Line 2,544: |
Line 2,544: |
| ===Cactus Language=== | | ===Cactus Language=== |
| | | |
− | '''Note.''' Need to find the original context of this fragment. | + | {| align="center" cellpadding="6" width="90%" |
| + | | align="right" | '''Note.''' Need to find the original context of this fragment. |
| + | |} |
| | | |
| Table 13 illustrates the ''existential interpretation'' of cactus graphs and cactus expressions by providing English translations for a few of the most basic and commonly occurring forms. | | Table 13 illustrates the ''existential interpretation'' of cactus graphs and cactus expressions by providing English translations for a few of the most basic and commonly occurring forms. |
Line 2,556: |
Line 2,558: |
| The cactus graph and the cactus expression shown here are both described as a ''spike''. | | The cactus graph and the cactus expression shown here are both described as a ''spike''. |
| | | |
− | {| align="center" cellspacing="6" width="90%" | + | {| align="center" cellpadding="6" width="90%" |
− | | align="center" |
| + | | |
| <pre> | | <pre> |
| o---------------------------------------o | | o---------------------------------------o |
Line 2,573: |
Line 2,575: |
| The rule of reduction for a lobe is: | | The rule of reduction for a lobe is: |
| | | |
− | {| align="center" cellspacing="6" width="90%" | + | {| align="center" cellpadding="6" width="90%" |
− | | align="center" |
| + | | |
| <pre> | | <pre> |
| x_1 x_2 ... x_k | | x_1 x_2 ... x_k |
Line 2,592: |
Line 2,594: |
| if and only if exactly one of the x_j is a spike. | | if and only if exactly one of the x_j is a spike. |
| | | |
| + | In Ref Log, an expression of the form <math>\texttt{((}~ e_1 ~\texttt{),(}~ e_2 ~\texttt{),(}~ \ldots ~\texttt{),(}~ e_k ~\texttt{))}</math> |
| + | expresses the fact that ''exactly one of the <math>e_j\!</math> is true''. Expressions of this form are called ''universal partition'' expressions, and |
| + | they parse into a type of graph called a ''painted and rooted cactus'' (PARC): |
| + | |
| + | {| align="center" cellpadding="6" width="90%" |
| + | | |
| <pre> | | <pre> |
− | In Ref Log, an expression of the form "(( e_1 ),( e_2 ),( ... ),( e_k ))"
| |
− | expresses the fact that "exactly one of the e_j is true, for j = 1 to k".
| |
− | Expressions of this form are called "universal partition" expressions, and
| |
− | they parse into a type of graph called a "painted and rooted cactus" (PARC):
| |
− |
| |
| e_1 e_2 ... e_k | | e_1 e_2 ... e_k |
| o o o | | o o o |
Line 2,618: |
Line 2,621: |
| | | | | |
| | Just one of the arguments x1, x2, ..., xk = () | | | Just one of the arguments x1, x2, ..., xk = () |
| + | </pre> |
| + | |} |
| | | |
− | The interpretation of these operators, read as assertions | + | The interpretation of these operators, read as assertions about the values of their listed arguments, is as follows: |
− | about the values of their listed arguments, is as follows: | |
| | | |
− | 1. Existential Interpretation: "Just one of the k argument is false."
| + | {| align="center" cellpadding="6" width="90%" |
− | 2. Entitative Interpretation: "Not just one of the k arguments is true."
| + | | Existential Interpretation: |
− | | + | | Just one of the k argument is false. |
− | o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
| + | |- |
| + | | Entitative Interpretation: |
| + | | Not just one of the k arguments is true. |
| + | |} |
| | | |
| + | {| align="center" cellpadding="6" width="90%" |
| + | | |
| + | <pre> |
| o-------------------o-------------------o-------------------o | | o-------------------o-------------------o-------------------o |
| | Graph | String | Translation | | | | Graph | String | Translation | |
Line 2,705: |
Line 2,715: |
| | @ | ( t ,(r),(s)) | slices r, s. | | | | @ | ( t ,(r),(s)) | slices r, s. | |
| o-------------------o-------------------o-------------------o | | o-------------------o-------------------o-------------------o |
| + | </pre> |
| + | |} |
| | | |
− | o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
| + | {| align="center" cellpadding="6" width="90%" |
− | | + | | |
| + | <pre> |
| Table 13. The Existential Interpretation | | Table 13. The Existential Interpretation |
| o-------------------o-------------------o-------------------o | | o-------------------o-------------------o-------------------o |
Line 2,802: |
Line 2,815: |
| | | | | | | | | | | |
| o-------------------o-------------------o-------------------o | | o-------------------o-------------------o-------------------o |
| + | </pre> |
| + | |} |
| | | |
− | o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
| + | {| align="center" cellpadding="6" width="90%" |
− | | + | | |
| + | <pre> |
| Table 14. The Entitative Interpretation | | Table 14. The Entitative Interpretation |
| o-------------------o-------------------o-------------------o | | o-------------------o-------------------o-------------------o |
Line 2,900: |
Line 2,916: |
| | | | | | | | | | | |
| o-------------------o-------------------o-------------------o | | o-------------------o-------------------o-------------------o |
| + | </pre> |
| + | |} |
| | | |
− | o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
| + | {| align="center" cellpadding="6" width="90%" |
− | | + | | |
| + | <pre> |
| o-----------------o-----------------o-----------------o-----------------o | | o-----------------o-----------------o-----------------o-----------------o |
| | Graph | String | Entitative | Existential | | | | Graph | String | Entitative | Existential | |
Line 2,988: |
Line 3,007: |
| o-----------------o-----------------o-----------------o-----------------o | | o-----------------o-----------------o-----------------o-----------------o |
| </pre> | | </pre> |
| + | |} |
| | | |
| ===Differential Logic=== | | ===Differential Logic=== |