Difference between revisions of "Multigrade operator"
MyWikiBiz, Author Your Legacy — Sunday November 24, 2024
Jump to navigationJump to searchJon Awbrey (talk | contribs) (+ {{aficionados}} <sharethis /> + categories) |
Jon Awbrey (talk | contribs) (fill out document history) |
||
Line 3: | Line 3: | ||
The application of a multigrade operator <math>\Omega</math> to a finite sequence of operands (''x''<sub>1</sub>, …, ''x''<sub>''k''</sub>) is typically denoted with the parameter ''k'' left tacit, as the appropriate application is implicit in the number of operands listed. Thus <math>\Omega</math>(''x''<sub>1</sub>, …, ''x''<sub>''k''</sub>) may be taken for <math>\Omega</math><sub>''k''</sub>(''x''<sub>1</sub>, …, ''x''<sub>''k''</sub>). | The application of a multigrade operator <math>\Omega</math> to a finite sequence of operands (''x''<sub>1</sub>, …, ''x''<sub>''k''</sub>) is typically denoted with the parameter ''k'' left tacit, as the appropriate application is implicit in the number of operands listed. Thus <math>\Omega</math>(''x''<sub>1</sub>, …, ''x''<sub>''k''</sub>) may be taken for <math>\Omega</math><sub>''k''</sub>(''x''<sub>1</sub>, …, ''x''<sub>''k''</sub>). | ||
− | == | + | ==Related topic== |
− | |||
− | |||
* [[Parametric operator]] | * [[Parametric operator]] | ||
− | {{ | + | ==Document history== |
+ | |||
+ | Portions of the above article were adapted from the following sources under the [[GNU Free Documentation License]], under other applicable licenses, or by permission of the copyright holders. | ||
+ | |||
+ | {{col-begin}} | ||
+ | {{col-break}} | ||
+ | * [http://mywikibiz.com/Multigrade_operator Multigrade Operator], [http://mywikibiz.com/ MyWikiBiz] | ||
+ | * [http://beta.wikiversity.org/wiki/Multigrade_operator Multigrade Operator], [http://beta.wikiversity.org/ Beta Wikiversity] | ||
+ | * [http://planetmath.org/encyclopedia/MultigradeOperator.html Multigrade Operator], [http://planetmath.org/ PlanetMath] | ||
+ | * [http://www.proofwiki.org/wiki/Definition:Multigrade_Operator Multigrade Operator], [http://www.proofwiki.org/ ProofWiki] | ||
+ | {{col-break}} | ||
+ | * [http://www.getwiki.net/-Parametric_Operator&r=multigrade_operator Multigrade Operator], [http://www.getwiki.net/ GetWiki] | ||
+ | * [http://www.textop.org/wiki/index.php?title=Multigrade_operator Multigrade Operator], [http://www.textop.org/wiki/ Textop Wiki] | ||
+ | * [http://www.wikinfo.org/index.php/Multigrade_operator Multigrade Operator], [http://www.wikinfo.org/ Wikinfo] | ||
+ | * [http://en.wikipedia.org/w/index.php?title=Multigrade_operator&oldid=40451309 Multigrade Operator], [http://en.wikipedia.org/ Wikipedia] | ||
+ | {{col-end}} | ||
+ | |||
+ | <br><sharethis /> | ||
[[Category:Automata Theory]] | [[Category:Automata Theory]] | ||
[[Category:Combinatorics]] | [[Category:Combinatorics]] | ||
[[Category:Computer Science]] | [[Category:Computer Science]] | ||
+ | [[Category:Differential Logic]] | ||
+ | [[Category:Equational Reasoning]] | ||
[[Category:Formal Languages]] | [[Category:Formal Languages]] | ||
[[Category:Formal Sciences]] | [[Category:Formal Sciences]] |
Revision as of 16:47, 21 April 2010
In logic and mathematics, a multigrade operator \(\Omega\) is a parametric operator with parameter k in the set N of non-negative integers.
The application of a multigrade operator \(\Omega\) to a finite sequence of operands (x1, …, xk) is typically denoted with the parameter k left tacit, as the appropriate application is implicit in the number of operands listed. Thus \(\Omega\)(x1, …, xk) may be taken for \(\Omega\)k(x1, …, xk).
Related topic
Document history
Portions of the above article were adapted from the following sources under the GNU Free Documentation License, under other applicable licenses, or by permission of the copyright holders.
Template:Col-break- Multigrade Operator, MyWikiBiz
- Multigrade Operator, Beta Wikiversity
- Multigrade Operator, PlanetMath
- Multigrade Operator, ProofWiki
- Multigrade Operator, GetWiki
- Multigrade Operator, Textop Wiki
- Multigrade Operator, Wikinfo
- Multigrade Operator, Wikipedia
<sharethis />