But to harvest any practical consequences from the employment of this inchoative precept, the twin yoke of questions, categorical and methodeutic, must now be taken up:

1.	What constitutes the differences between the dynamic and symbolic aspects of the hypothetically unified intelligent system?

2.	What features divide the two perspectives that find these aspects respectively salient?

The integration of symbolic and dynamic approaches to systems thinking requires a significant level of reconstructive effort, one that is capable of extending its energies in both the analytic and synthetic directions.  It may be nothing more than a metaphor to describe it this way, but there is something like a dynamic economy of energy exchanges that goes on in facilitating the required "metaboly of symbols" (Peirce).

In this vein, there seem to be laws analogous to conservation principles that govern the transactions between subordinate processes, determining the interactions that are most likely to occur between the breaking down of old conceptual bonds and the creation of new configurations of ideas at higher and lower levels of conceptual equilibrium.  Brought to bear on the present task, the specific manifestations of "mental energy" that are called on to accomplish the current work of integration have a potential for raising questions about the relation of "logic" to "time", and thus revive an issue that goes back to the very birth of thought.

The relation of logical and temporal realms, of rational ideas to real experiences, is an ancient and fundamental question, one whose initial answers were laid down in their present form at the very beginnings of reflective inquiry and whose sedimented contents now lie metamorphosed into the deepest bedrocks of our native and systematic philosophies.  The distribution of current opinion on the matter regards the question as being (1) "previously settled" or (2) "incapable of solution", with little thought given to a "tertium quid", or a more fluid medium that could moderate between the extremes of these fixed alternatives.

Unfortunately, the customary and habitual classification of a problem as "insoluble", even when justified, can work against the recognition of methods that are available to ameliorate its more objectionable impacts.  When it comes to the relationship of logic to time, I believe that the resources are currently available that could advance our understanding of this issue in new directions.  All it would take is the will to reconfigure those resources in the appropriate ways.

To expand the formula:  The realm of "logic" is typified by rational concepts regarding invariant patterns, virtually, by ideas about forms, while the rule of "time" is filled out by realistic experiences with changing qualities, ultimately, by feelings of content and discontent.  The application of the integrative effort to intelligent systems in general and to "inquiry driven systems" (IDS's) in particular only sharpens the question of logic and time to the point of self application.

Considerations like these, as old and as constant as the hills, and as much over our heads as the eternally renewed and inconstant weather, are deserving of occasional notice, yet their relevance to the work of the moment is doomed by their very quality of necessity to fade into the backgound of present concerns, and their saliency as problematic phenomena quickly recedes from the scope of any perspective so bent on immediate application as that falling within my present focus.

6.5. Three Styles of Linguistic Usage

The theory of sign relations, in general, and the construction of a RIF, in particular, demands that this discussion strike a compromise among several styles of usage that are not normally brought together in the same forum or comprehended in the same frame.  Under the rubric of a "notion of style" or a "norm of significance" (NOS) this text recognizes a collective need for three distinctive styles of linguistic usage, or three different attitudes toward the intentions of language.

These styles of usage, along with their correlated perspectives on usage and their appropriate contexts of usage, can be put into a graded series by noticing how the more finely grained perspectives on the matter of language use correspond to the more narrowly scoped areas of content that are swept out by their roughly concentric contexts of discussion.  Accordingly, the styles, perspectives, and contexts of usage that I need to relate can be distinguished as follows, proceeding in order of their increasing formality:

1.	Broadest of all is the "informal language" (IL) context, which incorporates the "ordinary mathematical" context within its compass.  Relative to the aims of the present work, which are largely mathematical, these two contexts are roughly coextensive and can be treated as one.  All of the more usual contexts are marked by the operation of a working assumption about the interpretation of formal symbols that I call the "object convention".  Loosely speaking, this takes it for granted that signs always refer to objects, not because of any credible guarantees that they do, but mostly due to a lack of interest in the cases where they do not.  Failures of meaning, logical inconsistencies, and doubts about the foundations of the whole enterprise are treated as incidental problems to be discussed and corrected off line.

2.	Next in order is the "formal language" (FL) context, where the syntax of expressions needs to be specified explicitly and where the semantics of expressions does not usually permit every combination of signs to have a meaning.  All of the more formal contexts are marked by the operation of a working assumption about the interpretation of formal symbols that I call the "sign convention".  Roughly speaking, this views a sign primarily as a "mere" sign, putting it in question whether any sign has an object.  In styles of usage at this or greater degrees of formality, the reception of signs is marked by a heightened suspicion, where the benefit of the doubt and the burden of proof in the matter of signs having meaning are critically reversed from their natural defaults.  Signs are assumed to be innocent of meaning until shown otherwise.

3.	Most constrained of all is the "computational language" (CL) context, which incorporates the interests of computational linguistics along with the aims of implementing and using programming languages.  There are many styles of programming languages and many more styles of putting them to use.  I concentrate here on a particular version of the Pascal language and describe the particular ways I have chosen to implement the concepts I need with the constructs it makes available.

Next I need to consider the complex of relationships that exists among these three styles of usage, along with the corresponding relationships that exist among their associated perspectives and contexts.  In regard to the questions raised by these three NOS's, the pragmatic theory of sign relations is intended to help reflective interpreters, and other students of language, maintain all the advantages of taking up abstract and isolated perspectives on language use, but to achieve this without losing a sense of the connection that each peculiar outlook has to the richly interwoven pattern of a larger unity.

In many places these variegated styles of usage express themselves not so much in isolated domains of influence or distinctive layers of context as in different perspectives on the same text.  But different lights on a developing picture can cause different figures and patterns to emerge, and different ways of treating a developing text can lead it to grow in different directions.  Thus, discrepant points of view on the emergence of a literature can stimulate different works to vie for its canon, and discriminating angles of approach to what seems like a level plain and a unified field of language can harvest a wealth of alternate appreciations.  And so different styles of writing arise in correspondence with different styles of reading, and each rising style of readership engenders a new style of authorship in its wake.

At other times these degrees of formality play themselves out in a temporal process.  Consider a typical scenario for solving problems through formalization:

1.	One begins by approaching the problem informally, in other words, in IL posed terms, drawing on the common resources of technical notions and mathematical methods that are available, familiar, intuitively understood, and that suggest themselves as possibly being relevant to the problem.

2.	Next, the problem of interest and the array of methods selected for addressing it are both reformulated in FL terms, a process that requires many obscurities and omissions of the original problem statement to be weeded out and filled in, respectively.

3.	Finally, the formalized version of the problem method constellation is reconstructed to the extent possible in a CL framework.

At any stage of this procedure one may discover, or begin to suspect, that the current representation of the problem or the present selection of methods is inadequate to the task or unlikely to lead to a solution.  In this event one is forced to back track to an earlier stage of the problem's formulation and to look for ways of changing one's grasp of the situation.

Even though the styles of usage at the three degrees of formalization use overlapping vocabularies of technical terms, the interpretations that they put on some of these terms, together with the working attitudes that they promote toward the corresponding concepts, are tantamount in practice to the possession of distinct concepts for the very same terms.

Three issues of linguistic usage on which these three NOS's get most out of joint are on the questions of (1) signs and their significance, (2) the utilization of set theory and set theoretic constructions, and (3) the ontological or pragmatic status of variables.  The rest of this section makes a cursory survey of the bearings that the three NOS's take toward these issues, in preparation for more detailed treatments in later sections.

In each perspective that an observer takes up, the natural attitude is to focus on a particular class of objects, to remain less aware of the signs being used to denote them, and to remain even less aware that these objects and signs can take up other roles in the same or other sign relations.  In constantly shifting from one perspective to another, however, the transparent uses of signs and the ulterior circumstances that determine how objects and signs are cast start to become visible.  Altogether, the interaction between casual and formal styles of usage is like an exchange carried on between radically different economies, where commodities and utilities that are freely traded in one kind of market are severely taxed in the other.

The IL perspective, along with its specialization to ordinary mathematical discourse, thinks itself to have a grasp of the unitary object itself, conveniently forgetting the multiplicity of abstract, arbitrary, and artificial constructions that are needed to make this impression possible.  In particular, the ordinary mathematical attitude thinks itself to have a grasp of the one idea while its puts the many appearances out of mind, and it constantly exerts itself to neglect all the labor that goes into taking up this stance.  It ignores the circumstance that numbers, however intuited, can only be indicated and rationalized to others as equivalence classes of constructions formed on the matter of numerals.

The FL perspective, along with its implementations in CL contexts, allows one to treat signs as objects, and thus to study syntactic domains as objective languages.  This creates what seems like a higher order of discussion, but the designation of these objects as "signs" is purely token if their use as signs is forgotten in the process.  Consequently, the FL perspective, together with the CL attitude that realizes it, has the job of recovering and reconstructing exactly what has been taken out of consideration in the IL context:  those details of actual usage that are taken for granted, abstracted away, and conveniently ignored.

Although the mathematical structures developed under the informal NOS can become incredibly sophisticated in their orders of complexity and degrees of formalization, from a pragmatic standpoint they are still construed under naive assumptions about language use.  This is because discussions carried out under the IL perspective do not make it their business to reflect on the relations between objects and signs, but presume that these matters can be separated from their subject proper and relegated to preliminary stages of the ultimately refined treatment.

In order to make this discussion of styles and issues and more concrete, the next several sections examine the practical bearings of the three styles of usage as they work out with regard to each of the identified issues of usage.  This will be done by choosing a theoretical subject to illustrate the ideals of each style of usage, and then by developing the bearing of this subject on each of the three issues mentioned.

In accord with this plan, the next three sections present the basic ideas of three subjects:  group theory, formal language theory, and computation theory.  The presentation of these subjects is intended to serve both illustrative and instrumental purposes, exemplifying the ideals of the IL, FL, and CL styles of usage, respectively, but also equipping subsequent discussion with a supply of ready tools that can be used in its further development.  After the treatment of these three subjects, and following the introduction of higher order sign relations, the next three sections after that are finally able to take up the three issues mentioned above, concerning the theoretical standings of signs, sets, and variables, respectively, and to consider how each of these issues appears in the light of each style of usage.

6.6. Basic Notions of Group Theory

Many of the most salient themes that have a call to be played out in this work — the application of generic forms of operation to themselves and to each other, the relationship of invariant forms to their variant presentations, and the relationship of abstract forms to their concrete representations — all of these topics arise in a very instructive way within the mathematical subject of group theory.  This is most likely due to the fact that group theory, as a mathematical tool, got its start and much of its later sharpening in the process of trying to clarify the physical and formal phenomena that involve these very same issues.

In group theory, fortunately, these themes arise in a slightly plainer fashion, and the otherwise mystifying questions they involve have been studied to the point that their original mysteries are barely observed.  Thus, a good way to approach the construction of a RIF is to study the well understood versions of self application and self explanation that turn up in group theory.  Given the simpler character and the familiar condition of these topics in that area, they supply a convenient basis for subsequent extensions and help to arrange a staging ground for the types of sign theoretic generalizations that are ultimately desired.

This section develops the aspects of group theory that are needed in this work, bringing together a fundamental selection of abstract ideas and concrete examples that are used repeatedly throughout the rest of the project.  To start, I present an abstract formulation of the basic concepts of group theory, beginning from a very general setting in the theory of relations and proceeding in quick order to the definitions of groups and their representations.  After that, I describe a couple of concrete examples that are designed mainly to illustrate the abstract features of groups, but that also appear in different guises at later stages of this discussion.

A "series of domains" (SOD) is a nonempty sequence of nonempty sets.  A declarative indication of a sequence of sets, typically offered in staking out the grounds of a discussion, is taken for granted as a SOD.  Thus, the notation "<Xi>" is assumed by default to refer to a SOD <Xi>, where each Xi is assumed to be a nonempty set.

Given a SOD <Xi>, its cartesian product, notated as "Xi <Xi>" or "Xi Xi", is defined as follows:

Xi <Xi>  =  Xi Xi  =  {<xi> : xi C Xi}.

A "relation" is defined on a SOD as a subset of its cartesian product.  In symbols, R is a relation on <Xi> if and only if R c Xi Xi.

An "n ary relation" or an "n place relation" is a relation on an ordered n tuple of nonempty sets.  Thus, R is an n place relation on the SOD <X1, ..., Xn> if and only if R c X1x...xXn.  In various applications, the n tuple elements <x1, ..., xn> of R are called its "elementary relations", "individual transactions", "ingredients", or "effects".

Before continuing with the chain of definitions, a slight digression is needed at this point to loosen up the interpretation of relation symbols in what follows.  Exercising a certain amount of flexibility with notation, and relying on a discerning interpretation of equivocal expressions, one can use the name "R" or any other indication of an n place relation R in a wide variety of different fashions, both logical and operational.

First, R can be associated with a logical predicate or a proposition that says something about the space of effects, being true of certain effects and false of all others.  In this way, "R" can be interpreted as naming a function from Xi Xi to the domain of truth values B = {0, 1}.  With the appropriate understanding, it is permissible to write "R : X1x...xXn  > B" to indicate this interpretation.

Second, R can be associated with a piece of information that allows one to complete various sorts of partial data sets in the space of effects.  In particular, if one is given a partial effect or an incomplete n tuple, say, one that is missing a value in the jth place, as indicated by the notation "<x1, ...,  j, ..., xn>", then "R" can be interpreted as naming a function from the cartesian product of the domains at the filled places to the power set of the domain at the missing place.  With this in mind, it is permissible to write "R : X1x...x jx...xXn  > Pow(Xj)" to indicate this use of "R".  If the sets in the range of this function are all singletons, then it is permissible to write "R : X1x...x jx...xXn  > Xj" to specify the corresponding use of "R".

In general, the indicated degrees of freedom in the interpretation of relation symbols can be exploited properly only if one understands the consequences of this interpretive liberality and is prepared to deal with the problems that arise from its "polymorphic" practices, from using the same sign in different contexts to refer to different types of objects.  For example, one should consider what happens, and what sort of IF is demanded to deal with it, when the name "R" is used equivocally in a statement like "R = R 1(1)", where a sensible reading requires it to denote the relational set R c Xi Xi on the first appearance and the propositional function R : Xi Xi  > B on the second appearance.

A "triadic relation" is a relation on an ordered triple of nonempty sets.  Thus, R is a triadic relation on <X, Y, Z> if and only if R c XxYxZ.  Exercising a proper degree of flexibility with notation, one can use the name of a triadic relation R c XxYxZ to refer to a logical predicate or a propositional function, of the type XxYxZ >B, or any one of the derived binary operations, of the types XxY >Pow(Z), XxZ >Pow(Y), YxZ >Pow(X).

A "binary operation" or "law of composition" (LOC) on a nonempty set X is a triadic relation * c XxXxX that is also a function * : XxX >X.  The notation "x*y" is used to indicate the functional value *(x, y) C X, which is also referred to as the "product" of x and y under *.

A binary operation or LOC * on X is "associative" if and only if (x*y)*z = x*(y*z) for every x, y, z C X.

A binary operation or LOC * on X is "commutative" if and only if x*y = y*x for every x, y C X.

A "semigroup" consists of a nonempty set with an associative LOC on it.  On formal occasions, a semigroup is introduced by means a formula like "X = <X, *>", read "X is the ordered pair <X, *>".  This form specifies X as the nonempty set and * as the associative LOC.  By way of recalling the extra structure, this specification underscores the name of the set X to form the name of the semigroup X.  In contexts where there is only one semigroup being discussed, or where the additional structure is otherwise understood, it is common practice to call the semigroup by the name of the underlying set.  In contexts where more than one semigroup is formed on the same set, one can use notations like Xi = <X, *i> to distinguish them.

A "unit element" in a semigroup X = <X, *> is an element e in X such that x*e = x = e*x for all x C X.  In other words, a unit element is a two sided identity element.  If a semigroup X has a unit element, then it is unique, since if e' is also a unit element, then e' = e'*e = e.

A "monoid" is a semigroup with a unit element.  Formally, a monoid X is an ordered triple <X, *, e>, where X is a set, * is an associative LOC on the set X, and e is the unit element in the semigroup <X, *>.

An "inverse" of an element x in a monoid X = <X, *, e> is an element y C X such that x*y = e = y*x.  An element that has an inverse in X is said to be "invertible" (relative to * and e).  If x C X has an inverse, then it is unique to x.  To see this, suppose that y' is also an inverse of x.  Then it follows that:

y'  =  y'*e  =  y'*(x*y)  =  (y'*x)*y  =  e*y  =  y.

A "group" is a monoid all of whose elements are invertible.  That is, a group is a semigroup with a unit element in which every element has an inverse.  Putting all the pieces together, then, a group X = <X, *, e> is a set X with a binary operation * : XxX >X and a designated element e that is subject to the following three axioms:

G1.	(associative)	x*(y*z) = (x*y)*z,	for all x, y, z C X.

G2.	(identity)	e*x = x = x*e,	for some e C X.

G3.	(inverses)	x*y = e = y*x,	for some y C X,
			for all x C X.

It is customary to use a number of abbreviations and conventions in discussing semigroups, monoids, and groups.  A system X = <X, *> is given the adjective "commutative" if and only if * is commutative.  Commutative groups, however, are traditionally called "abelian groups".  By way of making comparisons with familiar systems and operations, the following usages are also common.

1.	When one says that X is "written multiplicatively" it means that a raised dot "." or concatenation is used instead of a star for the LOC.  In this case, the unit element is commonly written as a one "1", while the inverse of an element x is written as "x 1".  The multiplicative manner of presentation is the one that is usually taken by default in the most general types of situations.  In the multiplicative idiom, the following definitions of "powers", "cyclic groups", and "generators" are also common.

The "nth power" of x in a semigroup X = <X, .>, for positive integer n, is notated as "xn" and defined as follows.  Proceeding recursively, for n = 1, let x1 = x, and for n > 1, let xn = x(n 1).x.

The "nth power" of x in a monoid X = <X, ., 1>, for natural number n, is defined the same way for n > 0, letting x0 = 1 when n = 0.

The "nth power" of x in a group X = <X, ., 1>, for arbitrary integer n, is defined the same way for n > 0, letting xn = (x 1)( n) for n < 0.

A group X = <X, ., 1> is "cyclic" if and only if there is an element g C X such that every x C X can be written as x = gn for some n C Z.  In this case, an element such as g is called a "generator" of the group.

2.	When one says that X is "written additively" it means that a plus sign "+" is used instead of a star "*" for the LOC.  In this case, the notation "x + y" indicates a value in X called the "sum" of x and y.  This involves the further conventions that the unit element is written as a zero "0", and may be called the "zero element", while the inverse of an element x is written as " x", and may be called the "negative of x".  Usually, but not always, this manner of presentation is reserved for commutative systems and abelian groups.  In the additive idiom, the following definitions of "multiples", "cyclic groups", and "generators" are also common.

The "nth multiple" of x in a semigroup X = <X, +>, for integer n > 0, is notated as "nx" and defined as follows.  Proceeding recursively, for n = 1, let 1x = x, and for n > 1, let nx = (n 1)x + x.

The "nth multiple" of x in a monoid X = <X, +, 0>, for integer n > 0, is defined the same way for n > 0, letting 0x = 0 when n = 0.

The "nth multiple" of x in a group X = <X, +, 0>, for any integer n, is defined the same way for n > 0, letting nx = ( n)( x) for n < 0.

A group X = <X, +, 0> is "cyclic" if and only if there is an element g C X such that every x C X can be written as x = ng for some n C Z.  In this case, an element such as g is called a "generator" of the group.

Mathematical systems, like the R's and X's encountered above, are seldom comprehended in perfect isolation, but need to be viewed in relation to each other, as belonging to families of comparable systems.  Systems are compared by finding or making correspondences between them, and this can be formalized as a task of setting up and probing various types of mappings between the sundry appearances of their objective structures.  This requires techniques for exploring the spaces of mappings that exist between families of systems, for inquiring into and demonstrating the existence of specified types of functions between them, plus technical concepts for classifying and comparing their diverse representations.  Therefore, in order to compare the structures of different objective systems and to recognize the same objective structure when it appears in different phenomenal or syntactic disguises, it helps to develop general forms of comparison that can organize the welter of possible associations between systems and single out those that represent a preservation of the designated forms.

The next series of definitions develops the mathematical concepts of "homomorphism" and "isomorphism", special types of mappings between systems that serve to formalize the intuitive notions of structural analogy and abstract identity, respectively.  In very rough terms, a "homomorphism" is a "structure preserving mapping" between systems, but only in the sense that it preserves some part or some aspect of the structure mapped, whereas an "isomorphism" is a correspondence that preserves all of the relevant structure.

The "induced action" of a function f : X >Y on the cartesian power Xn is the function f' : Xn >Yn defined by:

f'(<x1, ..., xn>)  =  <f(x1), ..., f(xn)>.

Usually, f' is regarded as the "obvious", "trivial", or "tacit" extension that f : X >Y possesses in the space of functions Xn >Yn, and is thus allowed to go by the same name.  This convention, assumed by default, is expressed by the formula:

f(<x1, ..., xn>)  =  <f(x1), ..., f(xn)>.

A "relation homomorphism" from an n place relation P c Xn to an n place relation Q c Yn is a mapping between the underlying sets, h : X >Y, whose induced action h : Xn >Yn preserves the indicated relations, taking every element of P to an element of Q.  In other words:

<x1, ..., xn> C P   =>   h(<x1, ..., xn>) C Q.

Applying this definition to the case of two binary operations or LOC's, say *1 on X1 and *2 on X2, which are special kinds of triadic relations, say *1 c X13 and *2 c X23, one obtains:

<x, y, z> C *1   =>   h(<x, y, z>) C *2.

Under the induced action of h : X1 >X2, or its tacit extension as a mapping h : X13 >X23, this implication yields the following:

<x, y, z> C *1   =>   <h(x), h(y), h(z)> C *2.

The left hand side of this implication is expressed more commonly as:

x *1 y  =  z.

The right hand side of the implication is expressed more commonly as:

h(x) *2 h(y)  =  h(z).

From these two equations one derives, by substituting x *1 y for z in h(z), a succinct formulation of the condition for a mapping h : X1 >X2 to be a relation homomorphism from a system <X1, *1> to a system <X2, *2>, expressed in the form of a "distributive law" or "linearity condition":

h(x *1 y)  =  h(x) *2 h(y).

To sum up the development so far in a general way:  A "homomorphism" is a mapping from a system to a system that preserves an aspect of systematic structure, usually one that is relevant to an understood purpose or context.  When the pertinent aspect of structure for both the source and the target system is a binary operation or a LOC, then the condition that the LOC's be preserved in passing from the pre image to the image of the mapping is frequently expressed by stating that "the image of the product is the product of the images".  That is, if h : X1 >X2 is a homomorphism from X1 = <X1, *1> to X2 = <X2, *2>, then for every x, y C X1 the following condition holds:

h(x *1 y)  =  h(x) *2 h(y).

Next, the concept of a homomorphism or "structure preserving map" is specialized to the different kinds of structure of interest here.

A "semigroup homomorphism" from a semigroup X1 = <X1, *1> to a semigroup X2 = <X2, *2> is a mapping between the underlying sets that preserves the structure appropriate to semigroups, namely, the LOC's.  This makes it a map h : X1 >X2 whose induced action on the LOC's is such that it takes every element of *1 to an element of *2.  That is:

<x, y, z> C *1  =>  h(<x, y, z>) = <h(x), h(y), h(z)> C *2.

A "monoid homomorphism" from a monoid X1 = <X1, *1, e1> to a monoid X2 = <X2, *2, e2> is a mapping between the underlying sets, h : X1 >X2, that preserves the structure appropriate to monoids, namely, the LOC's and the identity elements.  This means that the map h is a semigroup homomorphism from X1 to X2, where these are considered as semigroups, but with the extra condition that h takes e1 to e2.

A "group homomorphism" from a group X1 = <X1, *1, e1> to a group X2 = <X2, *2, e2> is a mapping between the underlying sets, h : X1 >X2, that preserves the structure appropriate to groups, namely, the LOC's, the identity elements, and the inverse elements.  This means that the map h is a monoid homomorphism from X1 to X2, where these are viewed as monoids, with the extra condition that h(x 1) = h(x) 1 for all x C X1.  As it happens, the inverse elements are automatically preserved if the LOC's and the identity elements are, so a monoid homomorphism suffices to constitute a group homomorphism for a monoid that is also a group.  To see why this is so, consider the following chain of equalities:

h(x) *2 h(x 1)  =  h(x *1 x 1)  =  h(e1)  =  e2.

An "isomorphism" is a homomorphism that is one to one and onto, or bijective.  Systems that have an isomorphism between them are called "isomorphic" to each other and belong to the same "isomorphism class".  From an abstract point of view, isomorphic systems are tantamount to the same mathematical object, differing at most in their manner of presentation and the details of their representation.  Usually these differences are regarded as purely notational, a mere change of names.  Thus, they are seen as accidental or accessory features of the object, corresponding to different ways of grasping the objective structure that is the main interest of the study but not considered as essential parts of its ultimate constitution or even necessary to its final comprehension.

Finally, to introduce two pieces of language that are often useful:  an "endomorphism" is a homomorphism from a system into itself, while an "automorphism" is an isomorphism from a system onto itself.

If nothing more succinct is available, a group can be specified by means of its "operation table", usually styled either as an "addition table" or as a "multiplication table".  Table 32.1 illustrates the general scheme of a group operation table.  In this case the group operation, treated as a "multiplication", is formally symbolized by a star "*", as in x*y = z.  In contexts where only algebraic operations are formalized it is common practice to omit the star, but when logical conjunctions (symbolized by a raised dot "." or by concatenation) appear in the same context, then the star is retained for the group operation.

Another way of approaching the study or presenting the structure of a group is by means of a "group representation", in particular, one that represents the group in the special form of a "transformation group".  This is a set of transformations acting on a concrete space of "points" or a designated set of "objects".  In providing an abstractly given group with a representation as a transformation group, one is seeking to know the group by its effects, that is, in terms of the action it induces, through the representation, on a concrete domain of objects.  In the type of representation known as a "regular representation", one is seeking to know the group by its effects on itself.

Tables 32.2 and 32.3 illustrate the two conceivable ways of forming a regular representation of a group G.

The "ante representation" of xi in G is a function from G to G that is formed by considering the effects of xi on the elements of G when xi acts in the role of the first operand of the group operation.  Notating this function as "h1(xi) : G >G", the "regular ante representation" of G is a map h1 : G  > (G >G) that is schematized in Table 32.2.  Here, each of the functions h1(xi) : G >G is represented as a set of ordered pairs of the form <xj, xi*xj>.

The "post representation" of xi in G is a function from G to G that is formed by considering the effects of xi on the elements of G when xi acts in the role of the second operand of the group operation.  Notating this function as "h2(xi) : G >G", the "regular post representation" of G is a map h2 : G  > (G >G) that is schematized in Table 32.3.  Here, each of the functions h2(xi) : G >G is represented as a set of ordered pairs of the form <xj, xj*xi>.
 
Table 32.1  Scheme of a Group Multiplication Table
	*	x0	...	xj	...
	x0	x0*x0	...	x0*xj	...
	...	...	...	...	...
	xi	xi*x0	...	xi*xj	...
	...	...	...	...	...

Table 32.2  Scheme of the Regular Ante-Representation
	Element	Function as Set of Ordered Pairs of Elements
	x0	{ <x0, x0*x0>,   ...,   <xj, x0*xj>,   ...,    }
	...
	xi	{ <x0, xi*x0>,   ...,   <xj, xi*xj>,   ...,    }
	...

Table 32.3  Scheme of the Regular Post-Representation
	Element	Function as Set of Ordered Pairs of Elements
	x0	{ <x0, x0*x0>,   ...,   <xj, xj*x0>,   ...,    }
	...
	xi	{ <x0, x0*xi>,   ...,   <xj, xj*xi>,   ...,    }
	...

In following these maps, notice how closely one is treading in these representations to defining each element in terms of itself, but without quite going that far.  There are a couple of catches that save this form of representation from falling into a "vicious circle", that is, into a pattern of self reference that would beg the question of a definition and vitiate its usefulness as an explanation of each group element's action.  First, the regular representations do not represent that a group element is literally "equal to" a set of ordered pairs involving that very same group element, but only that it is "mapped to" something like this set.  Second, careful usage would dictate that the "something like" that one finds in the image of a representation, being something that is specified only up to its isomorphism class, is a transformation that really acts, not on the group elements xj themselves, but only on their inert tokens, inactive images, partial symbols, passing names, or transitory signs of the form "xj".

These reservations are crucial to understanding the form of explanation that a regular representation provides, that is, what it explains and what it does not.  If one is seeking an ontological explanation of what a group and its elements "are", then one would have reason to object that it does no good to represent a group and its elements in terms of their actions on the group elements themselves, since one still does not know what the latter entities "are".  Notice that the form of this objection is reminiscent of a dilemma that is often thought to obstruct the beginning of an inquiry into inquiry.  A similar pattern of knots occurs when one tries to explain the process of formalization in terms of its effects on the term "formalization".  In each case, the resolution of the difficulty turns on recognizing a distinction between the active and passive modes of existence that go with each nameable objective.

In order to have concrete materials available for future discussions of group theoretic issues, the remainder of this section takes up a pair of small examples, the groups of order 4, and uses them to illustrate the chain of definitions and the forms of representation given above.

There are just two groups of order 4.  Both are abelian (commutative), but one is cyclic and the other is not.  The cyclic group on 4 elements is commonly referred to as "Z4".  (The German words "Zahl" = "number" and "Zyklus" = "cycle" together make the notation "Zn" suggestive of the integers mod n, which form a cyclic group of order n under the addition operation.)  The acyclic group on 4 elements is usually called the "Klein 4 group" and notated as "V4".  (The German name "Vierbein" is the substantive form of an adjective that means "four legged".)

For the sake of comparison, I give a discussion of both these groups.  However, because it figures more prominently in another part of the present construction, I discuss V4 first and foremost.

The next series of Tables presents the group operations and regular representations for the groups V4 and Z4.  If a group is abelian, as both of these groups are, then its h1 and h2 representations are indistinguishable, and a single form of regular representation h : G  > (G >G) will do for both.

Tables 33.1 shows the multiplication table of the group V4, while Tables 33.2 and 33.3 present two versions of its regular representation.  The first version, somewhat hastily, gives the functional representation of each group element as a set of ordered pairs of group elements.  The second version, more circumspectly, gives the functional representative of each group element as a set of ordered pairs of element names, also referred to as "objects", "points", "letters", or "symbols".
 
Table 33.1  Multiplication Operation of the Group V4
	*	1	r	s	t
	1	1	r	s	t
	r	r	1	t	s
	s	s	t	1	r
	t	t	s	r	1

Table 33.2  Regular Representation of the Group V4
	Element	Function as Set of Ordered Pairs of Elements
	1	 { <1, 1>,	<r, r>,	<s, s>,	<t, t> }
	r	 { <1, r>,	<r, 1>,	<s, t>,	<t, s> }
	s	 { <1, s>,	<r, t>,	<s, 1>,	<t, r> }
	t	 { <1, t>,	<r, s>,	<s, r>,	<t, 1> }

Table 33.3  Regular Representation of the Group V4
	Element	Function as Set of Ordered Pairs of Symbols
	1	  { <"1", "1">, <"r", "r">, <"s", "s">, <"t", "t"> }
	r	  { <"1", "r">, <"r", "1">, <"s", "t">, <"t", "s"> }
	s	  { <"1", "s">, <"r", "t">, <"s", "1">, <"t", "r"> }
	t	  { <"1", "t">, <"r", "s">, <"s", "r">, <"t", "1"> }

Tables 34.1 and 35.1 show two forms of operation table for the group Z4, presenting the group, for the sake of contrast, in multiplicative and additive forms, respectively.  Tables 34.2 and 35.2 give the corresponding forms of the regular representation.

The multiplicative and additive versions of what is abstractly the same group, Z4, can be used to illustrate the concept of a group isomorphism.

Let the multiplicative version of Z4 be formalized as:

Z4(.)  =  X1  =  <X1, *1, e1>  =  <{1, a, b, c}, ., 1>,

where "." denotes the operation in Table 34.1.

Let the additive version of Z4 be formalized as:

Z4(+)  =  X2  =  <X2, *2, e2>  =  <{0, 1, 2, 3}, +, 0>,

where "+" denotes the operation in Table 35.1.

Then the mapping h : X1 >X2 whose ordered pairs are given by:

h  =  {<1, 0>, <a, 1>, <b, 2>, <c, 3>}

constitutes an isomorphism from Z4(.) to Z4(+).

This fact can be verified in several ways:  (1) by checking that the map h is bijective and that h(x.y) = h(x) + h(y) for every x and y in Z4(.), (2) by noting that h transforms the whole multiplication table for Z4(.) into the whole addition table for Z4(+) in a one to one and onto fashion, or (3) by finding that both systems share some collection of properties that are definitive of the abstract group, for example, being cyclic of order 4.
 
Table 34.1  Multiplicative Presentation of the Group Z4(.)
	.	1	a	b	c
	1	1	a	b	c
	a	a	b	c	1
	b	b	c	1	a
	c	c	1	a	b

Table 34.2  Regular Representation of the Group Z4(.)
	Element	Function as Set of Ordered Pairs of Elements
	1	 { <1, 1>,	<a, a>,	<b, b>,	<c, c> }
	a	 { <1, a>,	<a, b>,	<b, c>,	<c, 1> }
	b	 { <1, b>,	<a, c>,	<b, 1>,	<c, a> }
	c	 { <1, c>,	<a, 1>,	<b, a>,	<c, b> }

Table 35.1  Additive Presentation of the Group Z4(+)
	+	0	1	2	3
	0	0	1	2	3
	1	1	2	3	0
	2	2	3	0	1
	3	3	0	1	2

Table 35.2  Regular Representation of the Group Z4(+)
	Element	Function as Set of Ordered Pairs of Elements
	0	 { <0, 0>,	<1, 1>,	<2, 2>,	<3, 3> }
	1	 { <0, 1>,	<1, 2>,	<2, 3>,	<3, 0> }
	2	 { <0, 2>,	<1, 3>,	<2, 0>,	<3, 1> }
	3	 { <0, 3>,	<1, 0>,	<2, 1>,	<3, 2> }

Standard references for the above material are:

Jacobson, N.  Basic Algebra I.
	W.H. Freeman, San Francisco, CA, 1974.

Lang, S.  Algebra, 2nd ed.
	Addison Wesley, Menlo Park, CA, 1984.

Rotman, J.J.  An Introduction to the Theory of Groups, 3rd ed.
	Allyn & Bacon, Boston, MA, 1984.

When it comes to the subject of systems theory, a particular POV is so widely propagated that it might as well be regarded as the established, received, or traditional POV.  The POV in question says that there are dynamic systems and symbolic systems, and never the twain shall meet.  I naturally intend to challenge this assumption, preferring to suggest that dynamic ... [possible buffer fragment]

6.7. Basic Notions of Formal Language Theory

This section collects the material on formal language theory that is needed for the rest of this work.

A "formal language" is a countable set of "expressions", each of which is a finite sequence of elements taken from a finite set of "symbols".  The primitive symbols that are used to generate the expressions of a formal language are collectively called its "alphabet" or its "lexicon", depending on whether the expressions of the language are intuitively regarded as "words" or as "sentences", respectively.

So long as one considers only words or only sentences, that is, only one level of finite sequences of symbols, it does not matter essentially what the sequences are called.  Unless otherwise specified, a formal language is taken by default to be a "one level" formal language, containing only a single level of sequences.  If one wants to consider both words and sentences, that is, finite sequences of symbols and then finite sequences of these lower level sequences, all in the same context of discussion, then one has to move up to an essentially more powerful concept, that of a "two level" formal language.

Until further notice, the next part of this discussion strictly applies only to one level formal languages.  When this project reaches the stage of dealing with higher level formal languages, a few of the following definitions and default assumptions will need to be adjusted slightly.

It is convenient to have a generic term for referring to alphabets and lexicons, indifferently, without concern for their level of construction.  Therefore, I describe any finite set X as a "syntactic resource" for the syntactic domain X, provided that its elements are regarded as syntactic primitives that can be used to construct the signs and expressions in X.  If the primitive signs in a syntactic resource are regarded as denoting primitive objects or operations, then I refer to a collection of these objects or operations as an "objective" or an "operational" resource, as the case may be.

It is always tempting to seek analogies between formal language theory and algebraic studies, and it is often very useful to do so.  But if one tries to forge an analogy between the relation "X is a resource for X", in the formal language sense, and the relation "X is a basis for X", in the algebraic sense, then it becomes necessary to observe important differences between the two perspectives, as they are currently applied.

In formal language theory, one typically fixes the syntactic resource X as the primary reality, that is, as the ruling parameter of discussion, and then considers each formal language X that can be generated on X as a particular subset of the maximal language that is possible on X.  This direction of approach can be contrasted with what is more usual in algebraic studies, where the generated object X is taken as the primary reality, and a basis X is defined secondarily as a minimal or independent spanning set, but generally serves as only one of many possible bases.

The linguistic relation "X is a resource for X" is thus exploited in the opposite direction from the relation "X is a basis for X".  There does not seem to be any reason in principle why either study cannot be cast the other way around, but it has to be noted that the current practices, and the preferences that support them, dictate otherwise.

By way of a general notation, I use doubly underlined capital letters to denote finite sets taken as the syntactic resources of formal languages, and I use doubly underlined lower case letters to denote their symbols.  Schematically, this appears as follows:

X   =   {x1, ..., xn}.

In a formal language context, I use singly underlined capital letters to indicate the various formal languages being considered, that is, the countable sets of sequences over a given syntactic resource that are being singled out for attention, and I use singly underlined lower case letters to indicate various individual sequences in these languages.  Schematically, this appears as follows:

X   =   {x1, ..., xm, ...}.

Usually, one compares different formal languages over a fixed resource, but since resources are finite it is no trouble to unite a finite number of them into a common resource.  Without loss of generality, then, one typically has a fixed set X in mind throughout a given discussion and has to consider a variety of different formal languages that can be generated from the symbols of X.  These sorts of considerations are aided by defining a number of formal operations on the resources X and the languages X.

The "kth power" of X, written as Xk, is defined to be the set of all sequences of length k over X.

Xk   =   {<u1, ..., uk> :  ui C X, i = 1 to k}.

By convention for the case where k = 0, this gives X0 = {<>}, that is, the singleton set consisting of the empty sequence.  Depending on the setting, the empty sequence is referred to as the "empty word" or the "empty sentence", and is commonly denoted by an epsilon or a lambda.  In this text, I use the symbol "!" (a stricken exclamation point) as a synonym for the empty sequence <>.  In addition, I use the symbol "!" (a stricken exclamation point underscored) as a synonym for {<>}.

It is probably worth remarking at this point that all empty sequences are indistinguishable (in a one level formal language, that is), and thus that all singleton sets consisting of an empty sequence are identical.  Consequently, X0 = {<>} = ! = Y0, for all resources X and Y.  However, the empty language {} and the singleton empty sequence {<>} need to be distinguished from each other.

The "surplus" of X, written as X+, is defined to be the set of all positive length sequences over X.

X+   =   Ui=1 Xk   =   X1 U ... U Xk U ...

The "kleene star" of X, written as X*, is defined to be the set of all finite sequences over X.

X*   =   Ui=0 Xk   =   X0 U X+   =   X0 U ... U Xk U ...

A standard reference for the above material is:

Denning, P.J., Dennis, J.B., & Qualitz, J.E.
	Machines, Languages, and Computation.
	Prentice Hall, Englewood Cliffs, NJ, 1978.

6.8. A Perspective on Computation

In this section, instead of presenting a standard foundation for computation theory, I focus on a single idea that captures the essence of the computational approach, given that the background assumptions of a formal approach are already in place, in others words, amounting to the specific difference that the CL style adds to the FL perspective.

The notion of computation that makes sense in this setting conceives it as a process that replaces signs with better signs of the same objects.  For instance, a computation replaces arbitrary indications of numerical values and other formal entities with clearer and more concise signs of the same objects, ultimately resulting in the clearest and most concise signs of them, called their "canonical interpretants" or "normal forms".

Viewed from a standpoint in the pragmatic theory of signs, computation is a process that trades a sign for a "better" sign of the same object.  Thus, a computation is an interpretive process whose passage from sign to interpretant sign "improves" the indication of the object in some way.  The dimensions along which signs can be compared are various, usually being described as measures of "clarity", "distinctness", or "usability" of the information conveyed, but all such measures are "interpretive" in character.  That is, the sense in which a computation improves its signs is relative to the purpose actualized in a given moment of interpretation.

It is probably worth emphasizing this point.  There need be nothing intrinsic to a sign itself that makes it better or worse than another.  This is apparent from examples as simple as the sign relations A and B, where nothing intrinsic to the grammatical categories of signs makes either the nouns or the pronouns essentially better than the others in every situation.  In general, a preference defined on signs need reflect nothing more than the purpose or caprice of a particular interpreter at a given moment of interpretation.  Of course, one is usually interested in cases where a measure of aptness, quality, or utility can be justified on more stable and substantial grounds.

Computation adds to the bare conception of a sign relation a notion of progress, which implies in turn:  (1) the dynamic notion of a temporal process taking place between signs, and (2) the evaluative notion of a utility measure rating each sign's relative virtue as a sign.

A "sign process" or "interpretive process" is hypothesized to take place in the connotative plane of a particular sign relation, constituting a temporal process or a dynamic system that is responsible for changing signs into their interpretant signs.  A "sign utility" is a comparative measure of sign quality, rating each sign's relative virtues as a sign of a given object.  Progress in a sign process means that a change taking place between signs is one that acts in concert with increasing the sign's quality of indication.

6.9. Higher Order Sign Relations : Introduction

When interpreters reflect on their own use of signs they require an appropriate technical language in which to pursue these reflections.  For this they need signs that refer to sign relations, signs that refer to the elements and components of sign relations, and signs that refer to the properties and classes of sign relations.  All of these additional signs can be placed under the description of "higher order" (HO) signs, and the extended sign relations that involve them can be referred to as "higher order" (HO) sign relations.

Whether any forms of observation and reflection can be conducted outside the medium of language is not a question I can address here.  It is apparent as a practical matter, however, that stable and sharable forms of knowledge depend on the availability of an adequate language.  Accordingly, there is a relationship of practical necessity that binds the conditions for reflective interpretation to the possibility of extending sign relations through higher orders.  At minimum, in addition to the signs of objects originally given, there must be signs of signs and signs of their interpretants, and each of these HO signs requires a further occurrence of HO interpretants to continue and complete its meaning within a HO sign relation.  In general, HO signs can arise in a number of independent fashions, but one of the most common derivations is through the specialized devices of quotation.  This establishes a contingent relation between reflection and quotation.

This entire topic, involving the relationship of reflective interpreters to the realm of HO sign relations and the available operators for quotation, forms the subject of a recurring investigation that extends throughout the rest of this work.  This section introduces only enough of the basic concepts, terminology, and technical machinery that is necessary to get the theory of HO signs off the ground.

By way of a first definition, a "higher order" (HO) sign relation is a sign relation, some of whose signs are "higher order" (HO) signs.  If an extra degree of precision is needed, HO signs can be distinguished in a variety of different "species" or "types", to be taken up next.

In devising a nomenclature for the required species of HO signs, it is a good idea to generalize slightly, designing an analytic terminology that can be adapted to classify the HO signs of arbitrary relations, not just the HO signs of sign relations.  The work of developing a more powerful vocabulary can be put to good account at a later stage of this project, when it is necessary to discuss the structural constituents of arbitrary relations and to reflect on the language that is used to discuss them.  However, by way of making a gradual approach, it still helps to take up the classification of HO signs in a couple of passes, first considering the categories of HO signs as they apply to sign relations and then discussing how the same ideas are relevant to arbitrary relations.

Here are the species of HO signs that can be used to discuss the structural constituents and intensional genera of sign relations:

1.	Signs that denote signs, that is, signs whose objects are signs in the same sign relation, are called "higher ascent" (HA) signs.

2.	Signs that denote dyadic components of elementary sign relations, that is, signs whose objects are elemental pairs or dyadic actions having any one of the forms <o, s>, <o, i>, <s, i>, are called "higher employ" (HE) signs.

3.	Signs that denote elementary sign relations, that is, signs whose objects are elemental triples or triadic transactions having the form <o, s, i>, are called "higher import" (HI) signs.

4.	Signs that denote sign relations, that is, signs whose objects are themselves sign relations, are called "higher upshot" (HU) signs.

5.	Signs that denote intensional genera of sign relations, that is, signs whose objects are properties or classes of sign relations, are called "higher yclept" (HY) signs.

Analogous species of HO signs can be used to discuss the structural constituents and intensional genera of arbitrary relations.  In order to describe them, it is necessary to introduce a few extra notions from the theory of relations.  This, in turn, occasions a recurring difficulty with the exposition that needs to be noted at this point.

The subject matters of relations, types, and functions enjoy a form of recursive involvement with one another that makes it difficult to know where to get on and where to get off the circle of explanation.  As I currently understand their relationship, it can be approached in the following order:

: Relations have types.
: Types are functions.
: Functions are relations.

In this setting, a "type" is a function from the "places" of a relation, that is, from the index set of its components, to a collection of sets that are called the "domains" of the relation.

When a relation is given an extensional representation as a collection of elements, these elements are called its "elementary relations" or its "individual transactions".  The "type" of an elementary relation is a function from an index set whose elements are called the "places" of the relation to a set of sets whose elements are called the "domains" of the relation.  The "arity" or "adicity" of an elementary relation is the cardinality of this index set.  In general, these cardinalities can be ranked as finite, denumerably infinite, or non denumerable.

Elementary relations are also called the "effects" of a relation, more specifically, as its "maximal" or "total" effects, which are the kinds of effects that one usually intends in the absence of further qualification.  More generally, a "component relation" or a "partial transaction" of a relation is a projection of one of its elementary relations on a subset of its places.  

A "homogeneous relation" is a relation, all of whose elementary relations have the same type.  In this case, the type and the arity are properties that are defined for the relation itself.  The rest of this discussion is specialized to homogeneous relations.

When the arity of a relation is a finite number n, then the relation is called an "n place relation".  In this case, the elementary relations are just the n tuples belonging to the relation.  In the finite case, for example, a "non trivial properly partial transaction" is a k tuple extracted from an n tuple of the relation, where 1 < k < n.  The first element of an elementary relation is called its "object" or "prelate", while the remaining elements are called its "correlates".

1.	Signs that denote single correlates of an object in a relation are called "higher ascent" (HA) signs.

2.	Signs that denote moderate effects in a relation, that is, signs whose objects are partial transactions or k-tuples involving more than one place but less than the full set of places in a relation, are called "higher employ" (HE) signs.

3.	Signs that denote elementary relations involving all the places of a relation are called "higher import" (HI) signs.

4.	Signs that denote relations are called "higher upshot" (HU) signs.

5.	Signs that denote properties or classes of relations are called "higher yclept" (HY) signs.

Whenever the sense is clear, it is usually convenient to stick with the more generic terms for HO signs and HO sign relations, letting context determine the appropriate meaning.  For the rest of this section, it is mainly the categories of HA signs and HI signs that come into play.

The inquiry into inquiry is not pursued for reasons of sheer narcissism, but because it is unavoidably a part of the inquiry into anything else, since critical reflection on the methods employed is implicit in the task.  This means that the inquiry into inquiry must be able to formulate and critique alternative descriptions of inquiry in general, including itself.  Thus, there are notions of "entelechy", of a self referent objective, a completion in self description, or an end to self actualization, that are intrinsic to the conception of inquiry, whether or not its ends in view are ever achieved.  If inquiry, as a manner of thinking, is carried on in sign relations and is ever to be supported by computational means, then these reflections raise the issue of self describing sign relations and self documenting data structures.

This is where HO sign relations come in, making it possible to formalize sign relations that describe themselves and other sign relations, and thus enabling one to conceive of inquiries that inquire into themselves and other inquiries, at least in part.  It is useful to approach these topics in a couple of stages, at first, by describing sign relations that describe other sign relations, and then, by describing sign relations that describe themselves.  Although the implicit aim, or naive hope, is always to make these descriptions as complete as possible, it has to be recognized that partial success is all that is likely to be realized in practice.  It seems to be something between rare and impossible that a non trivial sign relation could completely describe itself with respect to every facet of its being and in all the ways that it does in fact exist.

Nevertheless, "partially self describing" (PSD) sign relations and "partially self documenting" (PSD) data structures do arise in practice, and so it is incumbent on this inquiry to look into the question of how they usually develop.  That is, how does a sign get itself interpreted in a sign relation in such a way that it acts as a partial self description of that selfsame sign relation?  There appear to be two main ways that this can happen.  Occasionally, it develops through the reflective operation or insightful turn of "retracting projections", that is, by recognizing that a feature attributed to others is also (or primarily) an aspect of oneself.  More commonly, PSD sign relations are encountered already in place, as when a HO sign relation has signs that describe lower orders, partial aspects, or previous stages of itself.

A further reduction in the number of different kinds of signs to worry about can be achieved by means of a special technique — some may call it an "artful dodge" — for referring indifferently to the elements of a set without referring to the set itself.  Under the designation of a "plural indefinite reference" (PIR) is included all the various ways of dealing with denominations, multiple denotations, collective references, or objective multitudes that avail themselves of this trick.

By way of definition, a sign q in a sign relation R c OxSxI is said to be, to constitute, or to make a PIR to (every element in) a set of objects, X c O, if and only if q denotes every element of X.  This relationship can be expressed in a succinct formula by making use of one additional definition.

The "denotation of q in R", written as "De(q, R)", is defined as follows:

De(q, R) = Den(R).q = ROS.q  =  {o C O : <o, q, i> C R, for some i C I}.

Then q makes a PIR to X in R if and only if X c De(q, R).  Of course, this includes the limiting case where X is a singleton, say X = {o}.  When this happens then the reference is neither plural nor indefinite, properly speaking, but q denotes o uniquely.

The proper exploitation of PIR's in sign relations makes it possible to finesse the distinction between HI signs and HU signs, in other words, to provide a ready means of translating between the two kinds of signs that preserves all the relevant information, at least, for many purposes.  This is accomplished by connecting the sides of the distinction in two directions.  First, a HI sign that makes a PIR to many triples of the form <o, s, i> can be taken as tantamount to a HU sign that denotes the corresponding sign relation.  Second, a HU sign that denotes a singleton sign relation can be taken as tantamount to a HI sign that denotes its single triple.  The relation of one sign being "tantamount to" another is not exactly a full fledged semantic equivalence, but it is a reasonable approximation to it, and one that serves a number of practical purposes.

In particular, it is not absolutely necessary for a sign relation to contain a HU sign in order for it to contain a description of itself or another sign relation.  As long the sign relation is "content" to maintain its reference to the object sign relation in the form of a constant name, then it suffices to use a HI sign that makes a PIR to all of its triples.

In the theory of sign relations, as in formal language theory, one tends to spend a lot of the time talking about signs as objects.  Doing this requires one to have signs for denoting signs and ways of telling when a sign is being used as a sign or is just being mentioned as an object.  Generally speaking, reflection on the usage of an established order of signs recruits another order of signs to denote them, and then another, and another, until a limit on one's powers of reflection is ultimately reached, and finally one is forced to conduct one's meaning in forms of interpretive practice that fail to be fully reflective in one critical respect or another.  In the last resort one resigns oneself to letting the recourse of signs be guided by casually intuited inklings of their potential senses.

In this text a number of linguistic devices are used to assist the faculty of reflection, hopefully forestalling the relegation of its powers to its own natural resources for a long enough spell to observe its action.  Two of the most frequently used strategies toward this purpose can be described as follows:

1.	In the declaration of HO signs and the specification of their uses, one can employ the same terminology and technical distinctions that are found to be effective in describing sign relations.  This turns the established terms for significant properties of world elements and the provisional terms for their relationships to each other to the ends of prescribing the relative orders of HO signs and their objects.  In short, the received theory of signs, however transient it may be at any given moment of inquiry, allows one to declare the absolute types and the relative roles that all of these entities are meant to take up.

For example, if I say that x connotes y and that y denotes z, then it means I imagine myself to have an interpretation or a sign relation in mind where x and y are both signs belonging to a single order of signs and y is a sign belonging to the next higher order of signs up from z, everything being relative to that particular moment of interpretation.  Of course, as far as wholly arbitrary sign relations go, there is nothing to guarantee that the interpretation I think myself to have in mind at one moment can be integrated with the interpretation I think myself to have in mind at another moment, or that a just order can be founded in the end by any manner of interpretation that "just follows orders" in this way.

2.	Ordinary quotation marks ("...") function as an operator on pieces of text to create names for the signs or expressions enclosed in them.  In doing this the quotation marks delay, defer, or interrupt the normal use of their subtended contents, interfering with the referential use of a sign or the evaluation of an expression in order to create a new sign.  The use of this constructed sign is to mention the immediate contents of the quotation marks in a way that can serve thereafter to indicate these contents directly or allude to them indirectly.

In the informal context, however, quotation marks are used equivocally for several other purposes.  In particular, they are frequently used to call attention to the immediate use of a sign, to stress it or redress it for a definitive, emphatic, or skeptical service, but without necessarily intending to interrupt or seriously alter its ongoing use.  Furthermore, ordinary quotation marks are commonly taken so literally that they can inadvertently pose an obstacle to functional abstraction.  For instance, if I try to refer to the effect of quotation as a mapping that takes signs to HO signs, thereby attempting to define its action by means of a lambda abstraction:  x  > "x", then there are modes of IL interpretation that would read this literally as a constant map, one that sends every element of the functional domain into the single code for the letter "x".

For these reasons I introduce the use of raised angle brackets (<...>), also called "arches" or "supercilia", to configure a form of quotation marker, but one that is subject to a more definite set of understandings about its interpretation.  Namely, the arch marker denotes a function on signs that takes (the name of) a syntactic element located within it as (the name of) a functional argument and returns as its functional value the name of that syntactic element.  The parenthetical operators in this statement reflect the optional readings that prevail in some cases, where the simple act of noticing a syntactic element as a functional argument is already tantamount to having a name for it.  As a result, a quoting function that is designed to operate on the signs denoting and not on the objects denoted seems to do nothing at all, but merely uses up a moment of time to do it.

In IL contexts the arch quotes are construed together with their syntactic contents as forming a certain kind of term, one that achieves a naming function on syntactic elements by taking the enclosed text as a functional argument and giving a directly embedded indication of it.  In this type of setting the name of a string of length k is a string of length k+2.

In FL contexts the arch marker denotes a function that takes the literal syntactic element bounded by it as its argument and returns the name, code, annotation, godel number, or "unique numerical identifier" (UNI) of that syntactic element.  In this setting there need be no straightforward relationship between the size or complexity of the syntactic element and the magnitude of its numerical code or the form of its symbolic code.

In CL implementations the arch operation is intended to do exactly what the principal uses of ordinary quotes are supposed to do, except that it obeys restrictions that are necessary to make it work as a notation for a computable function on the identified syntactic domain.

One further remark on the uses of quotation marks is pertinent here.  When using HA signs with high orders of complexity and depth, it is often convenient to revert to the use of ordinary quotes at the outer boundary of a quotational expression, in this way marking a return to the ordinary context of interpretation.  For example, one observes the colloquial equivalence:  <<<x>>>  =  "<<x>>".

In general, a good way to specify the meaning of a new notation is by means of a semantic equation, or a system of semantic equations, that expresses the function of the new signs in terms of familiar operations.  If it is merely a matter of introducing new signs for old meanings, then this method is sufficient.  In this vein, the intention and use of the "supercilious notation" for reflecting on signs could have its definition approximated in the following way.

Let <x> = "x" as signs for the object x, and let <<x>> = <"x"> = "<x>" as signs for the object "x", an object that incidentally happens to be sign.  An alternative way of putting this is to say that the members of the set {<x>, "x"} are equivalent as signs for the object x, while the members of the set {<<x>>, <"x">, "<x>"} are equivalent as signs for the sign "x".

6.10. Higher Order Sign Relations : Examples

In considering the HO sign relations that stem from the examples A and B, it appears that annexing the first level of HA signs is tantamount to adjoining or instituting an auxiliary interpretive framework, one that has the semantic equations shown in Table 36.

Table 36.  Semantics for Higher Order Signs
	Object Denoted	Equivalent Signs
	A	<A>  =  "A"
	B	<B>  =  "B"
	"A"	<<A>>  =  <"A">  =  "<A>"
	"B"	<<B>>  =  <"B">  =  "<B>"
	"i"	<<i>>  =  <"i">  =  "<i>"
	"u"	<<u>>  =  <"u">  =  "<u>"

However, there is an obvious problem with this method of defining new notations.  It merely provides alternate signs for the same old uses.  But if the original signs are ambiguous, then equating new signs to them cannot remedy the problem.  Thus, it is necessary to find ways of selectively reforming the uses of the old notation in the interpretation of the new notation.

Table 37.1  Sign Relational Schema C
	Object	Sign	Interpretant
	x	"x"	"x"
	"x"	"x"	"x"

Table 37.2  Sign Relational Schema D
	Object	Sign	Interpretant
	x	"x"	"x"

Table 37.3  Sign Relational Schema E
	Object	Sign	Interpretant
	"x"	"x"	"x"

Table 37.4  Sign Relational Schema D'
	Object	Sign	Interpretant
	x	"x"	"x"
	x	"x"	<x>
	x	<x>	"x"
	x	<x>	<x>

The invocation of "higher order" (HO) signs raises an important point, having to do with the typical ways that signs can become the objects of further signs, and the relationship that this type of semantic ascent bears to the interpretive agent's capacity for so called "reflection".  This is a topic that will recur again as the discussion develops, but a speculative foreshadowing of its character will have to serve for now.

Any object of an interpreter's experience and reasoning, no matter how vaguely and casually it initially appears, up to and including the merest appearance of a sign, is already, by virtue of these very circumstances, on its way to becoming the object of a formalized sign, so long as the signs are made available to denote it.  The reason for this is rooted in each agent's capacity for reflection on its own experience and reasoning, and the critical question is only whether these transient reflections can come to constitute signs of a more permanent use.

The immediate purpose of the "arch" operation is to equip the text with a syntactic mechanism for constructing "higher order" (HO) signs, that is, signs denoting signs.  But the step of reflection that the arch device marks corresponds to a definite change on the part of the interpreter, affecting the "pragmatic stance" or the "intentional attitude" that the interpreter takes up with respect to the affected signs.  Accordingly, because of its connection to the interpreter's capacity for critical reflection, the arch operation, whether signified by arches or quotes, opens up a topic of wide importance to the larger question of inquiry.  Unfortunately, there is much to do before this issue can be taken up in detail, and immediate concerns make it necessary to break off further discussion for now.

A general understanding of HO signs would not depend on the special devices that are used to construct them, but would define them as any signs that behave in certain ways under interpretation, that is, as any signs that are interpreted in a particular manner, yet to be specified.  A proper definition of HO signs, including a generic description of the operations that construct them, cannot be achieved at the present stage of discussion.  Doing this correctly depends on carrying out further developments in the theories of formal languages and sign relations.  Until this discussion reaches that point, much of what it says about HO signs will have to be regarded as a provisional compromise.

The development of reflection on interpretation leads to the generation of "higher order" (HO) signs that denote "lower order" (LO) signs as their objects.  This process is illustrated by the following "eponymy" of progressively HO signs, all of which stem from a plain precursor and ultimately refer back to their "eponymous ancestor":

x,  <x>,  <<x>>,  <<<x>>>,  ...

The intent of this succession, as interpreted in FL environments, is that <<x>> denotes or refers to <x>, which denotes or refers to x.  Moreover, its computational realization, as implemented in CL environments, is that <<x>> addresses or evaluates to <x>, which addresses or evaluates to x.

The designations "LO" and "HO" are attributed to signs in a casual, local, and transitory way.  At this point they signify nothing beyond the occurrence in a sign relation of a pair of triples having the form shown in Table 38.

Table 38.  Sign Relation Containing a Higher Order Sign
	Object	Sign	Interpretant
	...	s	...
	...	...	...
	s	t	...

This is all it takes to make s a LO sign and t a HO sign in relation to each other at the moments in question.  Whether a global ordering of a more generally justifiable sort can be constructed from an arbitrary series of such purely local impressions is another matter altogether.

Nevertheless, the preceding observations do show a way to give a definition of HO signs that does not depend on the peculiarities of quotational devices.  For example, consider the previously described "eponymy" of x, that is, the "higher archy" of increasingly HO signs stemming from the object x.  Table 39.1 shows how this succession can be transcribed into the form of a sign relation.  But this is formally no different from the sign relation suggested in Table 39.2, one whose individual signs are not constructed in any special way.  Both of these representations of sign relations, if continued in a consistent manner, would have the same abstract structure.  If one of them is HO then so is the other, at least, if the attributes of order are meant to have any formally invariant meaning.

Table 39.1  Sign Relation for a Succession of HO Signs (1)
	Object	Sign	Interpretant
	x	<x>	...
	<x>	<<x>>	...
	<<x>>	<<<x>>>	...
	...	...	...

Table 39.2  Sign Relation for a Succession of HO Signs (2)
	Object	Sign	Interpretant
	x	s1	...
	s1	s2	...
	s2	s3	...
	...	...	...

The rest of this section discusses the relationship between HO signs and a concept called the "reflective extension" of a sign relation.  Reflective extensions will be subjected to a more detailed study in a later part of this work.  For now, just to see how the process works, the sign relations A and B are taken as starting points to illustrate the more common forms of reflective development.

In the most typical scenario, HO sign relations come into being as the "reflective extensions" of simpler, possibly unreflective sign relations.  Conversely, the incorporation of HO signs within a sign relation leads to a larger sign relation that constitutes one of its "reflective extensions".  In general, there are many different ways that a reflective extension can get started and many different structures that can result.

In the initial slice of semantics presented for the dialogue of A and B, the sign domain S is identical to the interpretant domain I, and this set is disjoint from the object domain O.  In order for this discussion to develop more interesting examples of sign relations these constraints will need to be generalized.  As a start in this direction, one can preserve the identification of the syntactic domain as S = I and contemplate ways of varying the pattern of intersection between S and O.

One direction of generalization is motivated by the desire to give interpreters a measure of "reflective capacity".  This is a property of sign relations that can be associated with the overlap of O and S and gauged by the extent to which S is contained in O.  In intuitive terms, interpreters are said to have a "reflective capacity" to the extent that they can refer to their own signs independently of their denotations.  An interpretive system with a sufficient amount of reflective capacity can support the maintainence and manipulation of textual objects like expressions and programs without necessarily having to evaluate the expressions or execute the programs.

In ordinary discourse HA signs are usually generated by means of linguistic devices for quoting pieces of text.  In computational frameworks these quoting mechanisms are implemented as functions that map syntactic arguments into numerical or syntactic values.  A quoting function, given a sign or expression as its single argument, needs to accomplish two things:  first, to defer the reference of that sign, in other words, to inhibit, delay, or prevent the evaluation of its argument expression, and then, to exhibit or produce another sign whose object is precisely that argument expression.

The rest of this section considers the development of sign relations that have moderate capacities to reference their own signs as objects.  In each case, these extensions are assumed to begin with sign relations like A and B that have disjoint sets of objects and signs and thus have no reflective capacity at the outset.  The status of A and B as the "reflective origins" of a "reflective development" is recalled by saying that A and B themselves are the "zeroth order reflective extensions" of A and B, in symbols, A = Ref0(A) and B = Ref0(B).

The following set of Tables illustrates a few the most common ways that sign relations can begin to develop reflective extensions.  For ease of reference, Tables 40 and 41 repeat the contents of Tables 1 and 2, respectively, merely replacing ordinary quotes with arch quotes.

Table 40.  Reflective Origin Ref0(A)
	Object	Sign	Interpretant
	A	<A>	<A>
	A	<A>	<i>
	A	<i>	<A>
	A	<i>	<i>
	B	<B>	<B>
	B	<B>	<u>
	B	<u>	<B>
	B	<u>	<u>

Table 41.  Reflective Origin Ref0(B)
	Object	Sign	Interpretant
	A	<A>	<A>
	A	<A>	<u>
	A	<u>	<A>
	A	<u>	<u>
	B	<B>	<B>
	B	<B>	<i>
	B	<i>	<B>
	B	<i>	<i>

Tables 42 and 43 show one way that the sign relations A and B can be extended in a reflective sense through the use of quotational devices, yielding the "first order reflective extensions", Ref1(A) and Ref1(B).  These extensions add one layer of HA signs and their objects to the sign relations for A and B, respectively.  The new triples specify that, for each <x> in the set {<A>, <B>, <i>, <u>}, the HA sign of the form <<x>> connotes itself while denoting <x>.

Notice that the semantic equivalences of nouns and pronouns referring to each interpreter do not extend to semantic equivalences of their HO signs, exactly as demanded by the literal character of quotations.  Also notice that the reflective extensions of the sign relations A and B coincide in their reflective parts, since exactly the same triples were added to each set.

Table 42.  Higher Ascent Sign Relation Ref1(A)
	Object	Sign	Interpretant
	A	<A>	<A>
	A	<A>	<i>
	A	<i>	<A>
	A	<i>	<i>
	B	<B>	<B>
	B	<B>	<u>
	B	<u>	<B>
	B	<u>	<u>
	<A>	<<A>>	<<A>>
	<B>	<<B>>	<<B>>
	<i>	<<i>>	<<i>>
	<u>	<<u>>	<<u>>

Table 43.  Higher Ascent Sign Relation Ref1(B)
	Object	Sign	Interpretant
	A	<A>	<A>
	A	<A>	<u>
	A	<u>	<A>
	A	<u>	<u>
	B	<B>	<B>
	B	<B>	<i>
	B	<i>	<B>
	B	<i>	<i>
	<A>	<<A>>	<<A>>
	<B>	<<B>>	<<B>>
	<i>	<<i>>	<<i>>
	<u>	<<u>>	<<u>>

There are many ways to extend sign relations in an effort to develop their reflective capacities.  The implicit goal of a reflective project is to reach a condition of "reflective closure", a configuration satisfying the inclusion S c O, where every sign is an object.  It is important to note that not every process of reflective extension can achieve a reflective closure in a finite sign relation.  This can only happen if there are additional equivalence relations that keep the effective orders of signs within finite bounds.  As long as there are HO signs that remain distinct from all LO signs, the sign relation driven by a reflective process is forced to keep expanding.  In particular, the process that is "freely" suggested by the formation of Ref1(A) and Ref1(B) cannot reach closure if it continues as indicated, without further constraints.

Table 44.  Higher Import Sign Relation HI1(A)
	Object	Sign	Interpretant
	A	<A>	<A>
	A	<A>	<i>
	A	<i>	<A>
	A	<i>	<i>
	B	<B>	<B>
	B	<B>	<u>
	B	<u>	<B>
	B	<u>	<u>
	<A, <A>, <A>>	<A>	<A>
	<A, <A>, <i>>	<A>	<A>
	<A, <i>, <A>>	<A>	<A>
	<A, <i>, <i>>	<A>	<A>
	<B, <B>, <B>>	<A>	<A>
	<B, <B>, <u>>	<A>	<A>
	<B, <u>, <B>>	<A>	<A>
	<B, <u>, <u>>	<A>	<A>
	<A, <A>, <A>>	<B>	<B>
	<A, <A>, <u>>	<B>	<B>
	<A, <u>, <A>>	<B>	<B>
	<A, <u>, <u>>	<B>	<B>
	<B, <B>, <B>>	<B>	<B>
	<B, <B>, <i>>	<B>	<B>
	<B, <i>, <B>>	<B>	<B>
	<B, <i>, <i>>	<B>	<B>

Tables 44 and 45 present "HI extensions" of A and B, respectively.  These are just HO sign relations that add selections of HI signs and their objects to the underlying set of triples in A and B.  One way to understand these extensions is as follows.  The interpreters A and B each use nouns and pronouns just as before, except that the nouns are given additional denotations that refer to the interpretive conduct of the interpreter named.  In this form of development, using a noun as a canonical form that refers indifferently to all the <o, s, i> triples of a sign relation is a pragmatic way that a sign relation can refer to itself and to other sign relations.

Table 45.  Higher Import Sign Relation HI1(B)
	Object	Sign	Interpretant
	A	<A>	<A>
	A	<A>	<u>
	A	<u>	<A>
	A	<u>	<u>
	B	<B>	<B>
	B	<B>	<i>
	B	<i>	<B>
	B	<i>	<i>
	<A, <A>, <A>>	<A>	<A>
	<A, <A>, <i>>	<A>	<A>
	<A, <i>, <A>>	<A>	<A>
	<A, <i>, <i>>	<A>	<A>
	<B, <B>, <B>>	<A>	<A>
	<B, <B>, <u>>	<A>	<A>
	<B, <u>, <B>>	<A>	<A>
	<B, <u>, <u>>	<A>	<A>
	<A, <A>, <A>>	<B>	<B>
	<A, <A>, <u>>	<B>	<B>
	<A, <u>, <A>>	<B>	<B>
	<A, <u>, <u>>	<B>	<B>
	<B, <B>, <B>>	<B>	<B>
	<B, <B>, <i>>	<B>	<B>
	<B, <i>, <B>>	<B>	<B>
	<B, <i>, <i>>	<B>	<B>

Several important facts about the class of HO sign relations in general are illustrated by these examples.  First, the notations appearing in the object columns of HI1(A) and HI1(B) are not the terms that these newly extended interpreters are depicted as using to describe their objects, but the kinds of language that you and I, or other external observers, would typically make available to distinguish them.  The agents A and B, as extended by the transactions of HI1(A) and HI1(B), respectively, are still restricted to their original syntactic domain {"A", "B", "i", "u"}.  This means that there need be nothing especially articulate about a HI sign relation just because it qualifies as HO.  Indeed, the sign relations HI1(A) and HI1(B) are not very discriminating in their descriptions of the sign relations A and B, referring to many different things under the very same signs that you and I and others would explicitly distinguish, especially in marking the distinction between an interpretive agent and any one of its individual transactions.

In practice, it does an interpreter little good to have the HI signs for referring to triples of objects, signs, and interpretants if it does not also have the HA signs for referring to each triple's syntactic portions.  Consequently, the HO sign relations that one is likely to observe in practice are typically a mixed bag, having both HA and HI sections.  Moreover, the ambiguity involved in having signs that refer equivocally to simple world elements and also to complex structures formed from these ingredients would most likely be resolved by drawing additional information from context and fashioning more distinctive signs.

These reflections raise the issue of how articulate a HO sign relation is in its depiction of its object signs and object sign relations.  For now, I can do little more than note the dimension of articulation as a feature of interest, contributing to the scale of aesthetic utility that makes some sign relations better than others for a given purpose, and serving as a drive that motivates their continuing development.

The technique illustrated here represents a general strategy, one that can be exploited to derive certain benefits of set theory without having to pay the overhead that is needed to maintain sets as abstract objects.  Using an identified type of a sign as a canonical form that can refer indifferently to all the members of a set is a pragmatic way of making plural reference to the members of a set without invoking the set itself as an abstract object.  Of course, it is not that one can get something for nothing by these means.  One is merely banking on one's recurring investment in the setting of a certain sign relation, a particular set of elementary transactions that is taken for granted as already funded.

As a rule, it is desirable for the grammatical system that one uses to construct and interpret HO signs, that is, signs for referring to signs as objects, to mesh in a comfortable fashion with the overall pragmatic system that one uses to assign syntactic codes to objects in general.  For future reference, I call this requirement the problem of creating a "conformally reflective extension" (CRE) for a given sign relation.  A good way to think about this task is to imagine oneself beginning with a sign relation R c OxSxI, and to consider its denotative component DenR = ROS c OxS.  Typically one has a "naming function", call it "Nom", that maps objects into signs:

Nom  c  DenR  c  OxS,   such that   Nom : O -> S.

Part of the task of making a sign relation more reflective is to extend it in ways that turn more of its signs into objects.  This is the reason for creating HO signs, which are just signs for making objects out of signs.  One effect of progressive reflection is to extend the initial Nom through a succession of new naming functions Nom', Nom'', and so on, assigning unique names to larger allotments of the original and subsequent signs.  With respect to the difficulties of construction, the "hard" core or the "adamant" part of creating an extended naming function is in the initial portion Nom that maps objects of the "external world" into signs in the "internal world".  The subsequent task of assigning conventional names to signs is supposed to be comparatively natural and "easy", perhaps on account of the "nominal" nature of signs themselves.

The effect of reflection on the original sign relation R c OxSxI can be analyzed as follows.  Suppose that a step of reflection creates HO signs for a subset of S.  Then this step involves the construction of a newly extended sign relation:

R' c O'xS'xI',  where  O' = O U O1  and  S' = S U S1.

In this construction O1 c S is that portion of the original signs S for which HO signs are created in the initial step of reflection, thereby being converted into O1 c O'.  The sign domain S is extended to a new sign domain S' by the addition of these HO signs, namely, the set S1.  Using the arch quotes (<...>), the mapping from O1 to S1 can be defined as follows:

Nom1 : O1 -> S1   such that   Nom1 : x -> <x>.

Finally, the reflectively extended naming function Nom' : O'  > S' is defined as Nom' = Nom U Nom'.

A few remarks are necessary to see how this way of defining a CRE can be regarded as legitimate.

In the present context an application of the arch notation "<x>" is read on analogy with the use of any other functional notation "f(x)", where "f" is the name of a function f, "f( )" is the context of its application, "x" is the name of an argument x, and where the functional abstraction "x  > f(x)" is just another name for the function f.

It is clear that some form of functional abstraction is being invoked in the definition of Nom1, above.  Otherwise, the expression "x  > <x>" would indicate a constant function, one that maps every x in its domain to the same sign or code for the letter "x".  But if this is allowed, then it seems either to invoke a more powerful concept, lambda abstraction, than the one being defined or else to attempt an improper definition of the naming function in terms of itself.

Although it appears that this form of functional abstraction is being used to define the CRE in terms of itself, trying to extend the definition of the naming function in terms of a definition that is already assumed to be available, in actuality this only uses a finite function, a finite table look up, to define the naming function for an unlimited number of HO signs.

In CL contexts, especially in the Lisp tradition, the quotation operator is recognized as an "evaluation inhibitor" and implemented as a function that maps each syntactic element into its unique numerical identifier or "godel number".  Perhaps one should pause to marvel at the fact that a form of delay, deference, and interruption akin to an inhibition should be associated with the creation of signs that refer in meaningful ways.

On reflection, though, the connection between attribution and inhibition, or acknowledgment and deference, begins to appear less remarkable, and in time it can even be understood as natural and necessary.  For one thing, psychoanalytic and psychodynamic theories of mental functioning have long recognized that symbol formation and symptom formation are closely akin, being the twin founders of civilization and many of its discontents.  For another thing, the following etymology can be rather instructive:  The English word "memory" derives from the Latin "memor" for "mindful", which is akin to the Latin "mora" for "delay", the Greek "mermera" for "care", and the Sanskrit "smarati" for "he remembers".  To explore the verbal complex a bit further, it merits remembering that the ideas of "merit" and "membership", besides being connected with the due proportions, earned shares, and just deserts that are parceled out on parchment, are also tied up with the particular kind of care that is needed to take account of things part for part.  (The Latin "merere" for "earn" or "deserve", along with "membrana" for "skin" or "parchment" and "memor" for "mindful", are all akin to the Greek "merizein" for "divide" and "meros" for "part".)  Although the voices of psychology and etymology are seldom heard at this depth in the wilderness of formal abstraction, I think it is worth heeding them on this point.

In CL environments of the Pascal variety there are several different ways that HO signs can be created.  In these settings HO signs, or signs for referring to signs as objects, can be implemented as the "codes" that serve as numerical identifiers of characters or the "pointers" that serve as accessory indices of symbolic expressions.

But not all the signs that are needed for referring to other signs can be constructed by means of quotation.  Other forms of HO signs have to be generated "de novo", that is, constructed independently of previous successions and introduced directly into their appropriate orders.  Among other things, this obviates the "obvious" strategy for telling the order of a sign by counting its quota of quotation marks.  Failing the chances of exploiting such a naive measure in absolute terms, and in the absence of a natural order for the construction of signs, the relative orders of signs can only be assessed by examining the complex network of denotative and connotative relationships that connect them, or the gaps that arise when they fail to do so.

In a CL context this often occurs when a constant is declared equal or a variable is set equal to a quoted character, as in the following sequence of Pascal expressions:

	const	comma = ',' ;

	var x;	x := comma  ;

In this passage, the sign <comma> is made to denote whatever it is that sign <','> denotes, and the variable x is then set equal to this value.

6.11. Higher Order Sign Relations : Application

Given the language in which a notation like "De (q, R)" makes sense, or in prospect of being given such a language, it is instructive to ask:  "What must be assumed about the context of interpretation in which this language is supposed to make sense?"  According to the theory of signs that is being examined here, the relevant formal aspects of that context are embodied in a particular sign relation, call it "Q".  With respect to the hypothetical sign relation Q, commonly personified as the prospective reader or the ideal interpreter of the intended language, the denotation of the expression "De (q, R)" is given by:

De ("De (q, R)", Q).

If Q follows rules that are typical of many species of interpreters, then the value of this expression will depend on the values of the following three expressions:

De ("De", Q),
De ("q" , Q),
De ("R" , Q).

What are the roles of the signs "De", "q", "R" and what are they supposed to mean to Q?  Evidently, "De" is a constant name that refers to a particular function, "q" is a variable name that makes a PIR to a collection of signs, and "R" is a variable name that makes a PIR to a collection of sign relations.

This is not the place to take up the possibility of an ideal, universal, or even a very comprehensive interpreter for the language indicated here, so I specialize the account to consider an interpreter QAB = Q(A, B) that is competent to cover the initial level of reflections that arise from the dialogue of A and B.

For the interpreter QAB, the sign variable q need only range over the syntactic domain S = {"A", "B", "i", "u"} and the relation variable R need only range over the object domain O = {A, B}, so long as the latter objects remain subject to analysis as sign relations.  These requirements can be accomplished as follows:

1.	The variable name "q" is a HA sign that makes a PIR to the elements of S.

2.	The variable name "R" is a HU sign that makes a PIR to the elements of O, regarded as sign relations.

3.	The constant name "A" is a HI sign that makes a PIR to the elements of A.

4.	The constant name "B" is a HI sign that makes a PIR to the elements of B.

This results in a HO sign relation for QAB that is shown in Table 46.

Table 46.  Higher Order Sign Relation for Q(A, B)
	Object	Sign	Interpretant
	A	<R>	<R>
	B	<R>	<R>
	<A>	<q>	<q>
	<B>	<q>	<q>
	<i>	<q>	<q>
	<u>	<q>	<q>
	<A, <A>, <A>>	<A>	<A>
	<A, <A>, <i>>	<A>	<A>
	<A, <i>, <A>>	<A>	<A>
	<A, <i>, <i>>	<A>	<A>
	<B, <B>, <B>>	<A>	<A>
	<B, <B>, <u>>	<A>	<A>
	<B, <u>, <B>>	<A>	<A>
	<B, <u>, <u>>	<A>	<A>
	<A, <A>, <A>>	<B>	<B>
	<A, <A>, <u>>	<B>	<B>
	<A, <u>, <A>>	<B>	<B>
	<A, <u>, <u>>	<B>	<B>
	<B, <B>, <B>>	<B>	<B>
	<B, <B>, <i>>	<B>	<B>
	<B, <i>, <B>>	<B>	<B>
	<B, <i>, <i>>	<B>	<B>
	<<<A>, A>, A>	<De>	<De>
	<<<B>, A>, B>	<De>	<De>
	<<<i>, A>, A>	<De>	<De>
	<<<u>, A>, B>	<De>	<De>
	<<<A>, B>, A>	<De>	<De>
	<<<B>, B>, B>	<De>	<De>
	<<<i>, B>, B>	<De>	<De>
	<<<u>, B>, A>	<De>	<De>

Following the manner of construction in this extremely reduced example, it is possible to see how answers to the above questions, concerning the meaning of "De (q, R)", might be worked out.  In the present instance:

De ("q", QAB)  =  S,
De ("R", QAB)  =  O.

6.12. Issue 1. The Status of Signs

This section considers an issue that affects the status of signs and their mode of significance, as it appears under each of the three NOS's.  The concerns that arise with respect to this issue can be divided into two sets of questions.  The first type of question has to do with the default assumptions that are made about the meanings of signs and the strategies that are used to deal with signs that fail to have meanings.  The second type of question has to do with higher order signs, or signs that involve signs among their objects.

Only certain types of signs are able to make their appearance in a given medium or a particular style of text, while many others are not.  But a sign is a sign by virtue of the fact that it is interpreted as a sign, and thus plays the role of a sign in a sign relation, and not of necessity because it has any special construction other than that of being construed as a sign.

The theory of formal languages, as pursued under the FL perspective, is closely related to the theory of semigroups, as pursued under the IL perspective, in the sense that arbitrary formal languages can be studied as subsets of the semigroups that embody the primitive concatenation of linguistic symbols within their algebraic laws of composition.  Thus, in staging any discussion of formal languages, the theory of semigroups is often taken for a neutral, indifferent, or undifferentiated background, but the wisdom of using this setting is contingent on understanding the distinct outlooks of the casual and formal NOS's.  What divides the two styles and their favorite subjects in practice is a certain difference in attitude toward the status and role of their subject materials.  Namely, it turns on the question of whether their primitive and derived elements are valued as terminal objects in and of themselves or whether these syntactic objects and constructions are interpreted as mere signs and sundry expressions whose true value lies elsewhere.

In taking up the IL attitude toward any mathematical system, semigroups in particular, one assumes that signs are available for denoting a class of formal objects, but the issue of how these notational matters come to be constellated is considered to be peripheral, lacking in a substantive weight of concern and enjoying a purely marginal interest.

In the discussion of formal languages the presumption of significance is shifted in the opposite direction.  Signs are presumed to be innocent of meaning until it can be demonstrated otherwise.  One begins with a set of primitive objects, formally called "signs", but treated as meaningless tokens or as objects that are bare of all extraneous semantic trappings.  From these simplest signs, a law of composition allows the construction of complex expressions in regular ways, but other than that anything goes, at least, at first.

A first cut taken in the space of expressions divides them into two classes:  (a) the "grammatical", "well formed" or "meaningful, maybe", versus (b) the "ungrammatical", "ill formed" or "meaningless, for sure".  This first bit of semantic information is usually regarded as marking a purely syntactic distinction.  Typically one seeks a recursive function that computes this bit of meaningfulness as a property of its argument and thereby decides (or semi decides) whether an arbitrary expression ("string", "strand", "sequence") constitutes an expressive expression ("word", "sentence", "message"), or not.  The means of computation is often presented in the form of various "grammars" or "automata" that can serve as "acceptors or "generators" for the language.

Depending on one's school of thought, the syntactic bit of computation for interesting cases of natural languages is thought to be either (1) formally independent of all the more properly semantic features, or (2) heavily reliant on the construal of further bits of meaning to make its decision.  Accordingly, the semantics proper for such a language ought to begin either (1) serially after or (2) concurrently while the syntactic bit is done.  The first standpoint is usually described as a "declaration of syntactic independence", while the second opinion is often called a "semantic bootstrapping hypothesis".

Over and above both of these positions the pragmatic theory of signs poses a stronger thesis of irreducibility or non independence that one might call a "pragmatic bootstrapping hypothesis".  Even though it is a more complex task initially to work with triadic relations themselves instead of their dyadic projections, this hypothesis suggests that the structural integrity of interesting natural languages, when taken over the long haul, may well depend on them.  One part of this thesis is not a hypothesis but a fact.  There do indeed exist triadic relations that cannot be reconstructed uniquely from their dyadic projections, and thus are called "irreducibly triadic" (IT).  The parts of the thesis that are hypothetical, and that need to be cleared up by empirical inquiry, suggest that many of the most important sign relations are IT, and that interesting cases of natural languages depend heavily on these kinds of sign relations for their salient properties, for example, their relevance and adaptability to the objective world, their structural integrity and internal coherence, and their learnability by human agents and other species of finitely informed creatures.

In practice, this question has little consequence for the present study, on account of the extremely simple and artificial kinds of languages that are needed to carry out its aims.  If some reason develops to emulate the properties of interesting natural languages in this microcosm, then a decision about which strategy to use can be made at that time.  For now it seems worthwhile to keep exploring all of the above options.

In a FL context one begins with the imposition of general inhibition against the notion that a specific class of signs has any meaning at all, or at least, that its elements have the meanings one is accustomed to think they do.  It is significant that one does not proscribe all signs from having meaning, or else there is no point in having a discussion, and no point from which to carry on a discussion of anything at all.  Therefore, the arena of formal discussion is a limited one and, except for the occasional resonance that its action induces in the surrounding discursive universe, most of the signs outside its bounds continue to be used in the habitual ways.

What can be done with the signs in question?  Apparently, signs viewed as objects in the formal arena, temporarily cut off from their usual associations, treated as terminal values in themselves, and put under review to suggest explanations for themselves, can still be discussed.  Doing this involves the use of other signs for denoting the signs in question.  These extra signs, whose sense and use are not in question at the moment in question, are called into play as "higher order" (HO) signs, and it is their very meaningfulness and effectiveness that one must rely on to carry out the investigation of the "lower order" (LO) signs that are in question.

An apt and proper discussion of a set of signs in question requires the ability to classify the tokens of these signs according to their types.  Doing this calls on the use of other HO signs to denote these "tokens", the transient instances of signs, and their "types", the propertied classes of tokens that correspond to what is typically valued as a sign.  The invocation of HO signs can be iterated in a succession of HO's that extends as far as one pleases, but no matter how much of this order is progressively formalized one eventually must resort to signs of such a high order that they are taken for granted as resting, for the moment, in an informal context of interpretation.

What is the sense and use of such a proceeding?  Evidently, the signs in question, as a class, must present the inquirer with phenomena that are somehow simpler than, and yet convey instructive information about, the phenomenon known as the "whole objective world" (WOW).  If their orders of complexity and perplexity are just as great as the world at large, then their investigation affords no advantage over the general empirical problem of trying to account for the WOW.  If they enjoy no informative connection with the greater wonders of why the world is the way it is, and therefore fail to present a significant representation of the original question, then their isolated inquiry can serve no larger purpose in the world.

In situations like the one just described, where functions and relations on one order of arguments are clarified, defined, or explained in terms of functions and relations on another order of arguments, it is natural to understand the effort at clarification, definition, or explanation as a recursive process.  What raises the potential for confusion in the given arrangement of formal and casual contexts is the circumstance that what seems natural to call the LO arguments are being discussed in terms of what seems natural to call the HO arguments.  What is going on here?  As it happens, the ordering of signs from LO to HO that seems obvious from the standpoint of their typical construction and their order of appearance on the stage of discussion does not reflect the measure of complexity that is relevant to the effort at recursive exposition.

The measure of complexity that is relevant to the formal exposition is the measure of doubt, uncertainty, or perplexity that one entertains about the sense and use of a sign beset by questions, whether this occurs by force of a voluntary effort to bracket its habitual senses or by dint of a puzzling event that brings its automatic uses to a halt.

It is the language being discussed that is the formal one, to be treated initially as an object, while the language that is used to carry out the discussion tries to maintain its informal viability, expecting in effect to be taken on faith as not undermining or vitiating the effort at inquiry due to unexamined flaws of its own.  Nevertheless, if inquiry in general is expected to be self correcting, then a continuing series of failures to conclude inquiries by means of a given arrangement, that is, an inability to resolve uncertainties through a particular division of labor between FL and IL contexts, must lead to the grounds of attack being shifted.

In working out compromises between the FL and IL styles of usage one faces all the problems usually associated with integrating different "frameworks of interpretation" (FOI's), but compounded by the additional factors (1) that this conflict of attitudes, or its practical importance, is seldom openly acknowledged, and (2) that the frameworks in and of the negotiation to be transacted are rarely capable of being formalized, or even of being made conscious, to the same degree at the same time.  These circumstances make the consequences of the underlying conflict difficult to address, and thus they continue to obstruct the desired implementation of a common CL environment that could serve as a resource for work on both sides of the frame.

6.13. Issue 2. The Status of Sets

That the word "set" is being used indiscriminately for completely different notions and that this is the source of the apparent paradoxes of this young branch of science, that, moreover, set theory itself can no more dispense with axiomatic assumptions than can any other exact science and that these assumptions, just as in other disciplines, are subject to a certain arbitrariness, even if they lie much deeper here — I do not want to represent any of this as something new.	(Julius Konig, 1905).

Set theory is not as young as it used to be, and not half as naive as it was when this statement was originally made, but the statement itself is just as apt in its application to the present scene and just as fresh in its lack of novelty as it was then.  In the current setting, though, I am not so concerned with potentially different theoretical notions of a set that are represented by conventionally different axiom systems as I am with the actual diversity of practical notions that are used to deal with sets under each of the three NOS's identified.

Even though all three NOS's use set theoretic constructions, the implicit theories of sets that are involved in their different uses are so varied in their assumptions and intentions that it amounts to a major source of friction between the casual and formal styles to try to pretend that the same subject is being invoked in every case.  In particular, it makes a huge difference whether these sets are treated objectively, as belonging to the OF, or treated syntactically, as belonging to the IF.

In practical terms it makes all the difference in the world whether a set is viewed as a set of objects or whether it is viewed as a set of signs.  The same set can be contemplated in each type of placement, but it does not always fit as well into both types of role.  A set of objects is properly a part of the OF, and this is intended in its typical parts to model those realities whose laws and vagaries can extend outside the means of an agent's control.  A set of signs is properly part of the IF, and this is constructed in its typical parts so that its variations and selections are subject to control for the ends of interpretive indication.  The relevant variable is one of control, and the measure of it tells how well matched are the proper placements and the typical assignments that a given set is given.

Things referred to the objective world are not things that one expects to have much control over, at least, not at first, even though a reason for developing a language is to gain more control over events in time.  Things referred to the realm of signs are things that one thinks oneself to have under control, at least, at first, even though their complexity can evolve in time beyond one's powers of oversight.

In an ordinary mathematical context, when one writes out the expression for a finite set in the form "{x1, ..., xn}", then one expects to see the names of objects appearing between the braces.  Furthermore, even if these additional expectations are hardly ever formalized, these objects are typically expected to be the terminal objects of denotative value in the appropriate context of discussion and to inhabit a single order of objective existence.  In other words, it is common to assume that all of the objects named have the same type, with no relations of consequence, functional, semantic, or otherwise, obtaining among them.  As soon as these assumptions are made explicit, of course, it is obvious that they do not have to be so.

In FL contexts, when a set is taken as the alphabet or the lexicon of a formal language, then the objects named are themselves signs, but it is still only their names that are subject to appearing between the braces.  Often one seeks to handle this case by saying that what really appears between the braces are signs of sort that can suffice to represent themselves, and thus that these signs literally constitute their own names, but this is not ultimately a sensible tactic to try.  As always, only the tokens of signs can appear on the page, and these come and go as the pages are turned.  Although these tokens, by representing the types that encase them, partly succeed in referring to themselves, what they denote on principle is something much more abstract, general, and invariant than their own concrete, particular, and transient selves.  Nevertheless, the expectation that all of the elements in the set reside at the same level of syntactic existence is still in effect.

The construction of a RIF demands a closer examination of these assumptions and requires a single discussion that can refer to mixed types of elements with significant relations among them.

In a FL context one needs to be more self conscious about the use of signs, and, after an initially painful period during which critical reflection seems more to interfere with thought more than to facilitate understanding, it is hoped that the extra measure of reflection will pay off when it is time to mediate one's thinking in a CL framework.

There are numerous devices that one can use to assist with the task of reflection.  Rather than trying to divert the customary connections of informal language use and the conventional conduct of its interpretation, it is easier to introduce a collection of markedly novel signs, analogous to those already in use but whose interpretation is both free enough to be changed and controlled through a series of experimental variations and flexible enough to be altered when fitting and repaired when faulty.

If X = {x1, ... , xn} is a set of objects under discussion, then one needs to be able to consider several sets of signs that might be associated, element by element, with the elements of X.

1.	The "nominal resource" ("nominal alphabet" or "nominal lexicon") for X is a set of signs that is notated and defined as follows:

X"	=  Nom (X)  =  {"x1", ... , "xn"}.

This concept is intended to capture the ordinary usage of this set of signs in one familiar context or another.

2.	The "mediate resource" ("mediate alphabet" or "mediate lexicon") for X is a set of signs that is notated and defined as follows:

X<>	=  Med (X)  =  {<x1>, ... , <xn>}.

This concept provides a middle ground between the nominal resource above and the literal resource below.

3.	The "literal resource" ("literal alphabet" or "literal lexicon") 
for X is a set of signs that is notated and defined as follows:

X	=  Lit (X)  =  { x1 , ... ,  xn }.

This concept is intended to supply a set of signs that can be used in ways that are analogous to familiar usages, but which are more subject to free variation and thematic control.

6.14. Issue 3. The Status of Variables

Another issue on which the three styles of usage diverge most severely is with respect to a crucial problem about the status of variables.  Often this is posed as a question about the "ontological status" of variables, what kinds of objects they are, but it is better treated as a question about the "pragmatic status" of variables, what kinds of signs they are used as.  In this section, I try to accommodate common practices in the use of variables in the process of building a bridge to the pragmatic perspective.  The goal is to reconstruct customary ways of regarding variables within a overarching framework of sign relations, while disentangling the many confusions about the status of variables that obstruct their clear and consistent formalization.

Variables are the most problematic entities that have to be dealt with in the process of formalization, and this makes it useful to explore several  different ways of approaching their treatment, either of accounting for them or explaining them away.  The various tactics available for dealing with variables can be organized according to how they respond to two questions:  Are variables good or bad, and what kinds of things are variables anyway?  That is:  (1) Are variables a good thing to have in a purified system of interpretation or a target formal system, or should variables be eliminated by the work of formalization?  (2) What sorts of things should variables be construed as?

The answers given to these questions determine several consequences.  If variables are good things, things that ought to be retained in a purified formal system, then it must be possible to account for their valid uses in a sensible fashion.  If variables are bad things, things that ought to be eliminated from a purified formal system, then it must be possible to "explain away" their properties and utilities in terms of more basic concepts and operations.

One approach is to eliminate variables altogether from the primitive conceptual basis of one's formalism, replacing every form of substitution with a form of application.  In the abstract, this makes applications of constant operators to one another the only type of combination that needs to be considered.  This is the strategy of the so called "combinator calculus".

If it is desired to retain a notion of variables in the formalism, and to maintain variables as objects of reference, then there are a couple of partial explanations of variables that still afford them with various measures of objective existence.

In the "elemental construal" of variables, a variable x is just an existing object x that is an element of a set X, the catch being "which element?".  In spite of this lack of information, one is still permitted to write "x C X" as a syntactically well formed expression and otherwise to treat the variable name "x" as a pronoun on a grammatical par with a noun.  Given enough information about the contexts of usage and interpretation, this explanation of the variable x as an unknown object would complete itself in a determinate indication of the element intended, just as if a constant object had always been named by "x".

In the "functional construal" of variables, a variable is a function of unknown circumstances that results in a known range of definite values.  This tactic pushes the ostensible location of the uncertainty back a bit, into the domain of a named function, but it cannot eliminate it entirely.  Thus, a variable is a function x : X >Y that maps a domain of unknown circumstances, or a "sample space" X, into a range Y of outcome values.  Typically, variables of this sort come in sets of the form {xi : X >Y}, collectively called "coordinate projections" and together constituting a basis for a whole class of functions f : X >Y sharing a similar type.  This construal succeeds in giving each variable name "xi" an objective referent, namely, the coordinate projection xi, but the explanation is partial to the extent that the domain of unknown circumstances remains to be explained.  Completing this explanation of variables, to the extent that it can be accomplished, requires an account of how these unknown circumstances can be known exactly to the extent that they are in fact described, that is, in terms of their effects under the given projections.

As suggested by the whole direction of the present work, the ultimate explanation of variables is to be given by the pragmatic theory of signs, where variables are treated as a special class of signs called "indices".

Because it was necessary to begin informally, I started out speaking of things called "variables" as if there really were such things, taking it for granted that a consistent concept of their existence could be formed that would substantiate the ordinary usages carried out in their name, and contemplating judgments of their worth as if it were a matter of judging existing objects rather than the very ideas of their existence, whereas it is precisely the whole question at issue whether any of these presumptions are justified.  As concessions to common usage, encounters with these assumptions are probably unavoidable, but a formal approach requires one to backtrack a bit, to treat the descriptive term "variable" as nothing more substantial than a general name in common use, and to examine whether its uses can be maintained in a purely formal system.  Further, each of the "variables" that is taken to fall under this term has to allow its various indications to be reconsidered in the guise of mere signs and to permit the question of their objective reference to be examined anew.

At this point, it is worth trying to apply the insights of nominalism to these questions, if only to see where they lead.

It is the general advice of nominalism not to confuse a general name with the name of a general.  To this, pragmatism adds the distinct recommendation not to confuse an individual name with the name of an individual, because a particular that seems perfectly determinate for some purposes may not be determinate enough for other purposes.

In the perspective that results from combining these two points of view, general properties and individual instances, alike, can take on from the start an equally provisional status as objects of discussion and thought, in the meantime treated as interpretive fictions, as mere potentials for meaning, awaiting the settlement of their reality at the end of inquiry.  Meanwhile, the individual can be exactly as tentative as the general, and ultimately, the general can be precisely as real as the individual.  Still, their provisional treatment as hypothetical objects of reasoning does not affect their yet to be determined status as realities.  This is so because it is possible that a hypothesis hits the mark, and it remains so as long as a provenient fiction, something called a likely story on account of its origin, can still succeed in guessing the truth aright.

Unlike generals, individuals, and numerous other forms of logical and mathematical objects, whose treatment as fictions does not affect their status as realities, one way or the other, there does not seem to be any consistent way of treating variables as objects.  Although each one of the elemental and the functional construals appears to work well enough when taken by itself in the appropriate context, trying to combine these two notions into a single concept of the variable can lead to the mistake of confusing a function with one of its values.

Whether one tries to account for variables or chooses to explain them away, it is still necessary to say what kinds of entities are really involved when one is using this form of speech and trying to reason with or about its terms, whether one is speaking about things described as "variables" or merely about their terms of description, whether there are really objects to be dealt with or merely signs to be dispensed with.

According to one way of understanding the term, there is no object called a "variable" unless that object is a sign, and so the name "variable name" is redundant.  Variables, if they are anything at all, are analogous to numerals, not numbers, and thus they fall within the broad class of signs called "identifiers", more specifically, as "indices".  In the case of variables, the advice of nominalism, not to confuse a variable name with the name of a variable, seems to be well taken.

If the world of elements appropriate to this discussion is organized into objective and syntactic domains, then there are fundamentally just two different ways of regarding variables, as objects or as signs.  One can say that a variable is a fictional object that is contrived to provide a variable name with a form of objective referent, or one can say that a variable is a sign itself, the same thing as a variable name.  In the present setting, it is convenient to arrange these broad approaches to variables under the NOS's where one finds them most often pursued.

1.	The IL approach to the question takes the "objective construal" of variables as its most commonly chosen default.  The IL style that is used in ordinary mathematical discussion associates a variable with a determinate set, one that the variable is regarded as "ranging over".  As a result, this NOS is forced to invoke a version of set theory, usually naive, to account for its use of variables.

2.	The FL styles are manifestly varied in their explanations of variables, since there are many ways to formalize their ordinary uses.  Two of the main alternatives are:  (a) formalizing the set theory that is invoked with the use of variables, and (b) formalizing the sign relations in which variables operate as indices.  Since an index is a kind of sign that denotes its object by virtue of an actual connection with it, and since the nature and direction of these actual connections can vary immensely from moment to moment, a variable is an extremely flexible and adaptable kind of sign, hence its character as a "reusable sign".

3.	The CL styles are also legion in their approaches to variables, but they can be divided into those eliminate variables as a primitive concept and those that retain a notion of variables in their conceptual basis.

a.	An instructive case is presented by what is the most complete working out of the computational programme, the "combinator calculus".  Here, the goal is to eliminate the notion of a variable altogether from the conceptual basis of a formal system.  In other words, it is projected to reduce its status as a primitive concept, one that applies to symbols in the object language, and to reformulate it as a derived concept, one that is more appropriate to describing constructions in a metalanguage.

b.	In CL contexts where variables are retained as a primitive notion, there is a form of distinction between variables and variable names, but here it takes on a different sense, being the distinction between a sign and its HO sign.  This is because a variable is conceived as a "store", a "component of state" (COS) of the interpreting machine, that contains different values from time to time, while the variable name is a symbolic version of that store's address.  The store when full, or the state when determinate, constitutes a form of numeral, not a number, and so it is still a sign, not the object itself.  This makes the variable name in this setting a type of HO sign.

It is not just the influence of different conventions about language use that forms the source of so much confusion.  Different conventions that prevail in different contexts would generate conceptual turbulence only at their boundaries with each other, and not distribute the disturbance throughout the interiors of these contexts, as is currently the case.  But there are higher order differential conventions, in other words, conventions about changing conventions, that apply without warning all throughout what is pretended to be a uniform context.

For example, suppose I make a casual reference to the following set of pronouns:

{I, you, he, she, we, they}.

Then chances are that the reader will automatically shift to what I have called the "sign convention" to interpret this reference.  Even without the instruction to expect a set of pronouns, it makes no sense in this setting to think I am referring to a set of people, and so a charitable assumption about my intentions to make sense will lead to the intended interpretation.

However, suppose I make a similar reference to the following set of variables:

{x1, ... , xn}.

Then it is more likely that the reader will take the suggested set of variable names as though they were the names of some fictional objects called "variables".

The rest of this section deals with the case of boolean variables, that are soon to be invoked in providing a functional interpretation of propositional calculus.

This discussion draws on concepts from two previous papers (Awbrey, 1989 & 1994), changing notations as needed to fit the current context.  Except for special sets (B, N, R, Z) and sign relational domains (O, S, I), I use plain capital letters for ordinary sets, singly underlined capitals for coordinate spaces and vector spaces, and doubly underlined capitals for the "alphabets" and "lexicons" that generate formal languages and logical universes of discourse.

If X = {x1, ... , xn} is a set of n elements, it is possible to construct a "formal alphabet" of n "letters" or a "formal lexicon" of n "words" that exists in a one to one correspondence with the elements of X and can be notated as follows:

X  =  Lit (X)  =  {x1, ... , xn}.

The set X is known in formal settings as the "literal alphabet" or the "literal lexicon" associated with X, but on more familiar grounds it can be called the "double" of X.  Under conditions of careful interpretation, any finite set X can be construed as its own double, but for now it is safest to preserve the apparent distinction in roles until the sense of this double usage has become second nature.

This construction is often useful in situations where has to deal with a set of signs {"s1", ... , "sn"} with a fixed or a faulty interpretation.  Here, one needs a fresh set of signs {x1, ... , xn} that can be used in analogous ways to the original, but free enough to be controlled and flexible enough to be repaired.  In other words, the interpretation of the new list is subject to experimental variation, freely controllable in such a way that it can follow or assimilate the original interpretation whenever it makes sense to do so, but critically reflected and flexible enough to have its interpretation amended whenever necessary.

Interpreted on a casual basis, the set X can be treated as a list of "boolean variables", or, according to another reading, as a list of "boolean variable names", but both of these choices are subject to the eventual requirement of saying exactly what a "variable" is.

The overall problem about the "ontological status" of variables will also be the subject of an extended study at a later point in this project, but for now I am forced to side step the whole issue, merely giving notice of a signal distinction that promises to yield a measure of effective advantage in finally disposing of the problem.

If a sign, as accepted and interpreted in a particular setting, has an "existentially unique" (EU) denotation, that is, if there exists a unique object that the sign denotes under the operative sign relation, then the sign is said to possess a "EU denotation", or to have a "EU object".  When this is so, the sign is said to be "eudenotational", otherwise it is said to be "dysdenotational".

Using the distinction accorded to eudenotational signs, the issue about the ontological status of variables can be illustrated as turning on two different "acceptations" of the list X = {x1, ..., xn}.

1.	The natural (or naive) acceptation is for a reader to interpret the list as referring to a set of objects, in effect, to pass without hesitation from impressions of the characters "x1", ..., "xn" to thoughts of their respective EU objects x1, ..., xn, all taken for granted to exist uniquely.  The whole set of interpretive assumptions that go into this acceptation will be referred to as the "object convention".

2.	The reflective (or critical) acceptation is to see the list before all else as a list of signs, each of which may or may not have a EU object.  This is the attitude that must be taken in formal language theory and in any setting where computational constraints on interpretation are being contemplated.  In these contexts it cannot be assumed without question that every sign, whose participation in a denotation relation would have to be indicated by a recursive function and implemented by an effective program, does in fact have an existential denotation, much less a unique object.  The entire body of implicit assumptions that go to make up this acceptation, although they operate more like interpretive suspicions than automatic dispositions, will be referred to as the "sign convention".

In the present context, I can answer questions about the ontology of a "variable" by saying that each variable xi is a kind of a sign, in the boolean case capable of denoting an element in B = {0, 1} as its object, with the actual value depending on the interpretation of the moment.  Note that xi is a sign, and that "xi" is another sign that denotes it.  This acceptation of the list X = {xi} corresponds to what was just called the "sign convention".

In a context where all the signs that ought to have EU objects are in fact safely assured to do so, then it is usually less bothersome to assume the object convention.  Otherwise, discussion must resort to the less natural but more careful sign convention.  This convention is only "artificial" in the sense that it recalls the artifactual nature and the instrumental purpose of signs, and does nothing more out of the way than to call an implement "an implement".

I make one more remark to emphasize the importance of this issue, and then return to the main discussion.  Even though there is no great difficulty in conceiving the sign "xi" to be interpreted as denoting different types of objects in different contexts, it is more of a problem to imagine that the same object xi can literally be both a value (in B) and a function (from Bn to B).

In the customary fashion, the name "xi" of the variable xi is flexibly interpreted to serve two additional roles.  In algebraic and geometric contexts "xi" is taken to name the ith "coordinate function" xi : Bn >B.  In logical contexts "xi" serves to name the ith "basic property" or "simple proposition", also called "xi", that goes into the construction of a propositional universe of discourse, in effect, becoming one of the "sentence letters" of a truth table and being used to label one of the "simple enclosures" of a venn diagram.

Rationalizing the usage of boolean variables to represent propositional features and functions in this manner, I can now discuss these concepts in greater detail, introducing additional notation along the way.

1.	The sign "xi", appearing in the contextual frame "_ : Bn >B", whether explicitly or implicitly, can be interpreted as denoting the ith coordinate function xi : Bn >B.  The entire collection of coordinate maps in X = {xi} contributes to the definition of the "coordinate space" or "vector space" X : Bn, notated as follows:

X  =  <X> = <x1, ..., xn> = {<x1, ..., xn>} : Bn.

Associated with the coordinate space X are various families of boolean valued functions f : X >B.

a.	The set of all functions f : X >B has a cardinality of 22^n and is denoted as follows:

X->	=  (X -> B)  =  {f : X -> B}.

b.	The set of linear functions f : X >B has a cardinality of 2n and is known as the "dual space" X* in vector space contexts.  In formal language contexts, in order to avoid conflicts with the use of the "Kleene star" operator, it needs to be given an alternate notation:

X+>	=  (X +> B)  =  {f : X +> B}.

c.	The set of singular functions f : X >B has a cardinality of 2n and is notated as follows:

X!>	=  (X !> B)  =  {f : X !> B}.

d.	The set of positive functions f : X >B has a cardinality of 2n and is notated as follows:

X@>	=  (X @> B)  =  {f : X @> B}

e.	The set of coordinate functions, also referred to as "basic" or "simple" functions", has a cardinality of n and is denoted in the following ways:

X	=  (X :> B)  =  {f : X :> B}  =  {xi : X->B}.

2.	The sign "xi", read or understood in a propositional context, can be interpreted as denoting one of the n "features", "qualities", "basic properties", or "simple propositions" that go to define the n dimensional "universe of discourse" X[], also notated as follows:

X[]  =  [X]  =  [x1, ..., xn]  =  <X, X->> : Bn&->B.

6.15. Propositional Calculus

The order of reasoning called "propositional logic", as it is pursued from various perspectives, concerns itself with three domains of objects, with all three domains having analogous structures in the relationships of their objects to each other.  There is a domain of logical objects called "properties" or "propositions", a domain of functional objects called "binary", "boolean", or "truth valued" functions, and a domain of geometric objects called "regions" or "subsets" of the relevant universe of discourse.  Each domain of objects needs a domain of signs to refer to its elements, but if one's interest lies mainly in referring to the common aspects of structure exhibited by these domains, then it serves to maintain a single notation, variously interpreted for all three domains.

The first order of business is to comment on the logical significance of the rhetorical distinctions that appear to prevail among these objects.  My reason for introducing these distinctions is not to multiply the number of entities beyond necessity but merely to summarize the variety of entities that have been used historically, to figure out a series of conversions between them, and to integrate suitable analogues of them within a unified system.

For many purposes the distinction between a property and a proposition does not affect the structural aspects of the domains being considered.  Both properties and propositions are tantamount to fictional objects, made up to supply general signs with singular denotations, and serving as indirect ways to explain the "plural indefinite references" (PIR's) of general signs to the multitudes of their ultimately denoted objects.  A property is signfied by a sign called a "term" that achieves by a form of indirection a PIR to all the elements in a class of "things".  A proposition is signified by a sign called a "sentence" that achieves by a form of indirection a PIR to all the elements in a class of "situations".  But "things" are any objects of discussion and thought, in other words, a perfectly general category, and "situations" are just special cases of these "things".

There is still something left to the logical distinction between properties and propositions, but it is largely immaterial to the order of reasoning that is found reflected in propositional logic.  When it is useful to emphasize their commonalities, properties and propositions can both be referred to as "Props".  As a handle on the aspects of structure that are shared between these two domains and as a mechanism for ignoring irrelevant distinctions, it also helps to have a single term for a "domain of properties" (DOP) and a "domain of propositions" (DOP).

Because a Prop is introduced as an intermediate object of reference for a general sign, it factors a PIR of a general sign across two stages, the first appearing as a reference of a general sign to a singular Prop, and the second appearing as an application of a Prop to its proper objects.  This affords a point of articulation that serves to unify and explain the manifold of references involved in a PIR, but it requires a distinction to be fashioned between the intermediate objects, whether real or invented, and the original, further, or ultimate objects of a general sign.

Next, it is necessary to consider the stylistic differences among the logical, functional, and geometric conceptions of propositional logic.  Logically, a domain of properties or propositions is known by the axioms it is subject to.  Concretely, one thinks of a particular property or proposition as applying to the things or situations it is true of.  With the synthesis just indicated, this can be expressed in a unified form:  In abstract logical terms, a DOP is known by the axioms it is subject to.  In concrete functional or geometric terms, a particular element of a DOP is known by the things it is true of.

With the appropriate correspondences between these three domains in mind, the general term "proposition" can be interpreted in a flexible manner to cover logical, functional, and geometric types of objects.  Thus, a locution like "the proposition F" can be interpreted in three ways, literally, to denote a logical proposition, functionally, to denote a mapping from a space X of propertied or proposed objects to the domain B = {0, 1} of truth values, and geometrically, to denote the so called "fiber of truth" F 1(1) as a region or a subset of X.  For all of these reasons, it is desirable to set up a suitably flexible interpretive framework for propositional logic, where an object introduced as a logical proposition F can be recast as a boolean function F : X >B, and understood to indicate the region of the space X that is ruled by F.

Generally speaking, it does not seem possible to disentangle these three domains from each other or to determine which one is more fundamental.  In practice, due to its concern with the computational implementations of every concept it uses, the present work is biased toward the functional interpretation of propositions.  From this point of view, the abstract intention of a logical proposition F is regarded as being realized only when a program is found that computes the function F : X >B.

The functional interpretation of propositional calculus goes hand in hand with an approach to logical reasoning that incorporates "semantic" or "model theoretic" methods, as distinguished from the purely "syntactic" or "proof theoretic" option.  Indeed, the functional conception of a proposition is model theoretic in a double sense, not only because its notations denote functions as their semantic objects, but also because the domains of these functions are spaces of logical interpretations for the propositions, with the points of the domain that lie in the inverse image of truth under the function being the "models" of the proposition.

One of the reasons for pursuing a pragmatic hybrid of semantic and syntactic approaches, rather than keeping to the purely syntactic ways of manipulating meaningless tokens according to abstract rules of proof, is that the model theoretic strategy preserves the form of connection that exists between an agent's concrete particular experiences and the abstract propositions and general properties that it uses to describe its experience.  This makes it more likely that a hybrid approach will serve in the realistic pursuits of inquiry, since these efforts involve the integration of deductive, inductive, and abductive sources of knowledge.

In this approach to propositional logic, with a view toward computational realization, one begins with a space X, called a "universe of discourse", whose points can be reasonably well described by means of a finite set of logical features.  Since the points of the space X are effectively known only in terms of their computable features, one can assume that there is a finite set of computable coordinate projections xi : X >B, for i = 1 to n, for some n, that can serve to describe the points of X.  This means that there is a computable coordinate representation for X, in other words, a computable map T : X >Bn that describes the points of X insofar as they are known.  Thus, each proposition F : X >B can be factored through the coordinate representation T : X >Bn to yield a related proposition f : Bn >B, one that speaks directly about coordinate n tuples but indirectly about points of X.  Composing maps on the right, the mapping f is defined by the equation F = T o f.  For all practical purposes served by the representation T, the proposition f can be taken as a proxy for the proposition F, saying things about the points of X by means of X's encoding to Bn.

Working under the functional perspective, the formal system known as "propositional calculus" is introduced as a general system of notations for referring to boolean functions.  Typically, one takes a space X and a coordinate representation T : X >Bn as parameters of a particular system and speaks of the propositional calculus on a finite set of variables {xi}.  In objective terms, this constitutes the "domain of propositions" on the basis {xi}, notated as "DOP{xi}".  Ideally, one does not want to become too fixed on a particular set of logical features or to let the momentary dimensions of the space be cast in stone.  In practice, this means that the formalism and its computational implementation should allow for the automatic enmbedding of DOP(X) into DOP(Y) whenever X c Y.

The rest of this section presents the elements of a particular calculus for propositional logic.  First, I establish the basic notations and summarize the axiomatic presentation of the calculus, and then I give special attention to its functional and geometric interpretations.

This section reviews the elements of a calculus for propositional logic that I initially presented in two earlier papers (Awbrey, 1989 & 1994).  This calculus belongs to a family of formal systems that hark back to C.S. Peirce's "existential graphs" (PEG) and it draws on ideas from Spencer Brown's "Laws of Form" (LOF).  A feature that distinguishes the use of these formalisms can be summed up by saying that they treat logical expressions primarily as elements of a "language" and only secondarily as elements of an "algebra".  In other words, the most important thing about a logical expression is the logical object it denotes.  To the extent that the object can be represented in syntax, this attitude puts the focus on the "logical equivalence class" (LEC) to which the expression belongs, relegating to the background the whole variety of ways that the expression can be generated from algebraically conceived operations.

One of the benefits of this notation is that it facilitates the development of a "differential extension" (DEX) for propositional logic that can be used to reason about changing universes of discourse.

A "propositional language" (PL) is a syntactic system that mediates the reasonings of a "propositional logic" (PL).  The objects of a PL, the logical entities denoted by the language and invoked by the operations of the logic, can be conceived to rest at various levels of abstraction, residing in spaces of functions that are basically of the types Bn >B and remaining subject only to suitable choices of the parameter n.

Persistently reflective engagement in logical reasoning about any domain of objects leads to the identification of generic patterns of inference that appear to be universally valid, never disappointing the trust that is placed in them.  After a time, a formal system naturally arises that commemorates one's continuing commitment to these patterns of logical conduct, and acknowledges one's conviction that further inquiry into their utility can be safely put beyond the reach of everyday concerns.  At this juncture each descriptive pattern becomes a normative template, regulating all future ventures in reasoning until such time as a clearly overwhelming mass of doubtful outcomes cause one to question it anew.

Propositions about a coherent domain of objects tend to gather together and express themselves collectively in organized bodies of statements known as "theories".  As theories grow in size and complexity, one is faced with massive collections of propositional constraints and complex chains of logical inferences, and it becomes useful to support reasoning with the implementation of a "propositional calculator".

At this point, variations in common and technical usage of the term "proposition" require a few comments on terminology.  The heart of the issue is how to maintain a proper distinction between the logical form and the rhetorical style of a proposition, that is, how best to mark the difference between its invariant contents and its variant expressions.  There are many ways to draw the required form of distinction between the objective situation and the significant expression in this relation.  Here, I outline a compromise strategy that incorporates the advantages of several options and makes them available to intelligent choice as best fits the occasion.

1.	According to a prevailing technical usage, a "proposition" is a categorical object of abstract thought, something that is tantamount to an objective situation, a statistical event, or a state of affairs of a specified type.  In distinction to the abstract proposition, a statement that a situation of the proposed type is actually in force is expressed in the form of a syntactic formula called a "sentence".

2.	Another option enjoys a set of incidental advantages that makes it worth mentioning here and also worth exploring in a future discussion.  Under this alternative, one refers to the signifying expressions as "propositions", deliberately conflating propositions and sentences, but then introduces the needed distinction at another point of articulation, referring to the signified objects as "positions".

3.	Attempting to strike a compromise with common usage, I often allow the word "proposition" to exploit the full range of its senses, denoting either object or sign according to context, and resorting to the phrase "propositional expression" whenever it is necessary to emphasize the involvement of the sign.

The operative distinction in every case, propositional or otherwise, is the difference in roles between objects and signs, not the names they are called by.  To reconcile a logical account with the pragmatic theory of signs, one entity is construed as the "propositional object" (PO) and the other entity is recognized as the "propositional sign" (PS) at each moment of interpretation in a propositional sign relation.  Once these roles are assigned, all the technology of sign relations applies to the logic of propositions as a special case.  In the context of propositional sign relations, a "semantic equivalence class" (SEC) is referred to as a "logical equivalence class" (LEC).  Each propositional object can then be associated, or even identified for all informative and practical puposes, with the LEC of its propositional signs.  Accordingly, the proposition is reconstituted from its sentences in the appropriate way, as an abstract object existing in a semantic relation to its signs.

Taking this topic, "the representation of sign relations", and seeking a computational formulation of its theory, leads to certain considerations about the best approach to the subject.  Computational formulations are those with no recourse but to finitary resources.  In setting up a computational formulation of any theory, one has to specify the finite set of axioms that are constantly available to subsequent reasoning.  This makes it advisable to approach the topic of representations at a level of generality that will give the resulting theory as much power as possible, the kind of power to which inductive hypotheses can have easy and constant recourse.  In order to furnish these resources with an ample supply of theoretical power ...

In doing this, it is expeditious, if not absolutely necessary, to broaden the focus on sign relations in two ways:  (1) to expand its extension from a special class of triadic relations to the wider sphere of n place relations, and (2) to diffuse its intension from fully specified and concretely presented relations to incompletly specified and abstractly described relations.

6.16. Recursive Aspects

6.17. Patterns of Self-Reference

6.18. Practical Intuitions

6.19. Examples of Self Reference

6.20. Three Views of Systems

6.21. Building Bridges Between Representations

6.22. Extensional Representations of Sign Relations

6.23. Intensional Representations of Sign Relations

6.24. Literal Intensional Representations

6.25. Analytic Intensional Representations

6.26. Differential Logic and Directed Graphs

6.27. Differential Logic and Group Operations

6.28. The Bridge : From Obstruction to Opportunity

6.29. Projects of Representation

6.30. Connected, Integrated, Reflective Symbols

6.31. Generic Orders of Relations

6.32. Partiality : Selective Operations

6.33. Sign Relational Complexes

6.34. Set Theoretic Constructions

6.35. Reducibility of Sign Relations

6.36. Irreducibly Triadic Relations

6.37. Propositional Types

6.38. Considering the Source

6.39. Prospective Indices : Pointers to Future Work

6.40. Dynamic and Evaluative Frameworks

6.41. Elective and Motive Forces

6.42. Sign Processes : A Start

6.43. Reflective Extensions

6.44. Reflections on Closure

6.45. Intelligence => Critical Reflection

6.46. Looking Ahead

6.47. Mutually Intelligible Codes

6.48. Discourse Analysis : Ways and Means

6.49. Combinations of Sign Relations

6.50. Revisiting the Source


ContentsPart 1Part 2Part 3Part 4Part 5Part 6AppendicesReferencesDocument History



<sharethis />