MyWikiBiz, Author Your Legacy — Wednesday November 05, 2025
Jump to navigationJump to search
1,048 bytes removed
, 02:21, 11 September 2010
| Line 148: |
Line 148: |
| | | | |
| | ======Definitions====== | | ======Definitions====== |
| − |
| |
| − | <pre>
| |
| − | Definition 2
| |
| − |
| |
| − | If X, Y c U,
| |
| − |
| |
| − | then the following are equivalent:
| |
| − |
| |
| − | D2a. X = Y.
| |
| − |
| |
| − | D2b. u C X <=> u C Y, for all u C U.
| |
| − | </pre>
| |
| − |
| |
| − | <pre>
| |
| − | Definition 3
| |
| − |
| |
| − | If f, g : U -> V,
| |
| − |
| |
| − | then the following are equivalent:
| |
| − |
| |
| − | D3a. f = g.
| |
| − |
| |
| − | D3b. f(u) = g(u), for all u C U.
| |
| − | </pre>
| |
| − |
| |
| − | <pre>
| |
| − | Definition 4
| |
| − |
| |
| − | If X c U,
| |
| − |
| |
| − | then the following are identical subsets of UxB:
| |
| − |
| |
| − | D4a. {X}
| |
| − |
| |
| − | D4b. {< u, v> C UxB : v = [u C X]}
| |
| − | </pre>
| |
| | | | |
| | <pre> | | <pre> |
| Line 199: |
Line 163: |
| | </pre> | | </pre> |
| | | | |
| − | Given an indexed set of sentences, Sj for j C J, it is possible to consider the logical conjunction of the corresponding propositions. Various notations for this concept are be useful in various contexts, a sufficient sample of which are recorded in Definition 6.
| |
| − |
| |
| − | <pre>
| |
| − | Definition 6
| |
| − |
| |
| − | If Sj is a sentence
| |
| − |
| |
| − | about things in the universe U,
| |
| − |
| |
| − | for all j C J,
| |
| − |
| |
| − | then the following are equivalent:
| |
| − |
| |
| − | D6a. Sj, for all j C J.
| |
| − |
| |
| − | D6b. For all j C J, Sj.
| |
| − |
| |
| − | D6c. Conj(j C J) Sj.
| |
| − |
| |
| − | D6d. ConjJ,j Sj.
| |
| − |
| |
| − | D6e. ConjJj Sj.
| |
| − | </pre>
| |
| | | | |
| | <pre> | | <pre> |
| − | Definition 7
| |
| − |
| |
| − | If S, T are sentences
| |
| − |
| |
| − | about things in the universe U,
| |
| − |
| |
| − | then the following are equivalent:
| |
| − |
| |
| − | D7a. S <=> T.
| |
| − |
| |
| − | D7b. [S] = [T].
| |
| − | </pre>
| |
| | | | |
| | ======Other Rules====== | | ======Other Rules====== |