MyWikiBiz, Author Your Legacy — Sunday November 24, 2024
Jump to navigationJump to search
7 bytes added
, 04:00, 10 February 2010
Line 99: |
Line 99: |
| |} | | |} |
| | | |
− | Applying the same procedure to any positive integer <math>n\!</math> produces an expression called the ''doubly recursive factorization'' of <math>n.~\!</math> Let <math>\mathbb{M}</math> be the set of positive integers and let <math>\mathcal{L}_\text{DRF}</math> be the set of possible DRF expressions. Then the procedure just illustrated defines a mapping <math>\operatorname{drf} : \mathbb{M} \to \mathcal{L}_\text{DRF}</math> and the doubly recursive factorization of <math>n\!</math> is denotable as <math>\operatorname{drf}(n).\!</math> | + | Applying the same procedure to any positive integer <math>n\!</math> produces an expression called the ''doubly recursive factorization'' of <math>n.\!</math> Let <math>\mathbb{M}</math> be the set of positive integers and let <math>\mathcal{L}</math> be the set of doubly recursive factorization expressions. Then the procedure just illustrated defines a mapping <math>\operatorname{drf} : \mathbb{M} \to \mathcal{L}</math> that allows the doubly recursive factorization of <math>n\!</math> to be denoted <math>\operatorname{drf}(n).\!</math> |
| | | |
| The forms of DRF expressions can be mapped into either one of two classes of graph-theoretical structures, called ''riffs'' and ''rotes'', respectively. | | The forms of DRF expressions can be mapped into either one of two classes of graph-theoretical structures, called ''riffs'' and ''rotes'', respectively. |