| Line 3,621: |
Line 3,621: |
| | ==Note 21== | | ==Note 21== |
| | | | |
| | + | To construct the regular representations of <math>S_3,\!</math> we begin with the data of its operation table: |
| | + | |
| | + | {| align="center" cellpadding="6" width="90%" |
| | + | | align="center" | |
| | <pre> | | <pre> |
| − | To construct the regular representations of S_3,
| |
| − | we pick up from the data of its operation table:
| |
| − |
| |
| | Table 1. Symmetric Group S_3 | | Table 1. Symmetric Group S_3 |
| | + | o-------------------------------------------------o |
| | + | | | |
| | + | | ^ | |
| | + | | e / \ e | |
| | + | | / \ | |
| | + | | / e \ | |
| | + | | f / \ / \ f | |
| | + | | / \ / \ | |
| | + | | / f \ f \ | |
| | + | | g / \ / \ / \ g | |
| | + | | / \ / \ / \ | |
| | + | | / g \ g \ g \ | |
| | + | | h / \ / \ / \ / \ h | |
| | + | | / \ / \ / \ / \ | |
| | + | | / h \ e \ e \ h \ | |
| | + | | i / \ / \ / \ / \ / \ i | |
| | + | | / \ / \ / \ / \ / \ | |
| | + | | / i \ i \ f \ j \ i \ | |
| | + | | j / \ / \ / \ / \ / \ / \ j | |
| | + | | / \ / \ / \ / \ / \ / \ | |
| | + | | ( j \ j \ j \ i \ h \ j ) | |
| | + | | \ / \ / \ / \ / \ / \ / | |
| | + | | \ / \ / \ / \ / \ / \ / | |
| | + | | \ h \ h \ e \ j \ i / | |
| | + | | \ / \ / \ / \ / \ / | |
| | + | | \ / \ / \ / \ / \ / | |
| | + | | \ i \ g \ f \ h / | |
| | + | | \ / \ / \ / \ / | |
| | + | | \ / \ / \ / \ / | |
| | + | | \ f \ e \ g / | |
| | + | | \ / \ / \ / | |
| | + | | \ / \ / \ / | |
| | + | | \ g \ f / | |
| | + | | \ / \ / | |
| | + | | \ / \ / | |
| | + | | \ e / | |
| | + | | \ / | |
| | + | | \ / | |
| | + | | v | |
| | + | | | |
| | + | o-------------------------------------------------o |
| | + | </pre> |
| | + | |} |
| | | | |
| − | | ^
| + | Just by way of staying clear about what we are doing, let's return to the recipe that we worked out before: |
| − | | e / \ e
| |
| − | | / \
| |
| − | | / e \
| |
| − | | f / \ / \ f
| |
| − | | / \ / \
| |
| − | | / f \ f \
| |
| − | | g / \ / \ / \ g
| |
| − | | / \ / \ / \
| |
| − | | / g \ g \ g \
| |
| − | | h / \ / \ / \ / \ h
| |
| − | | / \ / \ / \ / \
| |
| − | | / h \ e \ e \ h \
| |
| − | | i / \ / \ / \ / \ / \ i
| |
| − | | / \ / \ / \ / \ / \
| |
| − | | / i \ i \ f \ j \ i \
| |
| − | | j / \ / \ / \ / \ / \ / \ j
| |
| − | | / \ / \ / \ / \ / \ / \
| |
| − | | ( j \ j \ j \ i \ h \ j )
| |
| − | | \ / \ / \ / \ / \ / \ /
| |
| − | | \ / \ / \ / \ / \ / \ /
| |
| − | | \ h \ h \ e \ j \ i /
| |
| − | | \ / \ / \ / \ / \ /
| |
| − | | \ / \ / \ / \ / \ /
| |
| − | | \ i \ g \ f \ h /
| |
| − | | \ / \ / \ / \ /
| |
| − | | \ / \ / \ / \ /
| |
| − | | \ f \ e \ g /
| |
| − | | \ / \ / \ /
| |
| − | | \ / \ / \ /
| |
| − | | \ g \ f /
| |
| − | | \ / \ /
| |
| − | | \ / \ /
| |
| − | | \ e /
| |
| − | | \ /
| |
| − | | \ /
| |
| − | | v
| |
| | | | |
| − | Just by way of staying clear about what we are doing,
| + | It is part of the definition of a group that the 3-adic relation <math>L \subseteq G^3</math> is actually a function <math>L : G \times G \to G.</math> It is from this functional perspective that we can see an easy way to derive the two regular representations. |
| − | let's return to the recipe that we worked out before:
| |
| | | | |
| − | It is part of the definition of a group that the 3-adic
| + | Since we have a function of the type <math>L : G \times G \to G,</math> we can define a couple of substitution operators: |
| − | relation L c G^3 is actually a function L : G x G -> G.
| |
| − | It is from this functional perspective that we can see
| |
| − | an easy way to derive the two regular representations.
| |
| | | | |
| − | Since we have a function of the type L : G x G -> G,
| + | # <math>\operatorname{Sub}(x, (\underline{~~}, y))</math> puts any specified <math>x\!</math> into the empty slot of the rheme <math>(\underline{~~}, y),</math> with the effect of producing the saturated rheme <math>(x, y)\!</math> that evaluates to <math>x \cdot y.</math> |
| − | we can define a couple of substitution operators:
| + | # <math>\operatorname{Sub}(x, (y, \underline{~~}))</math> puts any specified <math>x\!</math> into the empty slot of the rheme <math>(y, \underline{~~}),</math> with the effect of producing the saturated rheme <math>(y, x)\!</math> that evaluates to <math>y \cdot x.</math> |
| − | | |
| − | 1. Sub(x, <_, y>) puts any specified x into
| |
| − | the empty slot of the rheme <_, y>, with
| |
| − | the effect of producing the saturated
| |
| − | rheme <x, y> that evaluates to x·y.
| |
| − | | |
| − | 2. Sub(x, <y, _>) puts any specified x into
| |
| − | the empty slot of the rheme <y, >, with
| |
| − | the effect of producing the saturated
| |
| − | rheme <y, x> that evaluates to y·x.
| |
| | | | |
| | + | <pre> |
| | In (1), we consider the effects of each x in its | | In (1), we consider the effects of each x in its |
| | practical bearing on contexts of the form <_, y>, | | practical bearing on contexts of the form <_, y>, |