Difference between revisions of "Directory talk:Jon Awbrey/Papers/Syntactic Transformations"

MyWikiBiz, Author Your Legacy — Sunday November 24, 2024
Jump to navigationJump to search
(Created page with '==Bump== Huh, looks like I forgot all about doing this work back in Feb 2009. ~~~~')
 
 
(24 intermediate revisions by the same user not shown)
Line 1: Line 1:
==Bump==
+
<div class="nonumtoc">__TOC__</div>
  
Huh, looks like I forgot all about doing this work back in Feb 2009. [[User:Jon Awbrey|Jon Awbrey]] 19:00, 2 September 2010 (UTC)
+
==Alternate Version : Needs To Be Reconciled==
 +
 
 +
====1.3.12.  Syntactic Transformations <big>&#10004;</big>====
 +
 
 +
=====1.3.12.1.  Syntactic Transformation Rules=====
 +
 
 +
<pre>
 +
Value Rule 1
 +
 
 +
If v, w C B
 +
 
 +
then "v = w" is a sentence about <v, w> C B2,
 +
 
 +
[v = w] is a proposition : B2 -> B,
 +
 
 +
and the following are identical values in B:
 +
 
 +
V1a. [ v = w ](v, w)
 +
 
 +
V1b. [ v <=> w ](v, w)
 +
 
 +
V1c. ((v , w))
 +
</pre>
 +
 
 +
<pre>
 +
Value Rule 1
 +
 
 +
If v, w C B,
 +
 
 +
then the following are equivalent:
 +
 
 +
V1a. v = w.
 +
 
 +
V1b. v <=> w.
 +
 
 +
V1c. (( v , w )).
 +
</pre>
 +
 
 +
A rule that allows one to turn equivalent sentences into identical propositions:
 +
 
 +
: (S <=> T) <=> ([S] = [T])
 +
 
 +
Consider [ v = w ](v, w) and [ v(u) = w(u) ](u)
 +
 
 +
<pre>
 +
Value Rule 1
 +
 
 +
If v, w C B,
 +
 
 +
then the following are identical values in B:
 +
 
 +
V1a. [ v = w ]
 +
 
 +
V1b. [ v <=> w ]
 +
 
 +
V1c. (( v , w ))
 +
</pre>
 +
 
 +
<pre>
 +
Value Rule 1
 +
 
 +
If f, g : U -> B,
 +
 
 +
and u C U
 +
 
 +
then the following are identical values in B:
 +
 
 +
V1a. [ f(u) = g(u) ]
 +
 
 +
V1b. [ f(u) <=> g(u) ]
 +
 
 +
V1c. (( f(u) , g(u) ))
 +
</pre>
 +
 
 +
<pre>
 +
Value Rule 1
 +
 
 +
If f, g : U -> B,
 +
 
 +
then the following are identical propositions on U:
 +
 
 +
V1a. [ f = g ]
 +
 
 +
V1b. [ f <=> g ]
 +
 
 +
V1c. (( f , g ))$
 +
</pre>
 +
 
 +
<pre>
 +
Evaluation Rule 1
 +
 
 +
If f, g : U -> B
 +
 
 +
and u C U,
 +
 
 +
then the following are equivalent:
 +
 
 +
E1a. f(u) = g(u). :V1a
 +
 
 +
::
 +
 
 +
E1b. f(u) <=> g(u). :V1b
 +
 
 +
::
 +
 
 +
E1c. (( f(u) , g(u) )). :V1c
 +
 
 +
:$1a
 +
 
 +
::
 +
 
 +
E1d. (( f , g ))$(u). :$1b
 +
</pre>
 +
 
 +
<pre>
 +
Evaluation Rule 1
 +
 
 +
If S, T are sentences
 +
 
 +
about things in the universe U,
 +
 
 +
f, g are propositions: U -> B,
 +
 
 +
and u C U,
 +
 
 +
then the following are equivalent:
 +
 
 +
E1a. f(u) = g(u). :V1a
 +
 
 +
::
 +
 
 +
E1b. f(u) <=> g(u). :V1b
 +
 
 +
::
 +
 
 +
E1c. (( f(u) , g(u) )). :V1c
 +
 
 +
:$1a
 +
 
 +
::
 +
 
 +
E1d. (( f , g ))$(u). :$1b
 +
</pre>
 +
 
 +
=====1.3.12.2.  Derived Equivalence Relations <big>&#10004;</big>=====
 +
 
 +
=====1.3.12.3.  Digression on Derived Relations <big>&#10004;</big>=====

Latest revision as of 14:58, 12 September 2010

Alternate Version : Needs To Be Reconciled

1.3.12. Syntactic Transformations

1.3.12.1. Syntactic Transformation Rules
Value Rule 1

If	v, w	C	B

then	"v = w" is a sentence about <v, w> C B2,

	[v = w] is a proposition : B2 -> B,

and the following are identical values in B:

V1a.	[ v = w ](v, w)

V1b.	[ v <=> w ](v, w)

V1c.	((v , w))
Value Rule 1

If	v, w	C	B,

then the following are equivalent:

V1a.	v = w.

V1b.	v <=> w.

V1c.	(( v , w )).

A rule that allows one to turn equivalent sentences into identical propositions:

(S <=> T) <=> ([S] = [T])

Consider [ v = w ](v, w) and [ v(u) = w(u) ](u)

Value Rule 1

If	v, w	C	B,

then the following are identical values in B:

V1a.	[ v = w ]

V1b.	[ v <=> w ]

V1c.	(( v , w ))
Value Rule 1

If	f, g	:	U -> B,

and	u	C	U

then the following are identical values in B:

V1a.	[ f(u) = g(u) ]

V1b.	[ f(u) <=> g(u) ]

V1c.	(( f(u) , g(u) ))
Value Rule 1

If	f, g	:	U -> B,

then the following are identical propositions on U:

V1a.	[ f = g ]

V1b.	[ f <=> g ]

V1c.	(( f , g ))$
Evaluation Rule 1

If	f, g	:	U -> B

and	u	C	U,

then the following are equivalent:

E1a.	f(u) = g(u).	:V1a

				::

E1b.	f(u) <=> g(u).	:V1b

				::

E1c.	(( f(u) , g(u) )).	:V1c

				:$1a

				::

E1d.	(( f , g ))$(u).	:$1b
Evaluation Rule 1

If	S, T	are sentences

		about things in the universe U,

	f, g	are propositions: U -> B,

and	u	C	U,

then the following are equivalent:

E1a.	f(u) = g(u).	:V1a

				::

E1b.	f(u) <=> g(u).	:V1b

				::

E1c.	(( f(u) , g(u) )).	:V1c

				:$1a

				::

E1d.	(( f , g ))$(u).	:$1b
1.3.12.2. Derived Equivalence Relations
1.3.12.3. Digression on Derived Relations