Difference between revisions of "Directory:Jon Awbrey/Papers/Riffs and Rotes"

MyWikiBiz, Author Your Legacy — Thursday November 21, 2024
Jump to navigationJump to search
Line 4: Line 4:
 
==Idea==
 
==Idea==
  
Let <math>\text{p}_i</math> be the <math>i^\text{th}</math> prime, where the positive integer <math>i</math> is called the ''index'' of the prime  <math>\text{p}_i</math> and the indices are taken in such a way that <math>\text{p}_1 = 2.</math>  Thus the sequence of primes begins as follows:
+
Let <math>\text{p}_i\!</math> be the <math>i^\text{th}\!</math> prime, where the positive integer <math>i\!</math> is called the ''index'' of the prime  <math>\text{p}_i\!</math> and the indices are taken in such a way that <math>\text{p}_1 = 2.\!</math>  Thus the sequence of primes begins as follows:
  
 
{| align="center" cellpadding="6" width="90%"
 
{| align="center" cellpadding="6" width="90%"
Line 21: Line 21:
 
|}
 
|}
  
The prime factorization of a positive integer <math>n</math> can be written in the following form:
+
The prime factorization of a positive integer <math>n\!</math> can be written in the following form:
  
 
{| align="center" cellpadding="6" width="90%"
 
{| align="center" cellpadding="6" width="90%"
| <math>n ~=~ \prod_{k = 1}^{\ell} \text{p}_{i(k)}^{j(k)},</math>
+
| <math>n ~=~ \prod_{k = 1}^{\ell} \text{p}_{i(k)}^{j(k)},\!</math>
 
|}
 
|}
  
where <math>\text{p}_{i(k)}^{j(k)}</math> is the <math>k^\text{th}</math> prime power in the factorization and <math>\ell</math> is the number of distinct prime factors dividing <math>n.</math>  The factorization of <math>1</math> is defined as <math>1</math> in accord with the convention that an empty product is equal to <math>1.</math>
+
where <math>\text{p}_{i(k)}^{j(k)}\!</math> is the <math>k^\text{th}\!</math> prime power in the factorization and <math>\ell\!</math> is the number of distinct prime factors dividing <math>n.\!</math>  The factorization of <math>1\!</math> is defined as <math>1\!</math> in accord with the convention that an empty product is equal to <math>1.\!</math>
  
Let <math>I(n)</math> be the set of indices of primes that divide  <math>n</math> and let <math>j(i, n)</math> be the number of times that <math>\text{p}_i</math> divides <math>n.</math>  Then the prime factorization of <math>n</math> can be written in the following alternative form:
+
Let <math>I(n)\!</math> be the set of indices of primes that divide  <math>n\!</math> and let <math>j(i, n)\!</math> be the number of times that <math>\text{p}_i\!</math> divides <math>n.\!</math>  Then the prime factorization of <math>n\!</math> can be written in the following alternative form:
  
 
{| align="center" cellpadding="6" width="90%"
 
{| align="center" cellpadding="6" width="90%"
| <math>n ~=~ \prod_{i \in I(n)} \text{p}_{i}^{j(i, n)}.</math>
+
| <math>n ~=~ \prod_{i \in I(n)} \text{p}_{i}^{j(i, n)}.\!</math>
 
|}
 
|}
  
Line 46: Line 46:
 
|}
 
|}
  
Each index <math>i</math> and exponent <math>j</math> appearing in the prime factorization of a positive integer <math>n</math> is itself a positive integer, and thus has a prime factorization of its own.
+
Each index <math>i\!</math> and exponent <math>j\!</math> appearing in the prime factorization of a positive integer <math>n\!</math> is itself a positive integer, and thus has a prime factorization of its own.
  
Continuing with the same example, the index <math>504</math> has the factorization <math>2^3 \cdot 3^2 \cdot 7 = \text{p}_1^3 \text{p}_2^2 \text{p}_4^1</math> and the index <math>529</math> has the factorization <math>{23}^2 = \text{p}_9^2.</math>  Taking this information together with previously known factorizations allows the following replacements to be made in the above expression:
+
Continuing with the same example, the index <math>504\!</math> has the factorization <math>2^3 \cdot 3^2 \cdot 7 = \text{p}_1^3 \text{p}_2^2 \text{p}_4^1\!</math> and the index <math>529\!</math> has the factorization <math>{23}^2 = \text{p}_9^2.\!</math>  Taking this information together with previously known factorizations allows the following replacements to be made in the above expression:
  
 
{| align="center" cellpadding="6" width="90%"
 
{| align="center" cellpadding="6" width="90%"
Line 89: Line 89:
 
|}
 
|}
  
The <math>1</math>'s that appear as indices and exponents are formally redundant, conveying no information apart from the places they occupy in the resulting syntactic structure.  Leaving them tacit produces the following expression:
+
The <math>1\!</math>'s that appear as indices and exponents are formally redundant, conveying no information apart from the places they occupy in the resulting syntactic structure.  Leaving them tacit produces the following expression:
  
 
{| align="center" cellpadding="6" width="90%"
 
{| align="center" cellpadding="6" width="90%"
Line 99: Line 99:
 
|}
 
|}
  
Applying the same procedure to any positive integer <math>n</math> produces an expression called the ''doubly recursive factorization'' of <math>n</math> and notated as <math>\operatorname{drf}(n).</math>
+
Applying the same procedure to any positive integer <math>n\!</math> produces an expression called the ''doubly recursive factorization'' of <math>n\!</math> and notated as <math>\operatorname{drf}(n).\!</math>
  
 
{| align=center cellpadding="6"
 
{| align=center cellpadding="6"

Revision as of 03:48, 7 February 2010

Idea

Let \(\text{p}_i\!\) be the \(i^\text{th}\!\) prime, where the positive integer \(i\!\) is called the index of the prime \(\text{p}_i\!\) and the indices are taken in such a way that \(\text{p}_1 = 2.\!\) Thus the sequence of primes begins as follows:

\(\begin{matrix} \text{p}_1 = 2, & \text{p}_2 = 3, & \text{p}_3 = 5, & \text{p}_4 = 7, & \text{p}_5 = 11, & \text{p}_6 = 13, & \text{p}_7 = 17, & \text{p}_8 = 19, & \ldots \end{matrix}\)

The prime factorization of a positive integer \(n\!\) can be written in the following form:

\(n ~=~ \prod_{k = 1}^{\ell} \text{p}_{i(k)}^{j(k)},\!\)

where \(\text{p}_{i(k)}^{j(k)}\!\) is the \(k^\text{th}\!\) prime power in the factorization and \(\ell\!\) is the number of distinct prime factors dividing \(n.\!\) The factorization of \(1\!\) is defined as \(1\!\) in accord with the convention that an empty product is equal to \(1.\!\)

Let \(I(n)\!\) be the set of indices of primes that divide \(n\!\) and let \(j(i, n)\!\) be the number of times that \(\text{p}_i\!\) divides \(n.\!\) Then the prime factorization of \(n\!\) can be written in the following alternative form:

\(n ~=~ \prod_{i \in I(n)} \text{p}_{i}^{j(i, n)}.\!\)

For example:

\(\begin{matrix} 123456789 & = & 3^2 \cdot 3607 \cdot 3803 & = & \text{p}_2^2 \text{p}_{504}^1 \text{p}_{529}^1. \end{matrix}\)

Each index \(i\!\) and exponent \(j\!\) appearing in the prime factorization of a positive integer \(n\!\) is itself a positive integer, and thus has a prime factorization of its own.

Continuing with the same example, the index \(504\!\) has the factorization \(2^3 \cdot 3^2 \cdot 7 = \text{p}_1^3 \text{p}_2^2 \text{p}_4^1\!\) and the index \(529\!\) has the factorization \({23}^2 = \text{p}_9^2.\!\) Taking this information together with previously known factorizations allows the following replacements to be made in the above expression:

\(\begin{array}{rcl} 2 & \mapsto & \text{p}_1^1 \'"`UNIQ-MathJax1-QINU`"' '"`UNIQ-MathJax2-QINU`"' '"`UNIQ-MathJax3-QINU`"' '"`UNIQ-MathJax4-QINU`"' :{| border="1" cellpadding="20" | [[Image:Rote 802701 Big.jpg|330px]] |} '"`UNIQ-MathJax5-QINU`"' <br> {| align="center" border="1" cellpadding="6" |+ style="height:25px" | \(a(n) = \text{Rote Height of}~ n\)

Rote 1 Big.jpg


\(1\!\)


\(a(1) ~=~ 0\)

Rote 2 Big.jpg


\(\text{p}\!\)


\(a(2) ~=~ 1\)

Rote 3 Big.jpg


\(\text{p}_\text{p}\!\)


\(a(3) ~=~ 2\)

Rote 4 Big.jpg


\(\text{p}^\text{p}\!\)


\(a(4) ~=~ 2\)

Rote 5 Big.jpg


\(\text{p}_{\text{p}_\text{p}}\!\)


\(a(5) ~=~ 3\)

Rote 6 Big.jpg


\(\text{p} \text{p}_\text{p}\!\)


\(a(6) ~=~ 2\)

Rote 7 Big.jpg


\(\text{p}_{\text{p}^\text{p}}\!\)


\(a(7) ~=~ 3\)

Rote 8 Big.jpg


\(\text{p}^{\text{p}_\text{p}}\!\)


\(a(8) ~=~ 3\)

Rote 9 Big.jpg


\(\text{p}_\text{p}^\text{p}\!\)


\(a(9) ~=~ 2\)

Rote 10 Big.jpg


\(\text{p} \text{p}_{\text{p}_\text{p}}\!\)


\(a(10) ~=~ 3\)

Rote 11 Big.jpg


\(\text{p}_{\text{p}_{\text{p}_\text{p}}}\!\)


\(a(11) ~=~ 4\)

Rote 12 Big.jpg


\(\text{p}^\text{p} \text{p}_\text{p}\!\)


\(a(12) ~=~ 2\)

Rote 13 Big.jpg


\(\text{p}_{\text{p} \text{p}_\text{p}}\!\)


\(a(13) ~=~ 3\)

Rote 14 Big.jpg


\(\text{p} \text{p}_{\text{p}^\text{p}}\!\)


\(a(14) ~=~ 3\)

Rote 15 Big.jpg


\(\text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!\)


\(a(15) ~=~ 3\)

Rote 16 Big.jpg


\(\text{p}^{\text{p}^\text{p}}\!\)


\(a(16) ~=~ 3\)

Rote 17 Big.jpg


\(\text{p}_{\text{p}_{\text{p}^\text{p}}}\!\)


\(a(17) ~=~ 4\)

Rote 18 Big.jpg


\(\text{p} \text{p}_\text{p}^\text{p}\!\)


\(a(18) ~=~ 2\)

Rote 19 Big.jpg


\(\text{p}_{\text{p}^{\text{p}_\text{p}}}\!\)


\(a(19) ~=~ 4\)

Rote 20 Big.jpg


\(\text{p}^\text{p} \text{p}_{\text{p}_\text{p}}\!\)


\(a(20) ~=~ 3\)

Rote 21 Big.jpg


\(\text{p}_\text{p} \text{p}_{\text{p}^\text{p}}\!\)


\(a(21) ~=~ 3\)

Rote 22 Big.jpg


\(\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!\)


\(a(22) ~=~ 4\)

Rote 23 Big.jpg


\(\text{p}_{\text{p}_\text{p}^\text{p}}\!\)


\(a(23) ~=~ 3\)

Rote 24 Big.jpg


\(\text{p}^{\text{p}_\text{p}} \text{p}_\text{p}\!\)


\(a(24) ~=~ 3\)

Rote 25 Big.jpg


\(\text{p}_{\text{p}_\text{p}}^\text{p}\!\)


\(a(25) ~=~ 3\)

Rote 26 Big.jpg


\(\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!\)


\(a(26) ~=~ 3\)

Rote 27 Big.jpg


\(\text{p}_\text{p}^{\text{p}_\text{p}}\!\)


\(a(27) ~=~ 3\)

Rote 28 Big.jpg


\(\text{p}^\text{p} \text{p}_{\text{p}^\text{p}}\!\)


\(a(28) ~=~ 3\)

Rote 29 Big.jpg


\(\text{p}_{\text{p} \text{p}_{\text{p}_\text{p}}}\!\)


\(a(29) ~=~ 4\)

Rote 30 Big.jpg


\(\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!\)


\(a(30) ~=~ 3\)

Rote 31 Big.jpg


\(\text{p}_{\text{p}_{\text{p}_{\text{p}_\text{p}}}}\!\)


\(a(31) ~=~ 5\)

Rote 32 Big.jpg


\(\text{p}^{\text{p}_{\text{p}_\text{p}}}\!\)


\(a(32) ~=~ 4\)

Rote 33 Big.jpg


\(\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!\)


\(a(33) ~=~ 4\)

Rote 34 Big.jpg


\(\text{p} \text{p}_{\text{p}_{\text{p}^\text{p}}}\!\)


\(a(34) ~=~ 4\)

Rote 35 Big.jpg


\(\text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}^\text{p}}\!\)


\(a(35) ~=~ 3\)

Rote 36 Big.jpg


\(\text{p}^\text{p} \text{p}_\text{p}^\text{p}\!\)


\(a(36) ~=~ 2\)

Rote 37 Big.jpg


\(\text{p}_{\text{p}^\text{p} \text{p}_\text{p}}\!\)


\(a(37) ~=~ 3\)

Rote 38 Big.jpg


\(\text{p} \text{p}_{\text{p}^{\text{p}_\text{p}}}\!\)


\(a(38) ~=~ 4\)

Rote 39 Big.jpg


\(\text{p}_\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!\)


\(a(39) ~=~ 3\)

Rote 40 Big.jpg


\(\text{p}^{\text{p}_\text{p}} \text{p}_{\text{p}_\text{p}}\!\)


\(a(40) ~=~ 3\)

Rote 41 Big.jpg


\(\text{p}_{\text{p}_{\text{p} \text{p}_\text{p}}}\!\)


\(a(41) ~=~ 4\)

Rote 42 Big.jpg


\(\text{p} \text{p}_\text{p} \text{p}_{\text{p}^\text{p}}\!\)


\(a(42) ~=~ 3\)

Rote 43 Big.jpg


\(\text{p}_{\text{p} \text{p}_{\text{p}^\text{p}}}\!\)


\(a(43) ~=~ 4\)

Rote 44 Big.jpg


\(\text{p}^\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!\)


\(a(44) ~=~ 4\)

Rote 45 Big.jpg


\(\text{p}_\text{p}^\text{p} \text{p}_{\text{p}_\text{p}}\!\)


\(a(45) ~=~ 3\)

Rote 46 Big.jpg


\(\text{p} \text{p}_{\text{p}_\text{p}^\text{p}}\!\)


\(a(46) ~=~ 3\)

Rote 47 Big.jpg


\(\text{p}_{\text{p}_\text{p} \text{p}_{\text{p}_\text{p}}}\!\)


\(a(47) ~=~ 4\)

Rote 48 Big.jpg


\(\text{p}^{\text{p}^\text{p}} \text{p}_\text{p}\!\)


\(a(48) ~=~ 3\)

Rote 49 Big.jpg


\(\text{p}_{\text{p}^\text{p}}^\text{p}\!\)


\(a(49) ~=~ 3\)

Rote 50 Big.jpg


\(\text{p} \text{p}_{\text{p}_\text{p}}^\text{p}\!\)


\(a(50) ~=~ 3\)

Rote 51 Big.jpg


\(\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}^\text{p}}}\!\)


\(a(51) ~=~ 4\)

Rote 52 Big.jpg


\(\text{p}^\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!\)


\(a(52) ~=~ 3\)

Rote 53 Big.jpg


\(\text{p}_{\text{p}^{\text{p}^\text{p}}}\!\)


\(a(53) ~=~ 4\)

Rote 54 Big.jpg


\(\text{p} \text{p}_\text{p}^{\text{p}_\text{p}}\!\)


\(a(54) ~=~ 3\)

Rote 55 Big.jpg


\(\text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!\)


\(a(55) ~=~ 4\)

Rote 56 Big.jpg


\(\text{p}^{\text{p}_\text{p}} \text{p}_{\text{p}^\text{p}}\!\)


\(a(56) ~=~ 3\)

Rote 57 Big.jpg


\(\text{p}_\text{p} \text{p}_{\text{p}^{\text{p}_\text{p}}}\!\)


\(a(57) ~=~ 4\)

Rote 58 Big.jpg


\(\text{p} \text{p}_{\text{p} \text{p}_{\text{p}_\text{p}}}\!\)


\(a(58) ~=~ 4\)

Rote 59 Big.jpg


\(\text{p}_{\text{p}_{\text{p}_{\text{p}^\text{p}}}}\!\)


\(a(59) ~=~ 5\)

Rote 60 Big.jpg


\(\text{p}^\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!\)


\(a(60) ~=~ 3\)