Changes

MyWikiBiz, Author Your Legacy — Saturday September 28, 2024
Jump to navigationJump to search
Line 1,396: Line 1,396:  
Proof&nbsp;1 proceeded by the ''straightforward approach'', starting with <math>e_2\!</math> as <math>s_1\!</math> and ending with <math>e_3\!</math> as <math>s_n\!.</math>  That is, it commenced from the sign <math>{}^{\backprime\backprime} \texttt{(} p \texttt{~(} q \texttt{))~(} p \texttt{~(} r \texttt{))} {}^{\prime\prime}</math> and ended up at the sign <math>{}^{\backprime\backprime} \texttt{(} p \texttt{~(} q~r \texttt{))} {}^{\prime\prime}</math> by legal moves.
 
Proof&nbsp;1 proceeded by the ''straightforward approach'', starting with <math>e_2\!</math> as <math>s_1\!</math> and ending with <math>e_3\!</math> as <math>s_n\!.</math>  That is, it commenced from the sign <math>{}^{\backprime\backprime} \texttt{(} p \texttt{~(} q \texttt{))~(} p \texttt{~(} r \texttt{))} {}^{\prime\prime}</math> and ended up at the sign <math>{}^{\backprime\backprime} \texttt{(} p \texttt{~(} q~r \texttt{))} {}^{\prime\prime}</math> by legal moves.
   −
Proof&nbsp;2 lit on by ''burning the candle at both ends'', changing ''e''<sub>2</sub> into a normal form that reduced to ''e''<sub>4</sub>, and changing ''e''<sub>3</sub> into a normal form that also reduced to ''e''<sub>4</sub>, in this way tethering ''e''<sub>2</sub> and ''e''<sub>3</sub> to a common stake.  In more detail, one route went from "(p (q))(p (r))" to "(p q r, (p))", and another went from "(p (q r))" to "(p q r, (p))", thus equating the two points of departure.
+
Proof&nbsp;2 lit on by ''burning the candle at both ends'', changing <math>e_2\!</math> into a normal form that reduced to <math>e_4,\!</math> and changing <math>e_3\!</math> into a normal form that also reduced to <math>e_4,\!</math> in this way tethering <math>e_2\!</math> and <math>e_3\!</math> to a common stake.  In more detail, one route went from <math>{}^{\backprime\backprime} \texttt{(} p \texttt{~(} q \texttt{))~(} p \texttt{~(} r \texttt{))} {}^{\prime\prime}</math> to <math>{}^{\backprime\backprime} \texttt{(} p~q~r \texttt{,~(} p \texttt{))} {}^{\prime\prime},</math> and another went from <math>{}^{\backprime\backprime} \texttt{(} p \texttt{(} q~r \texttt{))} {}^{\prime\prime}</math> to <math>{}^{\backprime\backprime} \texttt{(} p~q~r \texttt{, (} p \texttt{))} {}^{\prime\prime},</math> thus equating the two points of departure.
    
Proof&nbsp;3 took the path of reflection, expressing the met-equation between ''e''<sub>2</sub> and ''e''<sub>3</sub> in the naturalized equation ''e''<sub>5</sub>, then taking ''e''<sub>5</sub> as ''s''<sub>1</sub> and exchanging it by dint of value preserving steps for ''e''<sub>1</sub> as ''s''<sub>''n''</sub>.  Thus we went from "(( (p (q))(p (r)) , (p (q r)) ))" to the blank expression that <math>\operatorname{Ex}</math> recognizes as the value ''true''.
 
Proof&nbsp;3 took the path of reflection, expressing the met-equation between ''e''<sub>2</sub> and ''e''<sub>3</sub> in the naturalized equation ''e''<sub>5</sub>, then taking ''e''<sub>5</sub> as ''s''<sub>1</sub> and exchanging it by dint of value preserving steps for ''e''<sub>1</sub> as ''s''<sub>''n''</sub>.  Thus we went from "(( (p (q))(p (r)) , (p (q r)) ))" to the blank expression that <math>\operatorname{Ex}</math> recognizes as the value ''true''.
12,080

edits

Navigation menu