Changes

MyWikiBiz, Author Your Legacy — Sunday November 24, 2024
Jump to navigationJump to search
Line 1,394: Line 1,394:  
|}
 
|}
   −
Proof&nbsp;1 proceeded by the ''straightforward approach'', starting with ''e''<sub>2</sub> as ''s''<sub>1</sub> and ending with ''e''<sub>3</sub> as ''s''<sub>''n''</sub>. That is, it commenced from the sign "(p (q))(p (r))" and ended up at the sign "(p (q r))" by legal moves.
+
Proof&nbsp;1 proceeded by the ''straightforward approach'', starting with <math>e_2\!</math> as <math>s_1\!</math> and ending with <math>e_3\!</math> as <math>s_n\!.</math>  That is, it commenced from the sign <math>{}^{\backprime\backprime} \texttt{(} p \texttt{~(} q \texttt{))~(} p \texttt{~(} r \texttt{))} {}^{\prime\prime}</math> and ended up at the sign <math>{}^{\backprime\backprime} \texttt{(} p \texttt{~(} q~r \texttt{))} {}^{\prime\prime}</math> by legal moves.
    
Proof&nbsp;2 lit on by ''burning the candle at both ends'', changing ''e''<sub>2</sub> into a normal form that reduced to ''e''<sub>4</sub>, and changing ''e''<sub>3</sub> into a normal form that also reduced to ''e''<sub>4</sub>, in this way tethering ''e''<sub>2</sub> and ''e''<sub>3</sub> to a common stake.  In more detail, one route went from "(p (q))(p (r))" to "(p q r, (p))", and another went from "(p (q r))" to "(p q r, (p))", thus equating the two points of departure.
 
Proof&nbsp;2 lit on by ''burning the candle at both ends'', changing ''e''<sub>2</sub> into a normal form that reduced to ''e''<sub>4</sub>, and changing ''e''<sub>3</sub> into a normal form that also reduced to ''e''<sub>4</sub>, in this way tethering ''e''<sub>2</sub> and ''e''<sub>3</sub> to a common stake.  In more detail, one route went from "(p (q))(p (r))" to "(p q r, (p))", and another went from "(p (q r))" to "(p q r, (p))", thus equating the two points of departure.
12,080

edits

Navigation menu